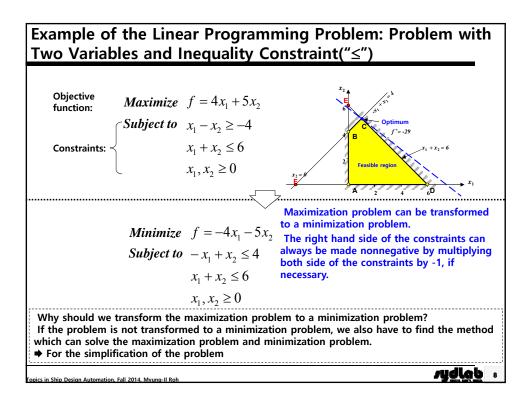
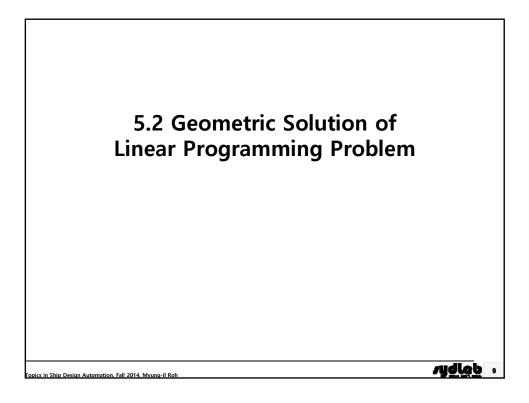
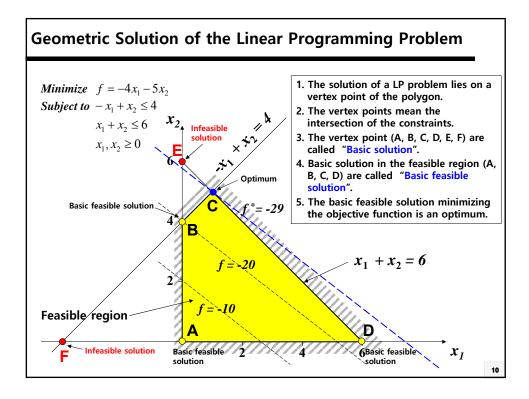
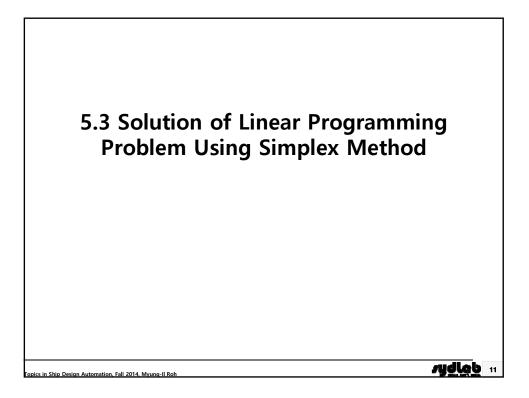
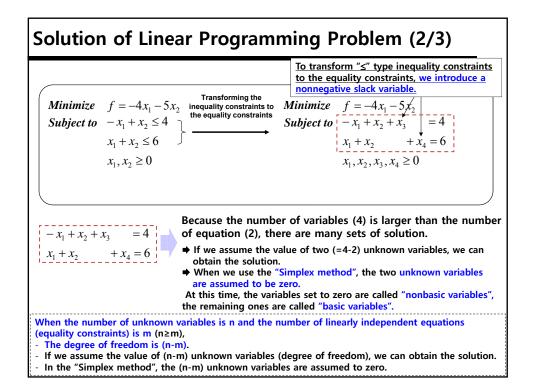

Contents
☑ Ch. 1 Introduction to Optimum Design
I Ch. 2 Unconstrained Optimization Method: Gradient Method
☑ Ch. 3 Unconstrained Optimization Method: Enumerative Method
☑ Ch. 4 Constrained Optimization Method: Penalty Function Method
☑ Ch. 5 Constrained Optimization Method: LP (Linear Programming)
 Ch. 6 Constrained Optimization Method: SQP (Sequential Quadratic Programming)
☑ Ch. 7 Metaheuristic Optimization Method: Genetic Algorithms
☑ Ch. 8 Case Study of Optimal Dimension Design
☑ Ch. 9 Case Study of Optimal Route Design
Image: Ch. 10 Case Study of Optimal Layout Design
adlab
Copics in Ship Design Automation, Fall 2014, Myung-II Roh 2

