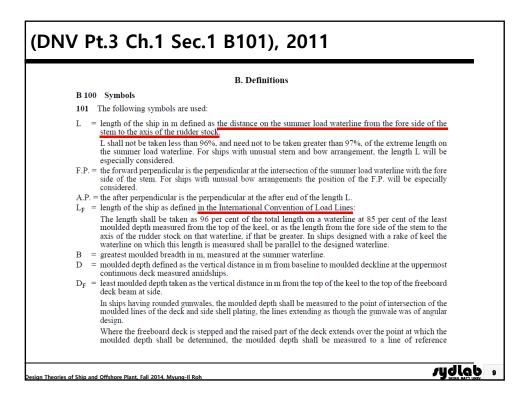
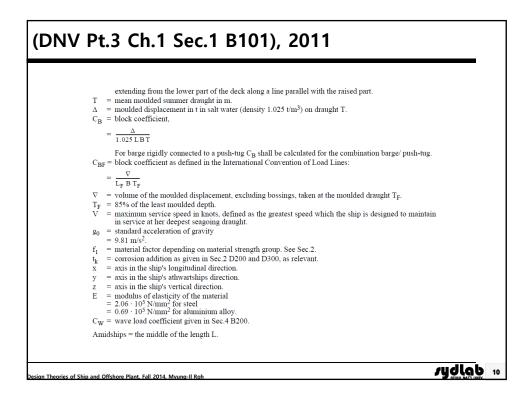
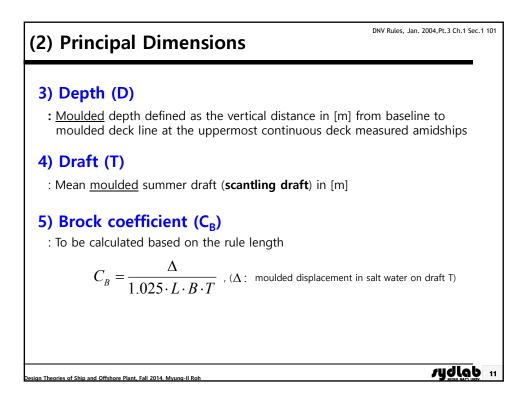
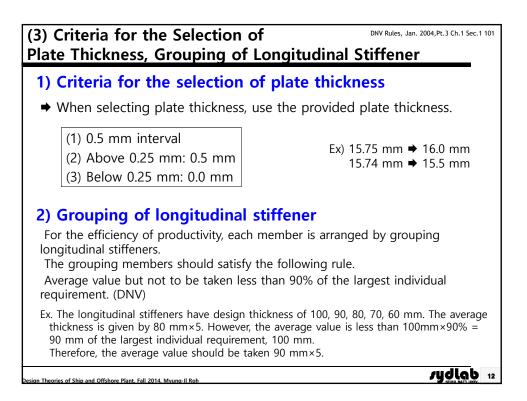
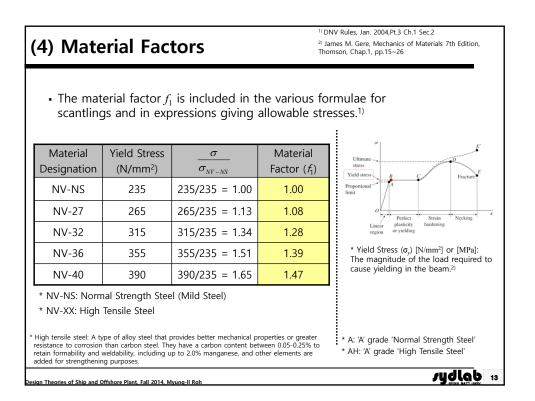

Contents	
☑ Ch. 1 Introduction to Ship Design	
Ch. 2 Introduction to Offshore Plant Design	
☑ Ch. 3 Hull Form Design	
Image: Ch. 4 General Arrangement Design	
☑ Ch. 5 Naval Architectural Calculation	
Ch. 6 Structural Design	
Ch. 7 Outfitting Design	
Design Theories of Ship and Offshore Plant, Fall 2014, Myung-Il Roh	JUSTICE NATE UNIT

