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Numerical Approach in Rock Engineering
Methodology in Rock Engineering

 Empirical Method
- RMR, Q, empirical system
* Analytical Method

— Mathematical exact solution

* Experimental Method

— Conduct experiment in the lab and insitu

* Numerical Method

— Solve equations (often PDE) numerically using computer to obtain
solution
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Numerical Methods

» Continuum method
— Finite Element Method
— Finite Difference Method
— Boundary Element Method

* Discontinuum Method
— Discrete Element Method (explicit & Implicit)

* Hybrid Continuum/Discontinuum Method
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Physical variables for THMC problems
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Physical problem Conservation State Variable Flux Material Source Constitutive

Principle u o properties f equation
V.g=0 k o=ku'

Elasticity Conservation of Displacement Stress Young’s modulus | Body Hooke’s law
linear momentum | u o & Poisson’s ratio | forces
(equilibrium)

Heat Conservation of Temperature Heat flux Thermal Heat Fourier’s law

. ener T conductivit sources

conduction i Q K Y

Porous media | Conservation of Hydraulic head Flow rate Permeability Fluid Darcy’s law
mass h Q k source

flow

Mass Conservation of Concentration Diftusive Diftusion Chemical | Fick’s law

t rt mass C flux coefficient source

ranspo q D

Structure of state variables and fluxes are mathematically similar -
a convenient truth!




Numerical Approach in Rock Engineering
Advantage/Usefulness - analytical approach

An example of analytical solution: Kirsch solution (1898)
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Advantage/Usefulness
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Kirsch solution

-

Diametral compression

Tangential Stress Contour

1.5

Normalized stress, ©/ P

« Numerous analytical solutions exist — fast evaluation & still powerful

« However, 1) complex geometry, 2) multiple formation, 3) complex
boundary condition, 4) complex process cannot be handled accurately.

Courtesy of Kwon S
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» When geometry is not simply circular,

« When fractures around rock is considered,




Numerical Approach in Rock Engineering
Examples (1) — Underground construction

» Underground ice hockey stadium in Norway — discontinuum
method was used for design

displacement vectors

maximum = 1. 920E-02

=290l 64! XI5tOFOIABH| ZJ| % (Barton et al., 1994)
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Examples (1) — underground construction

UDEC 4.01

Cycle 118000

Time 8.530E+00 sec

block plot

displacement vectors
maximum = 3.660E-02

(P T |
o] 2e-01

Min KB, Lee JW et al., 2011
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Examples (1) — underground construction
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Examples (2) - TM analysis

* High level nuclear waste repository in Sweden

— What would be the stress, displacement and temperature around
repository when ~6000 canisters are placed in the deposition holes

Section View
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Locations of monitoring points

Min KB, Lee JW, Stephansson O, Implications of Thermally-Induced Fracture Slip and Permeability Change on the Long-term Performance of a
Deep Geological Repository, Int J Rock Mech Min Sci, 2013;61:175-288.
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Examples (2) - TM anaIySis SEOUL NANAUNIVERSITY
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Min KB, Lee JW, Stephansson O, Implications of Thermally-Induced Fracture Slip and Permeability Change on the Long-term Performance of a
Deep Geological Repository, Int J Rock Mech Min Sci, 2013;61:175-288.
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Examples (2) - TM anaIySis SEOUL NANAUNIVERSJTY
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» Maximum compressive stress ~ 20 MPa near repository at ~ 100 years

« Maximum tensile stress ~10 MPa at surface at ~ 1,000 years

Min KB, Lee JW, Stephansson O, Implications of Thermally-Induced Fracture Slip and Permeability Change on the Long-term Performance of a
Deep Geological Repository, Int J Rock Mech Min Sci, 2013;61:175-288.
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Examples (3) - CO2 Geosequestration

How much heaving is expected after injecting xxx tons of CO2
at a given geological formation?
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Lee JW, Min KB, Rutqvist J, Probabilistic Analysis of Fracture Reactivation Associated with Deep Underground CO, injection, Rock Mechanics
and Rock engineering, 2013, 46(8):801-820.

SEOUL NATIONAL UNIVERSITY
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Examples (4) — anisotropic discontinuum

Analytical vs PFC2D (SR0.1 / {_isotrpoic rock / «=-30) Analytical vs COMSOL (SR0.1/t_isotrp¢
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Courtesy of Park B
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Examples (4) — anisotropic discontinuum

Courtesy of Park B
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Examples (5) - TM analysis in discontinuous rock
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High-level nuclear repository in Forsmark, Sweden
- Geometry and results of the TM modelling
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Courtesy of Park J
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Examples (6) - Hydraulic Fracturing/borehole Geomech, .
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Hydraulic fracturing with
pre-existing fractures Tangential stress around

inclined borehole

Xie LM, Min KB, Shen B, 2014, Displacement discontinuity method modelling of hydraulic fracturing with pre-existing fractures, 48" US Rock
Mech/Geomech Symp, Paper No.14-7464
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* Reasons for popularity in numerical modeling

— Easy-to-access powerful PC
{Positive /negative

| Tool is a means to a solution.(not the solution itself!)
— Dramatic increase in ability to include geological detail in models

‘s More detail imply better model?

{ The art of modeling lies in determining what aspects of the geology are
essential.