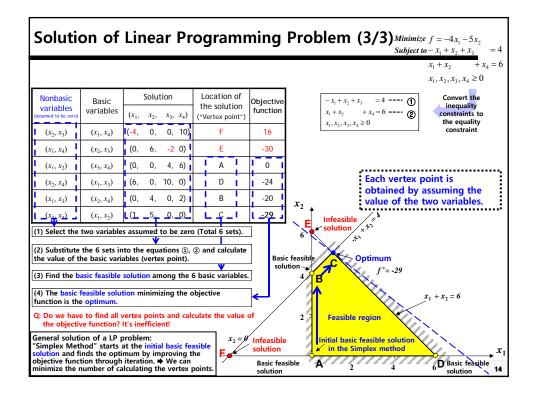


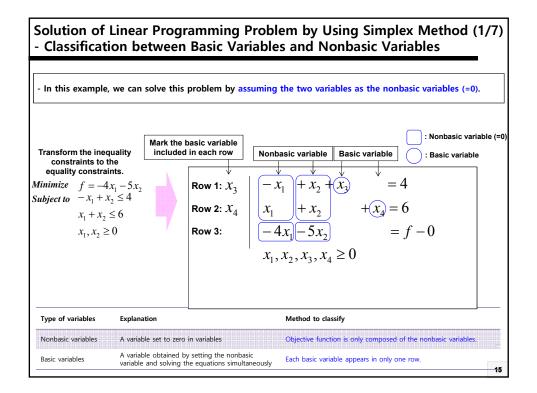


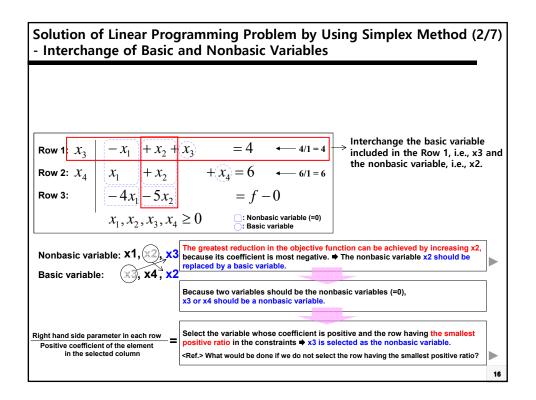




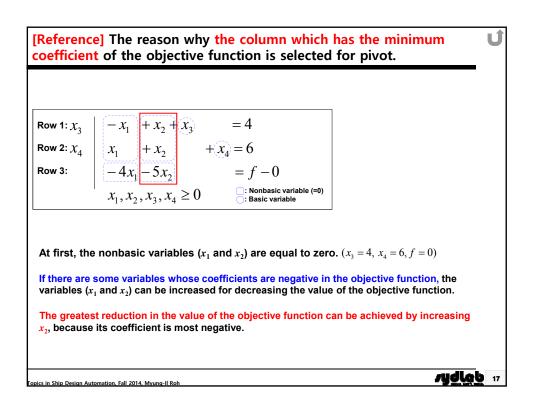


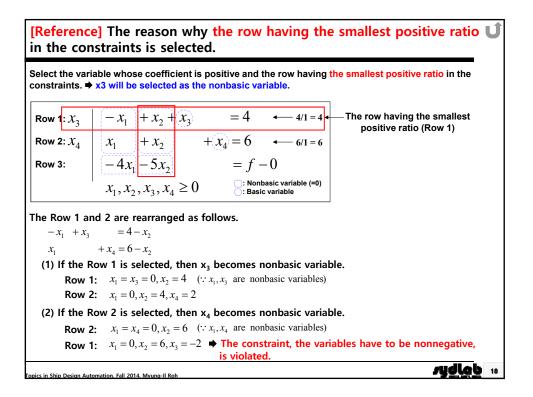


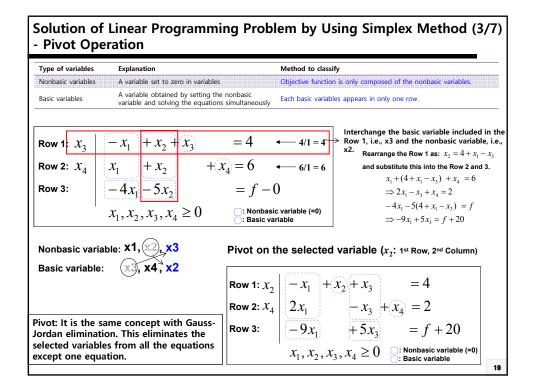


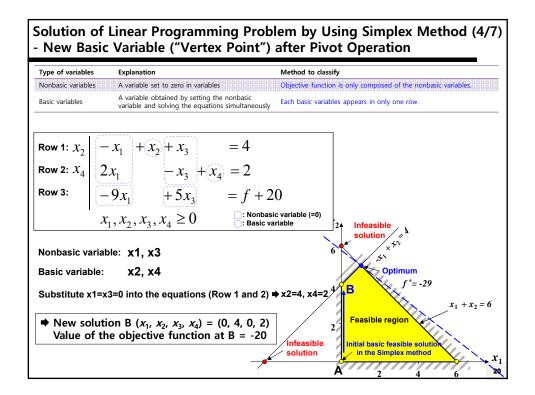


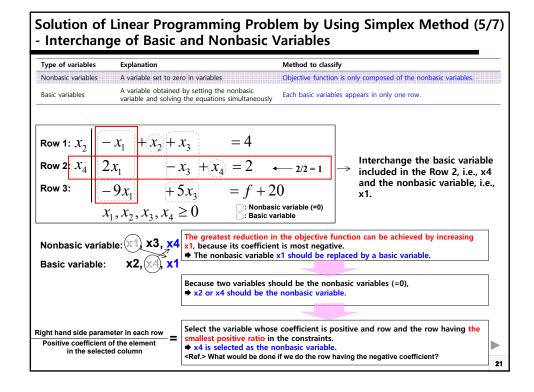
Solution of Linear Programming Problem (1/3) - Transformation of "<" Type Inequality Constraint Minimize $f = -4x_1 - 5x_2$ Subject to $[-x_1 + x_2 \le 4]$ $x_1 + x_2 \le 6$ $x_1, x_2 \ge 0$ For "<" type inequality constraint, we introduce a nonnegative slack variable. $-x_1 + x_2 \le 4$ \Rightarrow $-x_1 + x_2 + \frac{x_3}{8} = 4$ Slack variable(nonnegative) Standard form of the Linear Programming Problem 1. Right hand side of the constraints should always be nonnegative. 2. Inequality constraint should be transformed to an equality constraint.