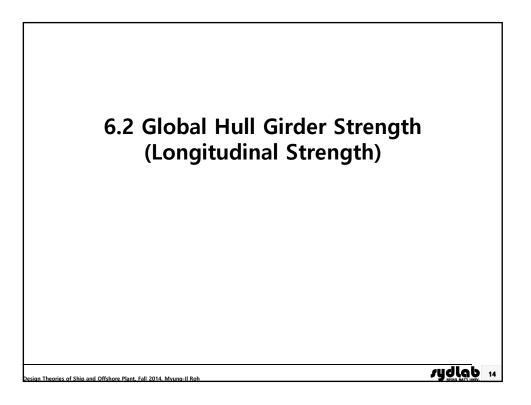

Contents	
 ☑ General & Materials ☑ Global Hull Girder Strength (Longitudinal Strength) ☑ Local Strength (Local Scantling) ☑ Buckling Strength ☑ Structural Design of Midship Section of a 3,700 TEU Container Ship 	
sian Theories of Ship and Offshore Plant, Fall 2014, Myung-II Roh	4

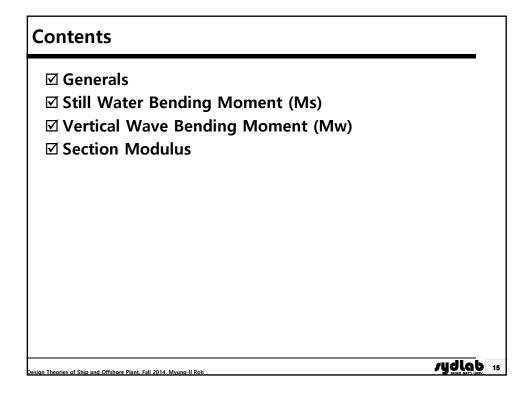


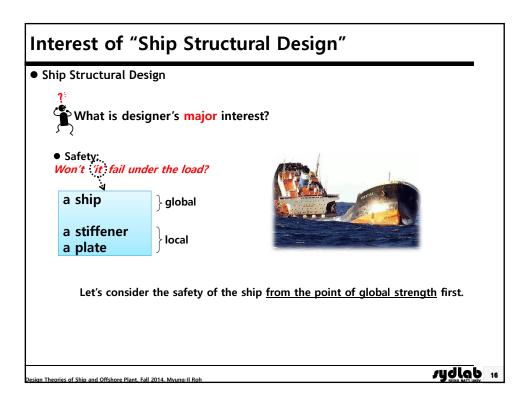

Contents
☑ Stress Transmission
Principal Dimensions
☑ Criteria for the Selection of Plate Thickness, Grouping of Longitudinal Stiffener
☑ Material Factors
an Theories of Ship and Offshore Plant, Fall 2014, Myung-II Roh