— Predictive capability in physical process

— Success of modeling in other branches of engineering

| Similarity & differences with aerospace eng?

*Starfield, A.M. and P.A. Cundall, 1988, TOWARDS A METHODOLOGY FOR ROCK MECHANICS MODELING. Int J Rock Mech Min Sci &
Geomech Abstr, 25(3): p. 99-106
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* Problems in applying numerical approach

— Misuse
{Use in a wrong way:

‘| Need to be familiar with the theory of the numerical methods

— Abuse or overuse
‘| Numerical tool is not a magic box

[ Appropriate modeling methodology needed
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Rock Characterization Problem stou. TN

* Uncertainty in Geological Feature

* Uncertainty in Boundary Condition

— In situ stress not easy to characterize

* Hard to obtain data in Rock/Fracture properties
— Costly, unavailable
* Up-scaling issue

— measure in the lab may not represent the values in large scale
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Well-posed problems

Dala

Data limited problems
- Rock Engineering?

2

Understanding

Recited from Starfield and Cundall (1988)
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Data limited problems

* Fitting rock engineering problem into region 3 (lots of data
plus good understanding)

— Impossible to have sufficient data

— We loses control of intellectual control of the model

Data

Understanding
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Data limited problems
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* Apply the tools developed for region 3 to rock engineering
problem

— Numerical tool is a means to a solution!

prep—— . —_— — _— — — — ==

Data

Understanding
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MOdeIing QUideIines SEOUL NATIONAL UNIVERSITY

» Differences between well-posed and data-limited problems
— Resolution
— Validation

— Once validated, can it be used routinely?

Well-posed problem

e iy e RN Bods WSS SSRm SRR —_— = e e -

Data

Data{limited roblem

Understanding
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Modeling guidelines

* Data-limited problems

— A model is a simplification of reality rather than an imitation of
reality. A model is an intellectual tool.

— The design of the model should be driven by the questions that the
model is supposed to answer rather than the details of the system.
=> helps in simplify and control the model

— More appropriate to build a few very simple models than one
complex model.

— Try to gain confidence in the model and modify it as one uses it.
Approach to the model is that of a detective (not mathematician)

— Pupose is to gain understanding and to explore potential trade-offs
and alternatives. (not absolute predictions)
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MOdeIing QUideIines SEOUL NATIONAL UNIVERSITY

* Data-limited problems

— One progresses slowly from region 4 to region 3 < from simple to

complex model, suggest new data or new models. < Adaptive
modeling

Well-posed problem

=N

F_———————-
I
!
| 2
|
f

Understanding

Data

Data{limited problem
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Modeling guidelines

* Clear about why you are building a model and what questions
you are trying to answer

 Use a model at the earliest possible stage in a project to
generate both data and understanding.

— Do not delay while waiting for field data. You need a conceptual
model in place as soon as possible.

* Look at the mechanics of the problem.

— ldentify important mechanisms

* Try to visualize qualitatively what the answer of your modeling
would be
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Modeling guidelines

* Design the simplest model that will allow the important
mechanisms to occur € serve as a laboratory for the
thoughts experiments

* |Implement your simplest modeling — run it — and improve it.
— Proceed to more complex modeling
— Or, identify the weakness and remedy them before continuing

— If your model has weakness that you cannot remedy - make a
series of simulations that will bracket the true case.
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 Numerical modeling is very similar to laboratory work

» Visualizing and anticipating solutions before running a model
IS an important discipline.

* Modeling in a cautious way actually generate new knowledge
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Case Studies (EGS hydraulic stimulation)

* Fluid flow enhancement due to
hydraulic stimulation in a EGS
project in Cornwall (Pine, 1985)

Recited from Starfield and Cundall (1988)
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Case Studies (Rock Slope Stability)

///

.............

.....

//////

* S0 obvious? Easy to say...detective novel...

Recited from Starfield and Cundall (1988)
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Job Title; L=280+270m, L =100=100m, I=10m, H.=60m, P.=4MPa
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Verification VS. Validation SEOUL NATIONAL UNIVERSITY

* Verification: the provision of assurance that a code
correctly performs the operations it specifies (e.g., PDE)".

— A common method of verification is the comparison of a code’s
results with solutions obtained analytically (Kirsch solution,
Boussinesq...)

Validation: the determination that the code or model
indeed reflects the behavior of the real world 2.

— Validated model is the one that provides a good representation of
the actual processes occurring a real system 3.

—

US Nuclear Regulatory Commission (NRC, NUREG-0865, 1990)
US Department of Energy (DOE/RE-0073, 1986)
IAEA, Radioactive waste management glossary (IAEA-TECDOC-264, 1982)

W N
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Verification vs. Validation o v

« *Verification:

— |s the program doing what it claims to be doing?
* Are we getting the answers that we think we are getting?

 Validation

— Are we getting the answers that we need?

DM Wood, Geotechnical modeling, 2004
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Concluding remark
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 Numerical method is a indispensable part of engineering
analysis — needs a thorough understanding

 Numerical method has a unique role that other analytical or
experimental methods cannot play.

« However, we must bear in mind that numerical methods is
only a means not the answer itself.

— (Garbage in, garbage out - The results is only as good as the data
— A model is an aid to thought, rather than a substitute for thinking

— Plan the modeling exercise in the same way as you would plan a
laboratory experiment
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