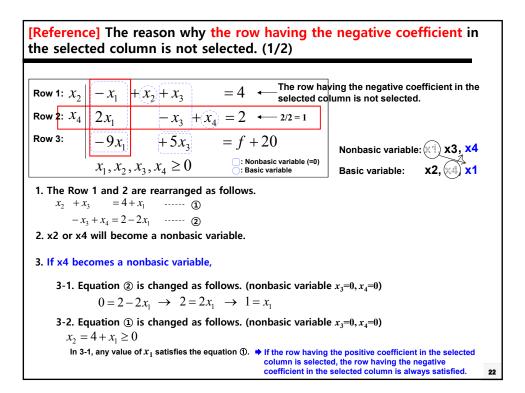


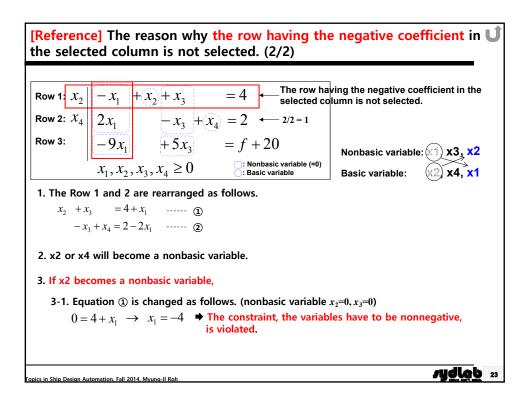


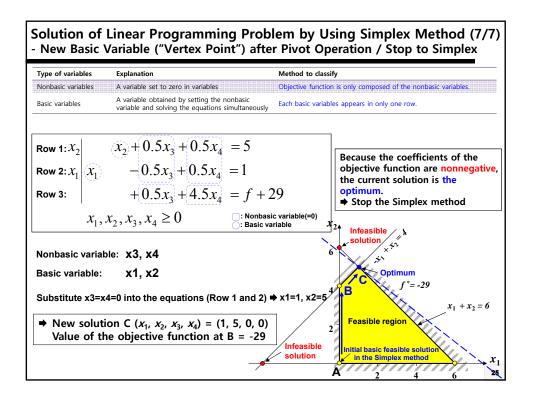


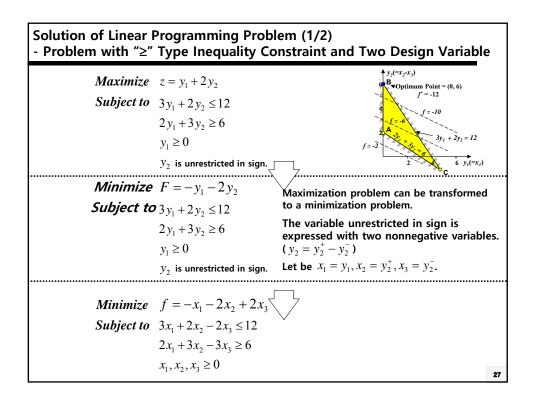


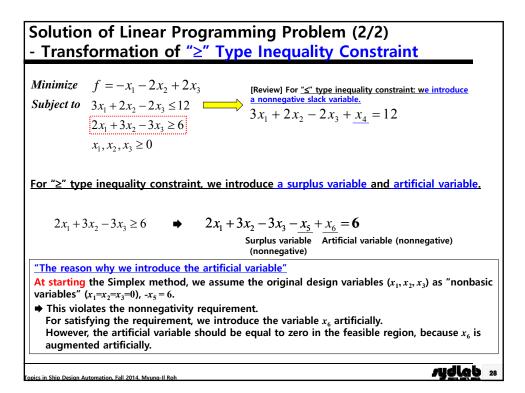

8

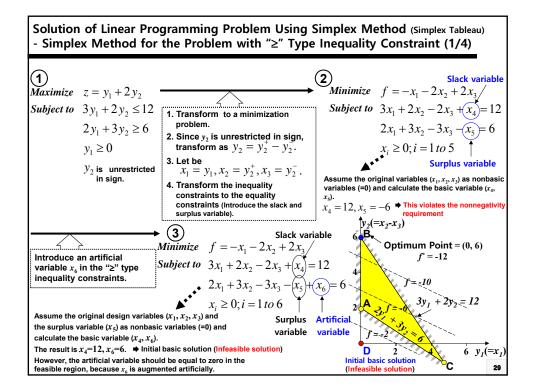


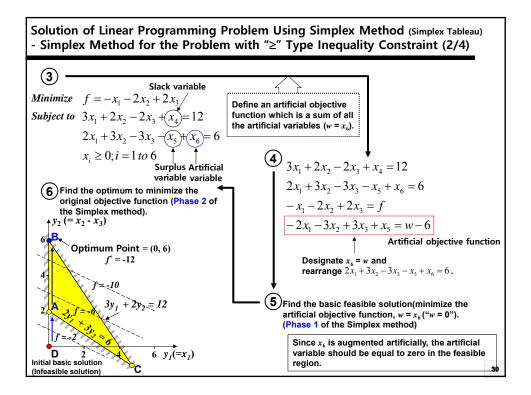


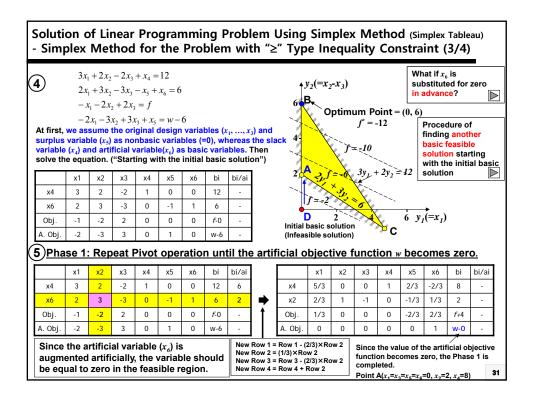


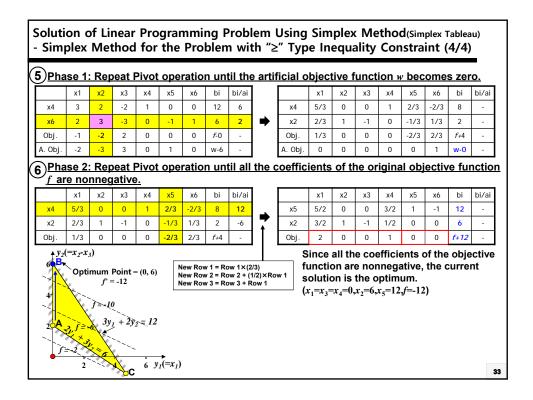


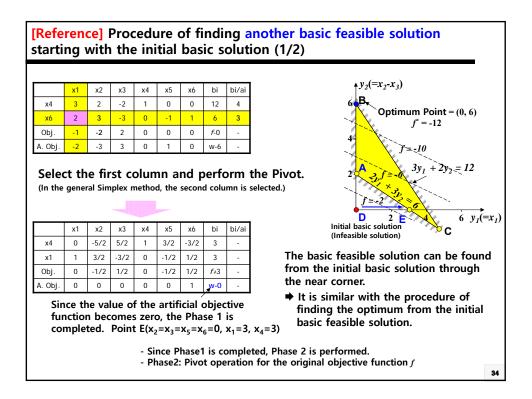


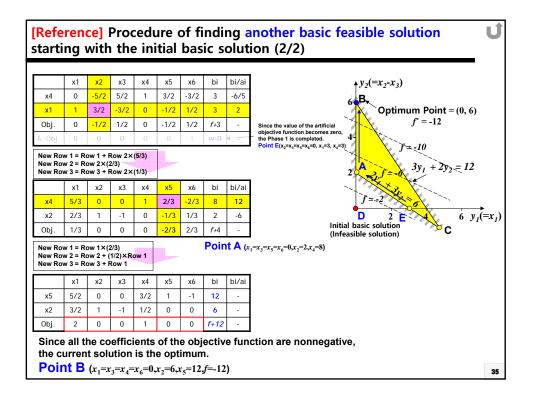

Row 3: $-9x_1$ $+5x_3$ $= f + 20$ $x_1, x_2, x_3, x_4 \ge 0$ and the nonbasic variable, i. x_1 Nonbasic variable: $x_1, x_2, x_3, x_4 \ge 0$ \vdots Nonbasic variable x_1 Nonbasic variable: $x_2, x_3, x_4 \ge 0$ \vdots Nonbasic variable x_1 Nonbasic variable: x_2, x_3, x_4 Pivot on the selected variable $(x_1: 2^{nd} \operatorname{Row}, 1^{st} \operatorname{Column})$ Basic variable: x_2, x_4, x_1 Nonbasic variable(Row 1+0.5 x Row 2) \rightarrow $(0.5 x \operatorname{Row} 2) \rightarrow$ Row 1: x_2 (Row 3+4.5 x Row 2) \rightarrow Row 3: x_1 $-0.5x_3 + 0.5x_4 = 5$ (Row 3+4.5 x Row 2) \rightarrow Row 3: x_1 $-0.5x_3 + 0.5x_4 = f + 29$ $x = x = x = x = 20$ \vdots Nonbasic variable(=0)	Type of variables	Explanation	Method to classify	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Nonbasic variables	A variable set to zero in variables	Objective function is onl	y composed of the nonbasic variables.
Nonbasic variable: $x_{1}, x_{2}, x_{3}, x_{4} \ge 0$ Nonbasic variable: $x_{2}, x_{3}, x_{4} \ge 0$ Nonbasic variable: $x_{1}, x_{2}, x_{3}, x_{4} \ge 0$ Nonbasic variable: $x_{1}, x_{2}, x_{3}, x_{4} \ge 0$ Nonbasic variable: $x_{2}, x_{3}, x_{4} \ge 0$ Nonbasic variable: x_{3}, x_{4}	Basic variables		, Each basic variables app	ears in only one row.
Nonbasic variable: $x_{1} = x_{2}$ $x_{1} = -x_{3} + x_{4} = 2 \leftarrow 2/2 = 1$ Row 3: $-9x_{1} + 5x_{3} = f + 20$ $x_{1}, x_{2}, x_{3}, x_{4} \ge 0$ $\vdots \text{ Nonbasic variable (=0)}$ Nonbasic variable: $x_{1}, x_{2}, x_{3}, x_{4} \ge 0$ $\vdots \text{ Nonbasic variable (=0)}$ Nonbasic variable: $x_{2}, x_{3}, x_{4} \ge 0$ $\vdots \text{ Nonbasic variable (=0)}$ Nonbasic variable: $x_{2}, x_{3}, x_{4} \ge 0$ $\vdots \text{ Nonbasic variable (=0)}$ $x_{1}, x_{2}, x_{3}, x_{4} \ge 0$ $\vdots \text{ Nonbasic variable (=0)}$ $x_{1}, x_{2}, x_{3}, x_{4} \ge 0$ $\vdots \text{ Nonbasic variable (=0)}$ $x_{1}, x_{2}, x_{3}, x_{4} \ge 0$ $\vdots \text{ Nonbasic variable (=0)}$ $x_{1}, x_{2}, x_{3}, x_{4} \ge 0$ $\vdots \text{ Nonbasic variable (=0)}$ $x_{1}, x_{2}, x_{3}, x_{4} \ge 0$ $\vdots \text{ Nonbasic variable (=0)}$ $x_{1}, x_{2}, x_{3}, x_{4} \ge 0$ $\vdots \text{ Nonbasic variable (=0)}$ $x_{1}, x_{2}, x_{3}, x_{4} \ge 0$ $\vdots \text{ Nonbasic variable (=0)}$ $x_{1}, x_{2}, x_{3}, x_{4} \ge 0$ $\vdots \text{ Nonbasic variable (=0)}$ $x_{1}, x_{2}, x_{3}, x_{4} \ge 0$ $\vdots \text{ Nonbasic variable (=0)}$ $x_{1}, x_{2}, x_{3}, x_{4} \ge 0$ $\vdots \text{ Nonbasic variable (=0)}$ $x_{1}, x_{2}, x_{3}, x_{4} \ge 0$ $\vdots \text{ Nonbasic variable (=0)}$ $x_{2}, x_{3}, x_{4} \ge 0$ $\vdots \text{ Nonbasic variable (=0)}$ $x_{2}, x_{3}, x_{4} \ge 0$ $\vdots \text{ Nonbasic variable (=0)}$ $x_{3}, x_{4} \ge 0$ $\vdots \text{ Nonbasic variable (=0)}$ $x_{3}, x_{4} \ge 0$ $\vdots \text{ Nonbasic variable (=0)}$ $x_{3}, x_{4} \ge 0$ $\vdots \text{ Nonbasic variable (=0)}$ $x_{3}, x_{4} \ge 0$ $\vdots \text{ Nonbasic variable (=0)}$ $x_{3}, x_{4} \ge 0$ $\vdots \text{ Nonbasic variable (=0)}$ $x_{3}, x_{4} \ge 0$ $\vdots \text{ Nonbasic variable (=0)}$ $x_{3}, x_{4} \ge 0$ $\vdots \text{ Nonbasic variable (=0)}$	Baurda ar	-1		
Row 2: $x_4 = 2x_1 = -x_3 + x_4 = 2 = 222 = 1$ Row 3: $-9x_1 + 5x_3 = f + 20$ $x_1, x_2, x_3, x_4 \ge 0$ \therefore Nonbasic variable (=0) Nonbasic variable: $x_1, x_2, x_3, x_4 \ge 0$ \therefore Nonbasic variable (=0) Basic variable: $x_1, x_2, x_3, x_4 \ge 0$ \therefore Nonbasic variable (=0) Nonbasic variable: $x_1, x_2, x_3, x_4 \ge 0$ \therefore Nonbasic variable (=0) Nonbasic variable: x_2, x_4, x_1 (Row 1 + 0.5×Row 2) \rightarrow (0.5×Row 2) \rightarrow (Row 3 + 4.5×Row 2)	Row 1: λ_2	$x_1 + x_2 + x_3 = -4$		