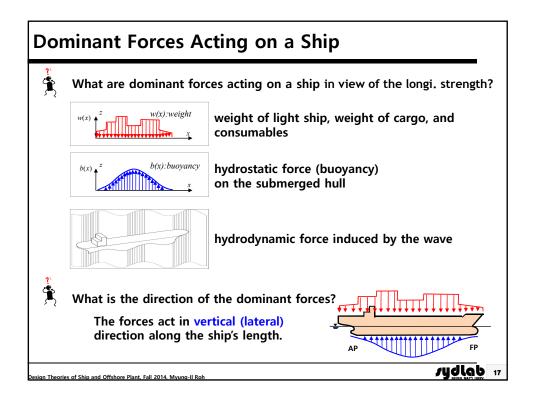


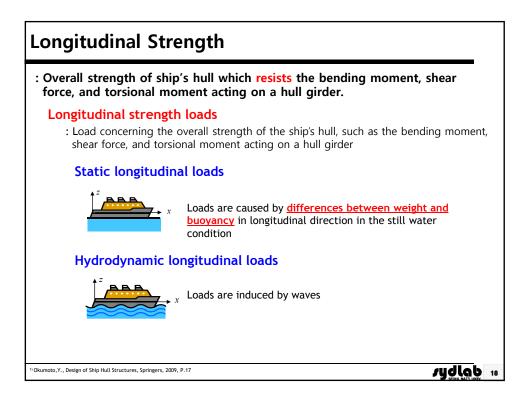

(2) Princip	oal Dim	ension	S		DNV Rules, Jar	n. 2004,Pt.3 Ch.1 Sec.1 101
The following	principal di	mensions a	are used in	accordance	with DNV	rule.
1) Rule ler	ngth (L o	r L,)				
: Length of a	- ·		antling prod	cedure		
	($0.96 \cdot L_{WL}$	< L < 0.9'	$7 \cdot L_{WL}$		
	nce on <u>the</u> to the axis			<u>e</u> (<i>L_{WL}</i>) from	n the fore s	ide of the
010111	o be taken	0		ed not be	taken orea	ter
	97%, of the					
 Starti 	ng point of	rule lengt	n: F.P			
Ex.	L _{BP}	L _{WL}	0.96·L _{WL}	0.97·L _{WL}	L	
	250	261	250.56	253.17	250.56	
	250	258	247.68	250.26	250.00	
	250	255	244.80	247.35	247.35	
2) Breadth						
-	ouldad bra	adth in [m]	. measured	at the sum	imer load v	vatorlino
: Greatest <u>m</u>	oulded blea		,	at the sam		vaternite