Row 3: $\begin{vmatrix} -9x_1 \\ x_1, x_2, x_3, x_4 \ge 0 \\ \vdots \text{ Nonbasic variable} \\ \exists x_1, x_2, x_3, x_4 \ge 0 \\ \vdots \text{ Nonbasic variable} \\ \exists x_1, x_2, x_3, x_4 \ge 0 \\ \vdots \text{ Nonbasic variable} \\ \exists x_1, x_2, x_3, x_4 \ge 0 \\ \vdots \text{ Nonbasic variable} \\ \exists x_1, x_2, x_3, x_4 \ge 0 \\ \vdots \text{ Nonbasic variable} \\ \exists x_1, x_2, x_3, x_4 \ge 0 \\ \vdots \text{ Nonbasic variable} \\ \exists x_1, x_2, x_3, x_4 \ge 0 \\ \vdots \text{ Nonbasic variable} \\ \exists x_1, x_2, x_3, x_4 \ge 0 \\ \vdots \text{ Nonbasic variable} \\ \exists x_1, x_2, x_3, x_4 \ge 0 \\ \vdots \text{ Nonbasic variable} \\ \exists x_1, x_2, x_3, x_4 \ge 0 \\ \vdots \text{ Nonbasic variable} \\ \exists x_1, x_2, x_3, x_4 \ge 0 \\ \vdots \text{ Nonbasic variable} \\ \exists x_1, x_2, x_3, x_4 \ge 0 \\ \vdots \text{ Nonbasic variable} \\ \exists x_1, x_2, x_3, x_4 \ge 0 \\ \vdots \text{ Nonbasic variable} \\ \exists x_1, x_2, x_3, x_4 \ge 0 \\ \vdots \text{ Nonbasic variable} \\ \exists x_1, x_2, x_3, x_4 \ge 0 \\ \vdots \text{ Nonbasic variable} \\ \exists x_1, x_2, x_3, x_4 \ge 0 \\ \vdots \text{ Nonbasic variable} \\ \exists x_1, x_2, x_3, x_4 \ge 0 \\ \vdots \text{ Nonbasic variable} \\ \exists x_1, x_2, x_3, x_4 \ge 0 \\ \vdots \text{ Nonbasic variable} \\ \exists x_1, x_2, x_3, x_4 \ge 0 \\ \vdots \text{ Nonbasic variable} \\ \exists x_1, x_2, x_3, x_4 \ge 0 \\ \vdots \text{ Nonbasic variable} \\ \exists x_1, x_2, x_3, x_4 \ge 0 \\ \vdots \text{ Nonbasic variable} \\ \exists x_1, x_2, x_3, x_4 \ge 0 \\ \vdots \text{ Nonbasic variable} \\ \exists x_1, x_2, x_3, x_4 \ge 0 \\ \vdots \text{ Nonbasic variable} \\ \exists x_1, x_2, x_3, x_4 \ge 0 \\ \vdots \text{ Nonbasic variable} \\ \exists x_1, x_2, x_3, x_4 \ge 0 \\ \vdots \text{ Nonbasic variable} \\ \exists x_1, x_2, x_3, x_4 \ge 0 \\ \vdots \text{ Nonbasic variable} \\ \exists x_1, x_2, x_3, x_4 \ge 0 \\ \vdots \text{ Nonbasic variable} \\ \exists x_1, x_2, x_3, x_4 \ge 0 \\ \vdots \text{ Nonbasic variable} \\ \exists x_1, x_2, x_3, x_4 \ge 0 \\ \vdots \text{ Nonbasic variable} \\ \exists x_1, x_2, x_3, x_4 \ge 0 \\ \vdots \text{ Nonbasic variable} \\ \exists x_1, x_2, x_3, x_4 \ge 0 \\ \vdots \text{ Nonbasic variable} \\ \exists x_1, x_2, x_3, x_4 \ge 0 \\ \vdots \text{ Nonbasic variable} \\ \exists x_1, x_2, x_3, x_4 \ge 0 \\ \vdots \text{ Nonbasic variable} \\ \exists x_1, x_2, x_3, x_4 \ge 0 \\ \vdots \text{ Nonbasic variable} \\ \exists x_1, x_2, x_3, x_4 \ge 0 \\ \vdots \text{ Nonbasic variable} \\ \exists x_1, x_2, x_3, x_4 \ge 0 \\ \vdots \text{ Nonbasic variable} \\ \exists x_1, x_2, x_3, x_4 \ge 0 \\ \vdots \text{ Nonbasic variable} \\ \exists x_1, x_2, x_3, x_4 \ge 0 \\ \vdots \text{ Nonbasic variable} \\ \exists x_1, x_2, x_$	Row 2: $x_4 = 2$	$x_1 - x_3 + x_4 = 2$	$4 - 2/2 = 1 \rightarrow 2/2 = 1$	included in the Row 2, i.e., x4
$\begin{array}{c} x_1, x_2, x_3, x_4 \geq 0 \\ \hline \vdots \text{ Basic variable} \end{array} \qquad $	Row 3:	$-9x_1 + 5x_3 = f + 2$	20	
Basic variable: X2 , X1 (Row 1 + 0.5×Row 2) \rightarrow (0.5×Row 2) \rightarrow (Row 3 + 4.5×Row 2) \rightarrow	X	$x_1, x_2, x_3, x_4 \ge 0$		
$\begin{array}{c} \text{(Row 1 + 0.5 \times Row 2)} \longrightarrow \\ \text{(0.5 \times Row 2)} \longrightarrow \\ \text{(Row 3 + 4.5 \times Row 2)} \longrightarrow \end{array} \\ \begin{array}{c} \text{Row 1:} X_2 \\ \text{Row 2:} X_1 \\ \text{Row 3:} \end{array} \xrightarrow{\begin{array}{c} x_2 + 0.5 x_3 + 0.5 x_4 \\ -0.5 x_3 + 0.5 x_4 \\ +0.5 x_3 + 4.5 x_4 \\ -0.5 x_4 \\ -0.5 x_3 + 4.5 x_4 \\ -0.5 x_4 \\ -0.5 x_3 \\ -0.5 x_4 \\ -0.5 \\ -0.5 x_4 \\ -$	Nonbasic varial	ble: x1, x3, x4 Pivot o	on the selected v	ariable (x_1 : 2 nd Row, 1 st Column)
$(0.5 \times \text{Row 2}) \longrightarrow \text{Row 2:} x_1 \begin{vmatrix} x_1 & -0.5x_3 + 0.5x_4 \\ 0.5x_3 + 4.5x_4 \end{vmatrix} = 1$ $(\text{Row 3 + 4.5 \times \text{Row 2}}) \longrightarrow \text{Row 3:} \begin{vmatrix} x_1 & -0.5x_3 + 0.5x_4 \\ 0.5x_3 + 4.5x_4 \end{vmatrix} = f + 29$ $x_1 x_2 x_3 x_4 x_5 x_4 = f + 29$ $x_1 x_2 x_3 x_5 x_4 x_5 x_4 = f + 29$	Basic variable:	x2,(x4), x1		
(Row 3 + 4.5×Row 2) \longrightarrow Row 3: $+ 0.5x_3 + 4.5x_4 = f + 29$ $x - x - x - y > 0 \bigcirc \text{: Nonbasic variable}(=0)$		(Row 1 + 0.5×Row 2) \longrightarrow Row 1:	$x_2 = (x_2 + 0.5)$	$x_3 + 0.5x_4 = 5$
r r r r > 0 \Box : Nonbasic variable(=0)		$(0.5 \times \text{Row 2}) \longrightarrow \text{Row 2: } \mathcal{I}$	$x_1(x_1) = -0.5$	$x_3 + 0.5x_4 = 1$
		(Row 3 + 4.5×Row 2) \longrightarrow Row 3:	+0.5	$x_3 + 4.5x_4 = f + 29$
11 $11 $ $11 $ $21 $ $2 $ $11 $ $21 $ $12 $ $11 $ $12 $ $11 $ $12 $ $11 $ $12 $ $11 $ $12 $ $11 $ $12 $ $11 $ $12 $ 12			x_1, x_2, x_3, x_4	≥ 0 \square : Nonbasic variable(=0) \square : Basic variable