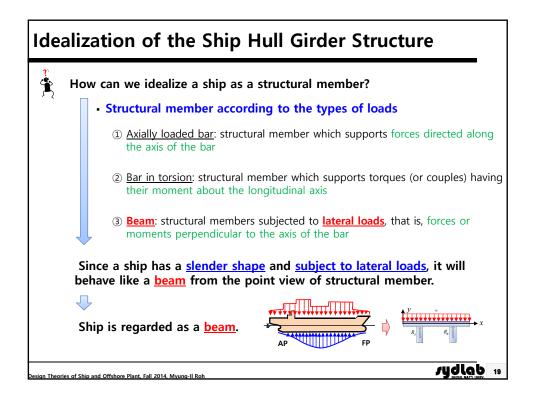


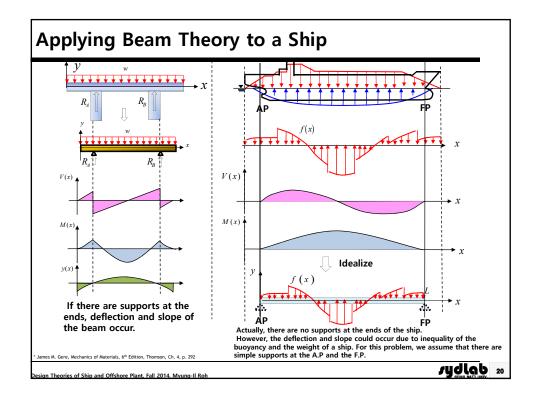


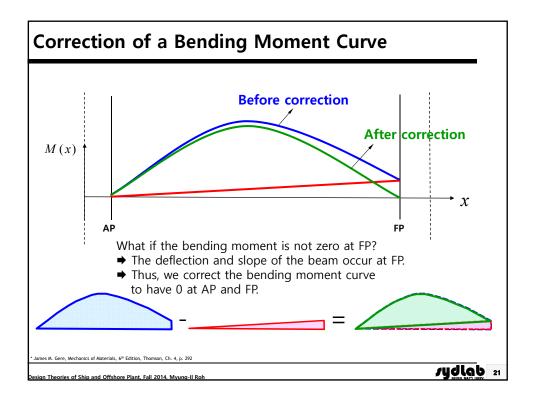


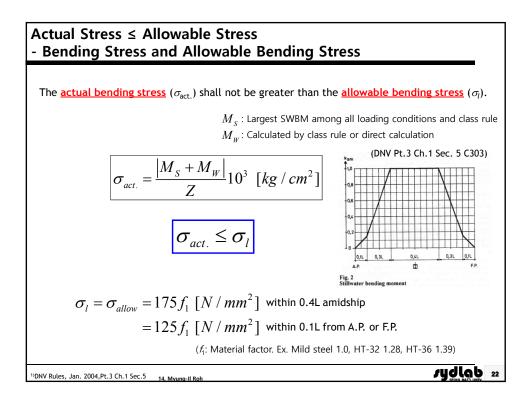






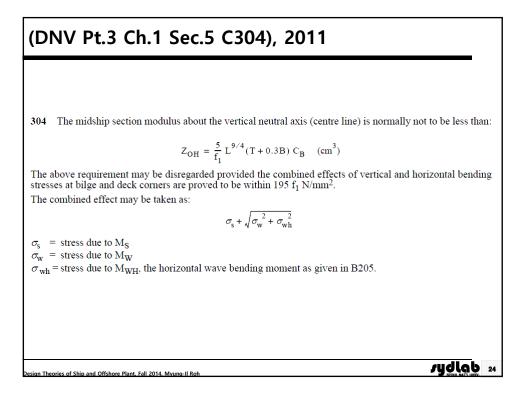


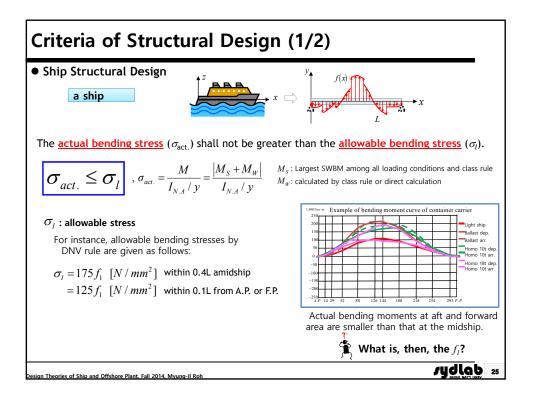


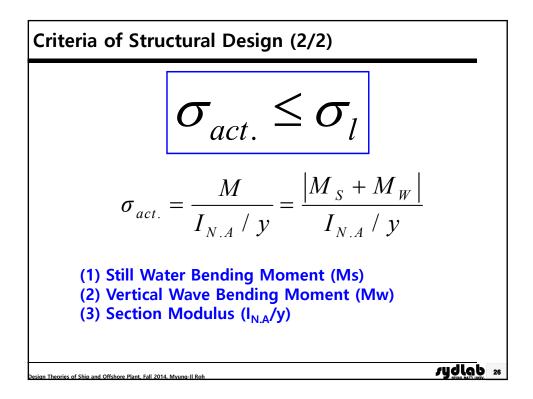


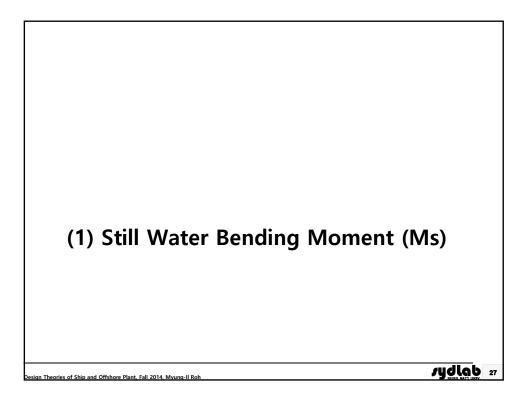
rydlab 23

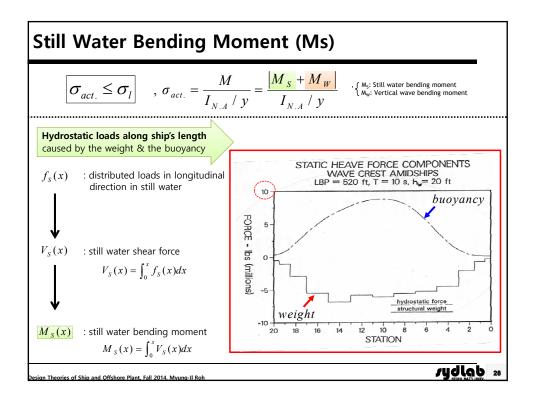
(DNV Pt.3 Ch.1 Sec.5 C303), 2011


303 The section modulus requirements about the transverse neutral axis based on cargo and ballast conditions are given by:

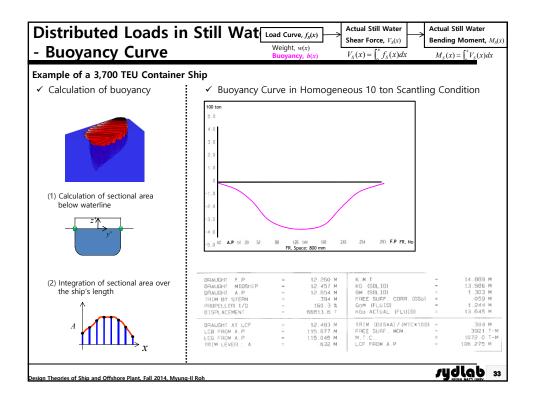

$$Z_{O} = \frac{\left|M_{S} + M_{W}\right|}{\sigma_{l}} 10^{3} \quad (\text{cm}^{3})$$

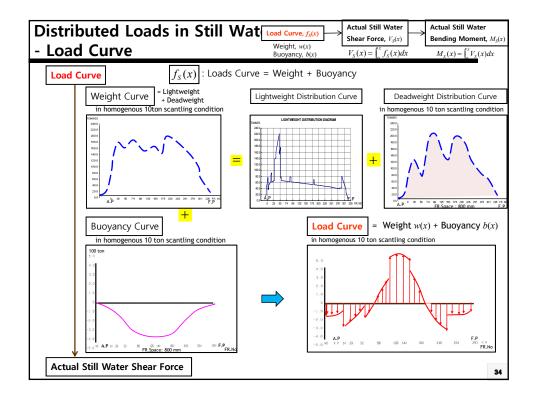

 $\begin{aligned} \sigma_l &= 175 \ f_1 \ \text{N/mm}^2 \ \text{within} \ 0.4 \ \text{L} \ \text{amidship} \\ &= 125 \ f_1 \ \text{N/mm}^2 \ \text{within} \ 0.1 \ \text{L} \ \text{from} \ \text{A.P. or} \ \text{F.P.} \end{aligned}$

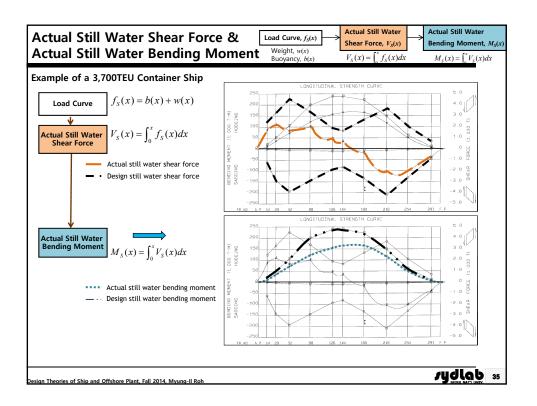

Between specified positions σ_l shall be varied linearly.