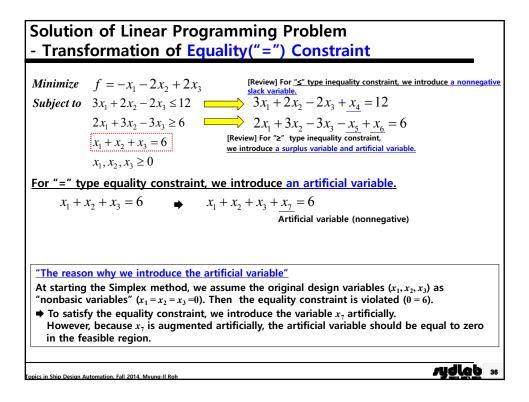



	ı of Linear Programmiı g Simplex Tableau	ng Problem	elimi	natio bles	n. Th	is elim	inates	the s	n Gaus electe except	d	lan
Basic	Nonbasic variable Basic variable	Bas	sic var	iabl	е						
variable			Г	\downarrow	x1	x2	x3	x4	bi	bi/ai	1
Row 1: x_3	$-x_1 + x_2 + x_3 = 4 \leftarrow$		w 1:	x3	-1	1	1	0	4	4	
Row 2: x_4	$x_1 + x_2 + x_4 = 6 \checkmark$	- 6/1 = 6 Row	N 2:	x4	1	1	0	1	6	6	1
Row 3:	$-4x_1 - 5x_2 = f - 0$	Rov	v 3:)bj.	-4	-5	0	0	f-0	-	
		······Pivo	ot on a	x2(1	st Ro	w and			nn) Row 2	Pow 1)	
Basic	Nonbasic variable	Bas	ic var	iabl	е				Row 3		
variable Row 1: X ₂	$-x_1 + x_2 + x_3 = 4$ (If the	4/-1 = -4	Γ	ł	x1	x2	х3	x4	bi	bi/ai]
Row 2: x_4	$2x_1 \qquad -x_3 + x_4 = 2 \qquad \checkmark$	tive, the variable is not selected Rov $-2/2 = 1$	w 1:	x2	-1	1	1	0	4	-4	
Row 3:	$-9x_1 + 5x_3 = f + 20$	Roy	N 2:	x4	2	0	-1	1	2	1	
ļ		Rov	N 3: C)bj.	-9	0	5	0	f+20	-	
		······································	t on a	x1(2	nd Ro	w an	d 1st	Colui	nn)		
Basic variable	Nonbasic variable (=0)	Bas	ic var	iabl	e		New R	ow 2 =	(Row 1 (0.5×R (Row 3	ow 2)	
Row 1: x_2	$x_2 + 0.5x_3 + 0.5x_4 = 5$			+	x1	x2	x3	x4	bi	bi/ai	ļ
Row 2: x_1	$x_1 = -0.5x_3 + 0.5x_4 = 1$		· · ·	х2	0	1	0.5	0.5	5	-	
Row 3:	$\frac{1}{10000000000000000000000000000000000$		· -	x1	1	0	-0.5	0.5	1	-	
L	X	-)bj.,	0	0	0.5	4.5	f+29	<u> </u>	I
		e coefficients of the lution is the optime								ive,	26

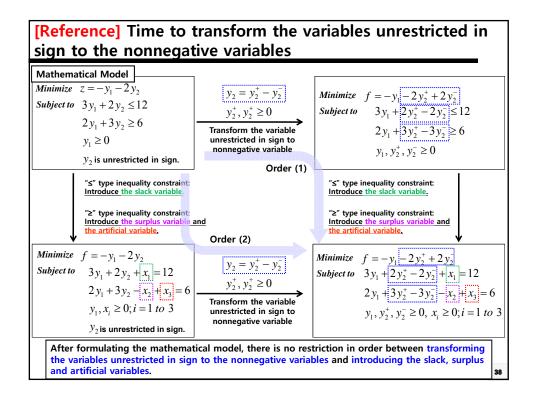


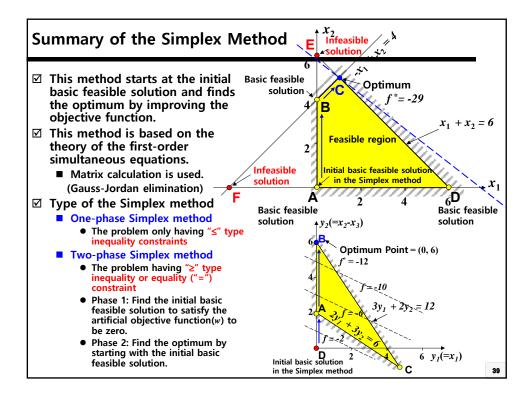


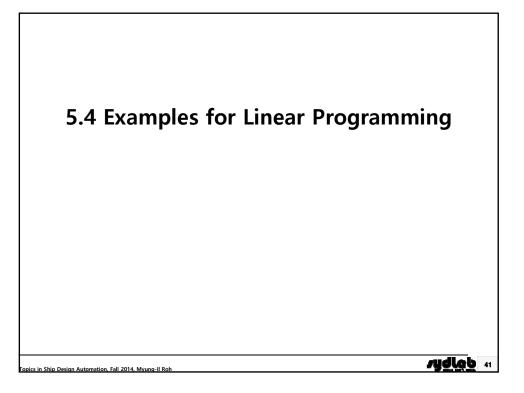


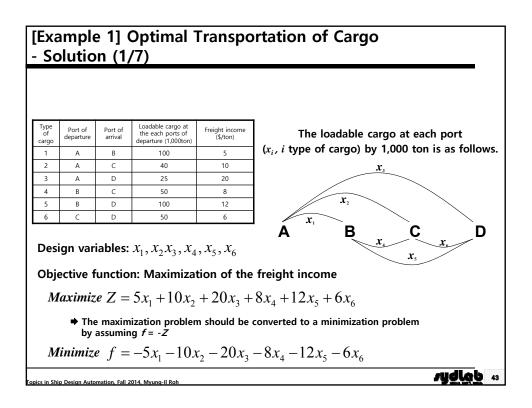


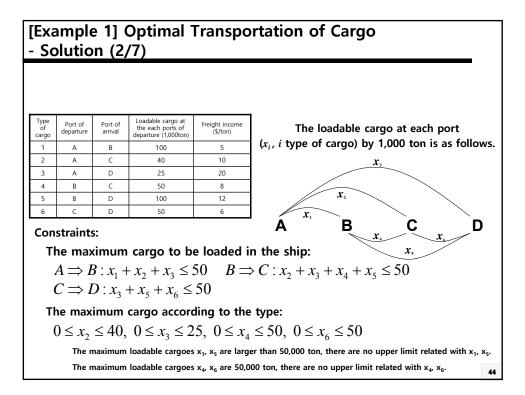

[Reference] What if x_6 is substituted for zero in advance? $3x_1 + 2x_2 - 2x_3 + x_4 = 12$ $2x_1 + 3x_2 - 3x_3 - x_5 + x_6 = 6$ $-x_1 - 2x_2 + 2x_3 = f$ When x_6 is substituted for zero, the other variables (x_1, x_2, x_3, x_5) in the same equation should not be negative. The procedure of the calculating the values of x_1, x_2, x_3, x_5 is identical with that of reducing the artificial objective function (x_6) to zero in the Simplex method.





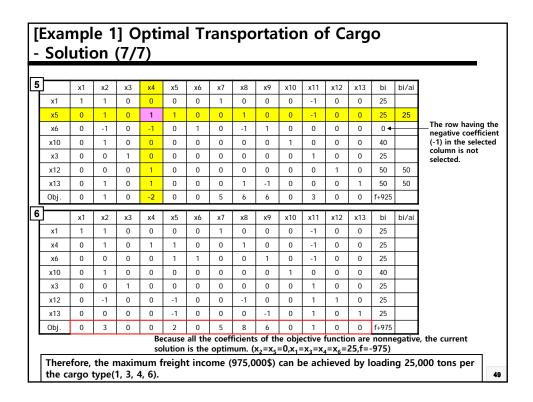


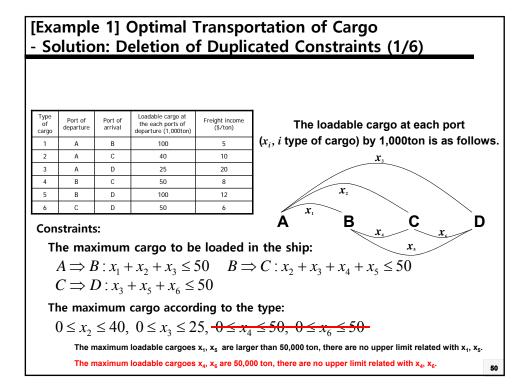

19



S	ummary of the Simplex Algorithm	
Ø	 Step 1: initial basic feasible solution "≤" type inequality constraints: Find the initial basic feasible variables by assuming the slack variables as basic and the original variables as nonbas variables(=0). "≥" type inequality constraints: By using the Two-phase Simplex method, find the initial basic feasible variables to satisfy the artificial objective function to be zero in the Phase 1. 	ic
Ø	Step 2: The objective function must be expressed with the nonbasic variables	•
V	Step 3: If all the reduced coefficient of the objective function for nonbasic variables are nonnegative, the current basic solution is the optimum. Otherwi continue.	se,
Ø	Step 4: Determine the Pivot column and row. At this time, the nonbasic varial in the selected Pivot column should become the new basic variable and the basic variable in the selected Pivot row should become the new nonbasic variable.	ble
<u></u> 1 1	Step 5: Pivot operation by using the Gauss-Jordan elimination Step 6: Calculate the value of the basic and nonbasic variable and go to Step	3. 40

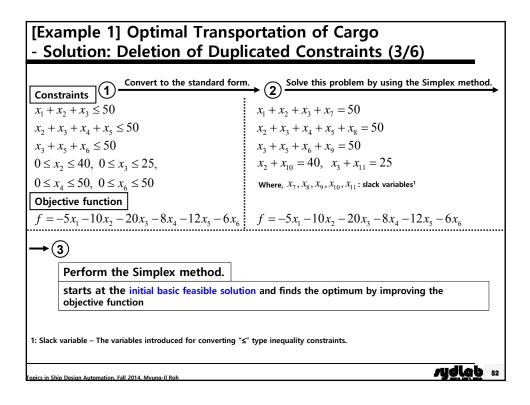
he max adable	kimum cargo e cargo at eac	loading capa ch port is as f	om the port A to E via city of the ship is 50,00 ollows. Formulate and es the freight income.	00ton and the find the optimum
	•			
Type of cargo	Port of departure	Port of arrival	Loadable cargo at each port of departure (1,000ton)	Freight income (\$/ton)
1	А	В	100	5
2	А	С	40	10
3	А	D	25	20
4	В	С	50	8
5	В	D	100	12
6	С	D	50	6

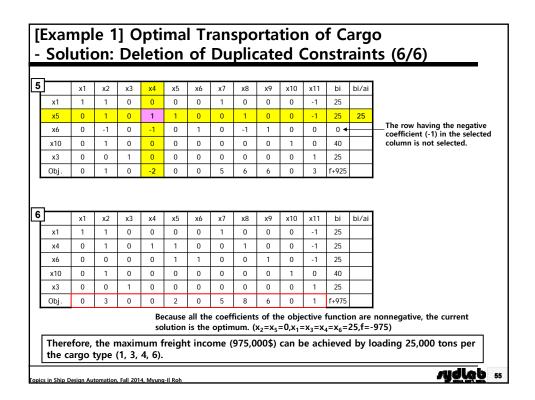

[Example 1] Optimal Transportation of Cargo - Solution (3/7)


Find $x_1, x_2, x_3, x_4, x_5, x_6$ Minimize $f = -5x_1 - 10x_2 - 20x_3 - 8x_4 - 12x_5 - 6x_6$ Subject to $x_1 + x_2 + x_3 \le 50$ $x_2 + x_3 + x_4 + x_5 \le 50$ $0 \le x_2 \le 40, \ 0 \le x_3 \le 25, \ 0 \le x_4 \le 50, \ 0 \le x_6 \le 50$ $0 \le x_4 \le 50, \ 0 \le x_6 \le 50$ $0 \ \text{order type}$ according to the type $0 \ \text{order type}$ $0 \ \text{order type}$