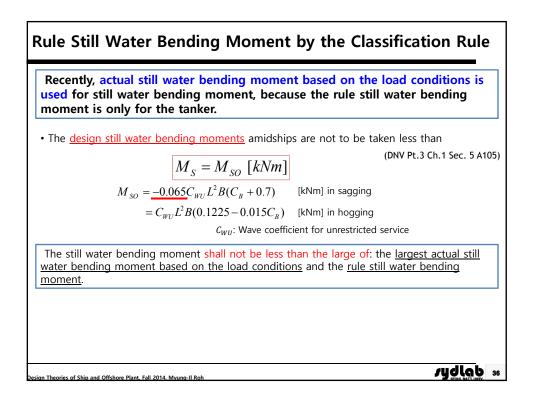

Design Theories of Ship and Offshore Plant, Fall 2014, Myung-Il Roh



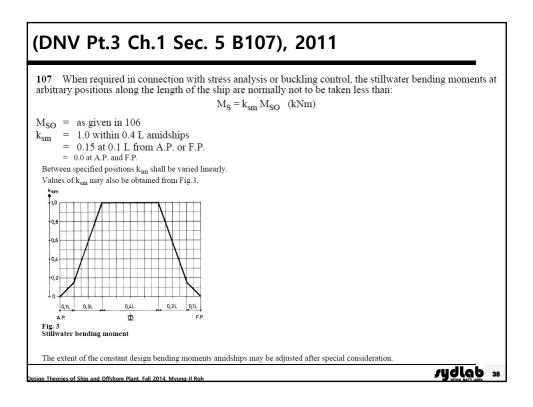


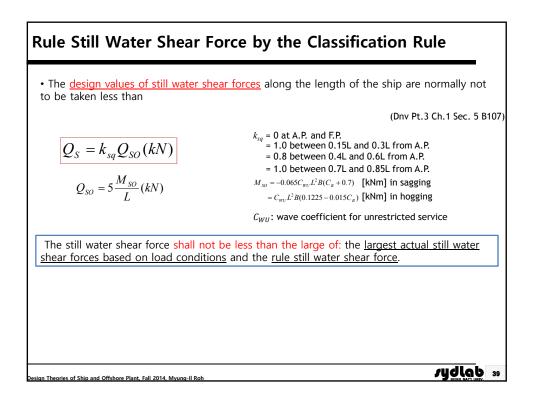


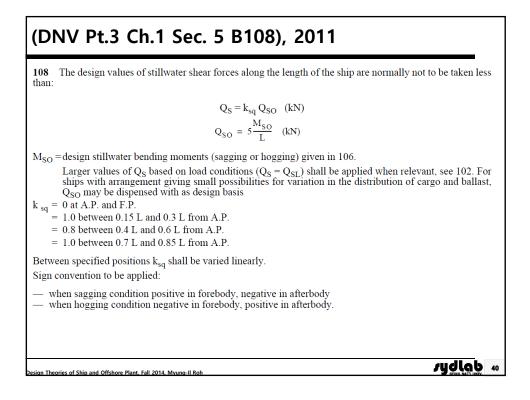

	ibuted Loa ill Water	ds		We	Curve, f _s (eight, w(x) oyancy, b(x		Actual Stil Shear Force $V_S(x) = \int_{0}^{x}$:e, V _S (x)		II Water Moment, M = $\int_{0}^{x} V_{s}(x) dx$
✓ Exa	ample of a 3,700 T	EU Conta	iner Ship in H	omoger	neous 1	0 ton S	cantling	Conditio	on	
- Prin	icipal Dimensions &	∂ Plans		5			5			
			Profile & pl	an			м	idship sect	ion	
LENGTH	Principal dimension O. A. 257.36 B. P. 245.24 MOULDED 32.20 MOULDED 19.30						ROFILE 7 #		DSHIP SEC	
DESIGNED	DRAUGHT MOULDED 10.10 a DRAUGHT MOULDED 12.50	M					LAN .			
- Load	ding Condition (Sa	iling state	e) in Homoger	neous 10) ton So	antling	Conditio	on		
- Load	ding Condition (Sa	iling state	e) in Homoger SAILING			antling	Conditio	on *	Frame space:	800mm
- Load	DBAUGHT F.P DBAUGHT F.P DBAUGHT MIDSHIP DBAUGHT A.P TRIM BY STERN PROPELEER 1/0 DISPLACEMENT	iling state	, J	G STA K.M KG GM FREE GOM	TE .T (SOLID) (SOLID)	CORR. (G	3	* 14. 13. 1.	Frame space: 889 M 586 M 303 M 059 M 244 M 645 M	800mm
- Load	DBAUGHI F.P DRAUGHI MIDSHIP DRAUGHI AIDSHIP TRIM GY STERN PROPELLER I/D	= = = =	SAILING 12.260 M 12.457 M 12.654 M .394 M 160.3 %	G STA K.M KG GM FREG GoM KGo TRIN FREG M.T	TE (SOLID) (SOLID) E SUAF. (FLUID) ACTUAL M (DIS¥A E SUAF.	CORR. (G (FLUID)) / (MTC* MOM.	्र = = 50) = = =	* 14. 13. 1. 13. 13. 3. 3. 107	889 M 586 M 303 M 059 M 244 M	800mm