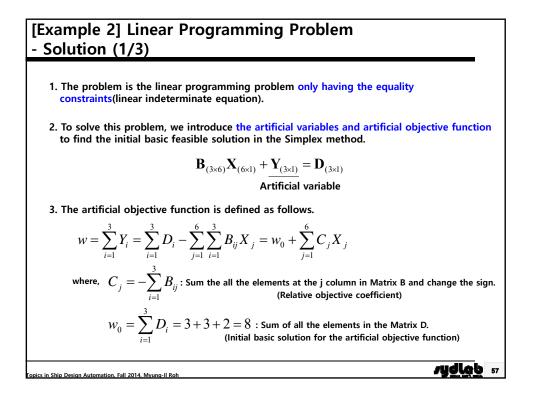
[Example 1] Optimal Transp - Solution (4/7)	ortation of Cargo
Constraints $x_1 + x_2 + x_3 \le 50$ $x_2 + x_3 + x_4 + x_5 \le 50$ $x_3 + x_5 + x_6 \le 50$ $0 \le x_2 \le 40, \ 0 \le x_3 \le 25,$ $0 \le x_4 \le 50, \ 0 \le x_6 \le 50$ Objective function f = -5x - 10x - 20x - 8x - 12x - 6x	$\begin{array}{c} \textbf{A.} \qquad \textbf{Solve this problem by using the Simplex method.} \\ x_1 + x_2 + x_3 + x_7 = 50 \\ x_2 + x_3 + x_4 + x_5 + x_8 = 50 \\ x_3 + x_5 + x_6 + x_9 = 50 \\ x_2 + x_{10} = 40, \ x_3 + x_{11} = 25, \\ x_4 + x_{12} = 50, \ x_6 + x_{13} = 50 \\ \text{Where, } x_7, x_8, x_9, x_{10}, x_{11}, x_{12}x_{13} \text{: slack} \\ \text{wariables}^t \\ f = -5x_1 - 10x_2 - 20x_3 - 8x_4 - 12x_5 - 6x_6 \end{array}$
→③ Perform the Simplex method.	
	on and finds the optimum by improving the
1: Slack variable – The variables introduced for converting ″≤	5" type inequality constraints.

,	luti		(57	,				ро	sitive	ratio =						<u>r in each column</u> t in the selected colum
	x1	x2	x3	x4	x5	x6	x7	x8	x9	x10	x11	x12	x13	bi	bi/ai	$\langle \rangle$
x7	1	1	1	0	0	0	1	0	0	0	0	0	0	50	50	$\langle \rangle$
x8	0	1	1	1	1	0	0	1	0	0	0	0	0	50	50	$\langle \rangle$
x9	0	0	1	0	1	1	0	0	1	0	0	0	0	50	50	Select the variable
x10	0	1	0	0	0	0	0	0	0	1	0	0	0	40	-	whose coefficient is positive and row has
x11	0	0	1	0	0	0	0	0	0	0	1	0	0	25	25	the smallest positive
x12	0	0	0	1	0	0	0	0	0	0	0	1	0	50	-	ratio in the constrair
x13	0	0	0	0	0	1	0	0	0	0	0	0	1	50	-	
Obj.	-5	-10	-20	-8	-12	-6	0	0	0	0	0	0	0	f+0	-	
	he colur	nn whie	ch has	the mir	nimum	coeffic	ient of	the ob	jective	functio	n. (3) P	ivot or	the s	elected	variabl	e(x ₃ / 5 th row, 3 rd colum
	x1	x2	x3	x4	x5	x6	x7	x8	x9	x10	x11	x12	x13	bi	bi/ai	
x7	1	1	0	0	0	0	1	0	0	0	-1	0	0	25	-	
x8	0	1	0	1	1	0	0	1	0	0	-1	0	0	25	25	
x9	0	0	0	0	1	1	0	0	1	0	-1	0	0	25	25	
x10	0	1	0	0	0	0	0	0	0	1	0	0	0	40	-	
x3	0	0	1	0	0	0	0	0	0	0	1	0	0	25	-	
x12	0	0	0	1	0	0	0	0	0	0	0	1	0	50	-	
x13	0	0	0	0	0	1	0	0	0	0	0	0	1	50	-	
Obj.	-5	-10	0	-8	-12	-6	0	0	0	0	20	0	0	f+500	-	


3		x1	x2	x3	x4	x5	x6	x7	x8	x9	x10	x11	x12	x13	bi	bi/ai
	х7	1	1	0	0	0	0	1	0	0	0	-1	0	0	25	-
	x5	0	1	0	1	1	0	0	1	0	0	-1	0	0	25	-
	x9	0	-1	0	-1	0	1	0	-1	1	0	0	0	0	0	0
	x10	0	1	0	0	0	0	0	0	0	1	0	0	0	40	-
	x3	0	0	1	0	0	0	0	0	0	0	1	0	0	25	-
	x12	0	0	0	1	0	0	0	0	0	0	0	1	0	50	-
	x13 Obj.	0 -5	0	0	0	0	1 -6	0	0	0	0	0	0	1	50 f+800	50 -
	Obj.	-3														
1				Ŭ	4	Ū	0	Ū	12	U	0	0	Ū	0	11000	
4	<u> </u>									-				-		
4		x1	x2	x3	x4	x5	x6	x7	x8	x9	x10	x11	x12	x13	bi	bi/ai
4	x7	1	1	x3 0	x4 0	x5 0	x6 0	x7 1	x8 0	x9 0	x10 0	x11 -1	x12 0	x13 0	bi 25	bi/ai 25
4	x7 x5	1 0	1 1	x3 0 0	x4 0 1	x5 0 1	x6 0 0	x7 1 0	x8 0 1	x9 0	x10 0	x11 -1 -1	x12 0 0	x13 0 0	bi 25 25	bi/ai 25 -
4	x7 x5 x6	1 0 0	1 1 -1	x3 0 0 0	x4 0 1 -1	x5 0 1 0	x6 0 0 1	x7 1 0 0	x8 0 1 -1	x9 0 0 1	x10 0 0	x11 -1 -1 0	x12 0 0	x13 0 0	bi 25 25 0	bi/ai 25
4	x7 x5	1 0	1 1	x3 0 0	x4 0 1	x5 0 1	x6 0 0	x7 1 0	x8 0 1	x9 0	x10 0	x11 -1 -1	x12 0 0	x13 0 0	bi 25 25	bi/ai 25 - -
4	x7 x5 x6 x10	1 0 0	1 1 -1 1	x3 0 0 0 0	x4 0 1 -1 0	x5 0 1 0 0	x6 0 0 1 0	x7 1 0 0	x8 0 1 -1 0	x9 0 0 1 0	x10 0 0 0 1	x11 -1 -1 0 0	x12 0 0 0 0	x13 0 0 0 0	bi 25 25 0 40	bi/ai 25 - -
4	x7 x5 x6 x10 x3	1 0 0 0	1 -1 1 0	x3 0 0 0 0 1	x4 0 1 -1 0 0	x5 0 1 0 0 0	x6 0 0 1 0 0	x7 1 0 0 0 0	x8 0 1 -1 0 0	x9 0 0 1 0 0	x10 0 0 1 0	x11 -1 -1 0 0 1	x12 0 0 0 0 0	x13 0 0 0 0 0 0	bi 25 25 0 40 25	bi/ai 25 - - -



Find $x_1, x_2, x_3, x_4, x_5, x_6$ Minimize $f = -5x_1 - 10x_2 - 20x_3 - 8x_4 - 12x_5 - 6x_6$ Subject to $x_1 + x_2 + x_3 \le 50$ $x_2 + x_3 + x_4 + x_5 \le 50$ $x_3 + x_5 + x_6 \le 50$ $0 \le x_2 \le 40, \quad 0 \le x_3 \le 25$: Constraints related with the maximum cargo $0 \le x_2 \le 40, \quad 0 \le x_3 \le 25$: Constraints related with the maximum cargo according to the type • Optimization problem having the 6 unknown variables and 5 inequality constraints