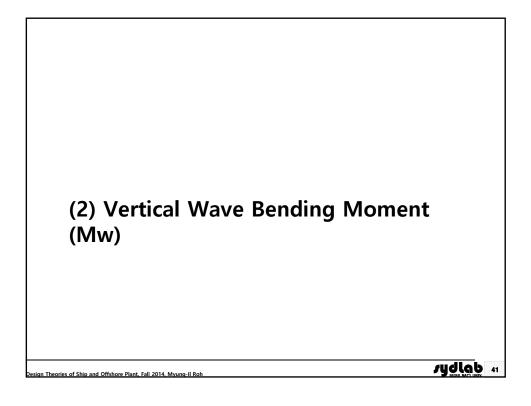

Distributed Loads - Lightweight	in Still Wat	Load Curv Weight, Buoyand	w(x)	\rightarrow	Still Water Force, $V_S(x)$ $Force, V_S(x)$	Benc	al Still Water ling Moment, $M_S(x)$
Example of a 3,700 TEU Conta	iner Ship			LIGH	T WEIG	HT SUNI	MARY
AP LIGHTWEIGHT DISTRIBUTION 2000 1000 1000 1000 1000 1000 1000 100	FP JTION DIAGRAM	Hull N. NO 1 2 3 4 4 5 5 5 6 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	. 13 AFT END - - -<	229. 3, 70 FORE END FORE END FORE END FORE END FORE END FORE END FORE FORE FORE FORE FORE FORE FORE FORE	00 TEU CONT WEIGHT 1 1997 1	LINER VESSEL L. C. C 7,000 13,400 13,400 13,400 13,400 123,580 134,520 134,520 134,520 134,520 134,520 124,	HOMENT 4 12 2, 0 9 76418.7 175224.7 175224.7 175224.7 175724.7 175724.7 175724.7 175724.7 175724.7 175726.6 26900.0 29924.3 126150.1 9073.9 19254.3 126150.1 9073.9 13254.3 14618.1 2025.0 .0 2600.7 6610.0 .7 2610.7 6610.0 .7 2600.7 6610.0 2026.1 1001.6 2026.1 2
20.0 0.0 0 25 50 74 99 125 150 175	200 226 251 276 301 326 FR.	37 38	11.200 27.200 27.200 SHIP TO	41.600 41.600 41.600 TAL =	43.00 4.30 5.70 15998.10	30.000 36.000 36.000 103.228	1290.0 154.8 205.2 1651446.5

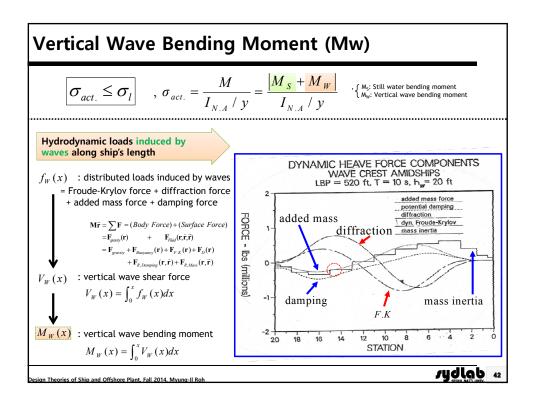
Distributed Loads in Still Wat[- Deadweight	Actual Still Water Shear Force, $V_S(x)$ Weight, $w(x)$ Buoyancy, $b(x)$ $V_S(x) = \int_a^x f_S(x) dx$ Actual Still Water Bending Moment, $M_S(x) = \int_a^x f_S(x) dx$
Example of a 3,700 TEU Container Ship -Loading plan in homogenous 10 ton scantling cond	Deadweight distribution in longitudinal direction in homogenous 10 ton scantling condition
	941 No.01 - Hou (2017 SMULT) IN (2017 MUT (2017 SMUT (2017
P.AI	
-Deadweight distribution curve in homogenous 10 ton scantling condition	107a. Bal. AST 64420 34140.3 1952134 89103 0
2000	
1200	
000 200 00 0 0 25 50 74 50 125 150 175 200 20 20 127 170 130 FR NO	SUPE Endow 3.6 6.25.4 6.0000 67.4 20.400 20.17 10.1 17.3 0 (FILE SUPE SUP SUP SUP SUP SUP SUP SUP
LUU ⁴ 0 25 50 74 99 125 150 175 200 226 251 276 301 328 FR.ND A.P FR.Space : 800 mm F.P	1914. Q6LQM [GM 2007 3 2017 3 200 200 200 200 200 200 200 200 200 2