·											Positi	ve coef	ficient	ts (4/6) ide parameter in each column of the element in the selected colum
	x1	x2	x3	x4	x5	x6	x7	x8	x9	x10	x11	bi	bi/ai	
x7	1	1	1	0	0	0	1	0	0	0	0	50	50	
x8	0	1	1	1	1	0	0	1	0	0	0	50	50	
x9	0	0	1	0	1	1	0	0	1	0	0	50	50	(2) Select the variable whose
x10	0	1	0	0	0	0	0	0	0	1	0	40	-	coefficient is positive and row has the smallest positive ratio
	0	0	1	0	0	0	0	0	0	0	1	25	25	the constraints.
x11	0													the constraints.
Obj.) Select	-5								-		(3) P			the constraints. lected variable(x ₃ / 5 th row, 3 rd colum
Obj.	-5						-	-	_	-	tion.		- the se bi∕ai	
Obj.	-5	umn wł	hich ha	s the m	ninimur	n coeff	icient o	of the c	objectiv	re funct	ion. (3) P	ivot on		
Obj.) Select	-5 the col	umn wł	hich ha	s the m	ninimun x5	m coeff x6	icient o	of the c	x9	re funct	ion. (3) P x11	ivot on	bi/ai	
Obj. Select	-5 the col x1 1	umn wł x2 1	hich ha	s the m	ninimun x5 0	n coeff x6 0	icient o x7 1	of the c	x9 0	ve funct	ion. (3) P x11 -1	ivot on bi 25	bi/ai -	
Obj.) Select x7 x8	-5 the col x1 1 0	umn wl x2 1 1	x3 0 0	s the m	x5 0 1	x6 0	x7 1	of the c x8 0	x9 0	x10 0	ion. (3) P x11 -1 -1	ivot on bi 25 25	bi/ai - 25	
Obj.) Select	-5 the col x1 1 0 0	umn wl x2 1 1 0	x3 0 0 0	s the m	x5 0 1	x6 0 1	x7 1 0 0	x8 0 1 0	x9 0 1	x10 0 0	ion. (3) P x11 -1 -1 -1	ivot on bi 25 25 25	bi/ai - 25 25	

x7 1 1 0 0 0 1 0 0 0 -1 25 - x5 0 1 0 1 0 0 1 0 0 -1 25 - x9 0 -1 0 -1 0 1 0 0 0 0 0 0 x10 0 1 0 0 0 0 0 1 0 40 -	1 0 0 1 0 0 -1 25 0 1 0 -1 1 0 0 0 0 0 0 0 1 0 40
x9 0 -1 0 -1 0 1 0 -1 1 0 0 0	0 1 0 -1 1 0 0 0 0 0
	0 0 0 0 0 1 0 40 -
x3 0 0 1 0 0 0 0 0 0 1 25 -	0 0 0 0 0 1 25 -
Obj5 2 0 4 0 <mark>-6</mark> 0 12 0 0 8 f+800 -	0 <mark>-6</mark> 0 12 0 0 8 f+800 -
x7 1 1 0 0 0 0 1 0 0 0 0 1 25 25	0 0 1 0 0 0 -1 25 25
x7 1 1 0 0 0 1 1 0 0 1 0 0 1 1 0 0	0 0 1 0 0 0 -1 25 25 1 0 0 1 0 0 -1 25 -
x7 1 1 0 0 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	0 0 1 0 0 0 -1 25 25 1 0 0 1 0 0 -1 25 - 0 1 0 -1 1 0 0 -1 25 -
x7 1 1 0 0 0 1 1 0 0 1 0 0 1 1 0 0	0 0 1 0 0 0 -1 25 25 1 0 0 1 0 0 -1 25 - 0 1 0 -1 1 0 0 -1 25 0 1 0 -1 1 0 0 - 0 0 0 0 1 0 0 -

[Example 2] Linear Programming Problem Solve the linear programming problem only having the equality constraints(linear indeterminate equation). $2x_1 + y - z - \zeta_1 = 3$ $2x_2 + y - z - \zeta_2 = 3$ $x_1 + x_2 = 2$ where, $x_1, x_2y, z, \zeta_1, \zeta_2 \ge 0$ Initial basic feasible solution: $x_1 = x_2 = 1, y = 1, z = 0, \zeta_1 = \zeta_2 = 0$

			E	8 _(3×6)	X(6)	a) +	$\mathbf{Y}_{(3\times 1)}$) =]	D _{(3×1})			$2x_1 + y - z - \zeta_2 = 3$
						Α	rtifici	al va	riable	•			$x_1 + x_2 = 2$
			7	2 0 1	0 2 1	1 · 1 · 0	-1 -1 0	$-1 \\ 0 \\ 0$	0 -1 0	$\begin{bmatrix} x_{1} \\ x_{2} \\ y \\ z \\ \zeta_{1} \\ \zeta_{2} \end{bmatrix}$	(= X) (= X) (= X) (= X) (= X) (= X)		$ \begin{array}{c} 2x_{1} + y - z - \zeta_{1} = 3 \\ 2x_{2} + y - z - \zeta_{2} = 3 \\ x_{1} + x_{2} = 2 \\ where, x_{1}, x_{2}y, z, \zeta_{1}, \zeta_{2} \ge 0 \\ \vdots \\ \begin{bmatrix} Y_{1} \\ Y_{2} \\ Y_{3} \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ 2 \end{bmatrix} $
1	х	1	X2	X3	X4	X5	Х6	Y1	Y2	Y3	bi	bi/ai	
Y	1 2	2	0	1	-1	-1	0	1	0	0	3	3/2	
Y:	2 (C	2	1	-1	0	-1	0	1	0	3	-	
	3 1	1	1	0	0	0	0	0	0	1	2	2	
Y: A. 0	bi		-3	-2	2	1	1	0	0	0	w-8	1	

2]	X1	X2	X3	X4	X5	X6	Y1	Y2	Y3	bi	bi/ai					
X1	1	0	1/2	-1/2	-1/2	0	1/2	0	0	3/2	-					
Y2	0	2	1	-1	0	-1	0	1	0	3	3/2					
Y3	0	1	-1/2	1/2	1/2	0	-1/2	0	1	1/2	1/2					
A. Obj.	0	-3	-1/2	1/2	-1/2	1	3/2	0	0	w-7/2	-					
	X1	X2	X3	X4	Х5	Х6	Y1	Y2	Y3	bi	bi/ai					
X1	1	0	1/2	-1/2	-1/2	0	1/2	0	0	3/2	3					
Y2	0	0	2	-2	-1	-1	1	1	-2	2	1					
X2	0	1	-1/2	1/2	1/2	0	-1/2	0	1	1/2						
A. Obj.	0	0	-2	2	1	1	0	0	3	w-2						
]	X1	X2		X4	X5	Х6	Y1	¥2	Y3		bi/ai					
X1	1	0	X3 0	X4 0	-1/4	1/4	1/4	-1/4	¥3	bi 1	DI/al					
X3	0	0	1	-1	-1/4	-1/2	1/4	-1/4	-1	1						
X2	0	1	0	0	1/4	-1/2	-1/4	1/2	1/2	1	-					
A. Obj.	0	0	0	0	0	0	1	1	1	w-0	-					
$X^{T}_{(1\times5)} =$ $\rightarrow X_1 = 1,$	$X_2 = 1$, X ₃ =1	$1, X_4 =$	$X_5 = X_6$,=0		sible	z	ero, tł	ne initia	e of the a basic fe $= x_2 =$	asible so	olution	is obta	ined.	