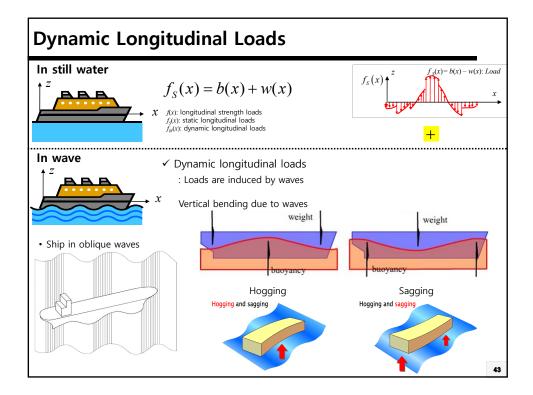


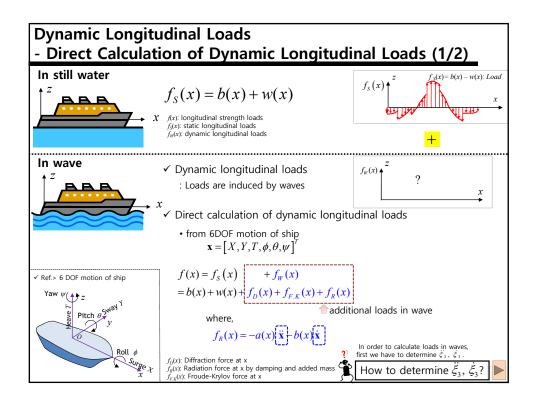


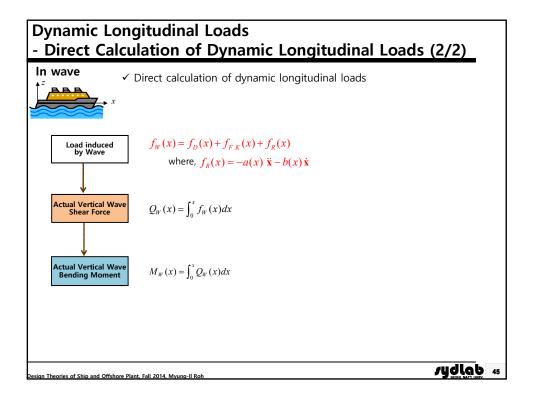


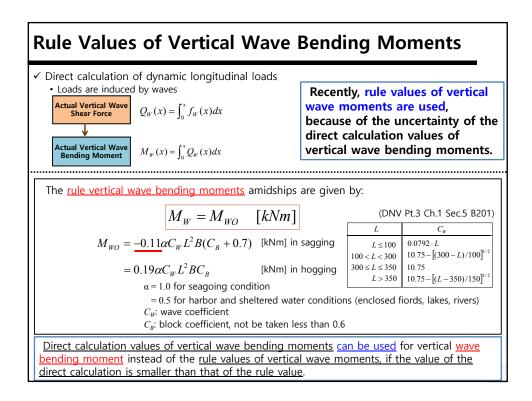


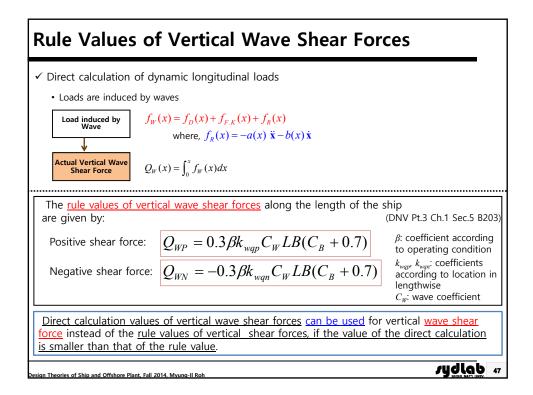

(DNV Pt.3 Ch.1 Sec. 5 A106), 2011 106 The design stillwater bending moments amidships (sagging and hogging) are normally not to be taken $M_S = M_{SO}$ (kNm) $M_{SO} = -0.065 C_{WU} L^2 B (C_B + 0.7)$ (kNm) in sagging $= C_{WU} L^2 B (0.1225 - 0.015 C_B)$ (kNm) in hogging $C_{WU} = C_W$ for unrestricted service. Larger values of M_{SO} based on cargo and ballast conditions shall be applied when relevant, see 102. For ships with arrangement giving small possibilities for variation of the distribution of cargo and ballast, M_{SO} may be dispensed with as design basis.

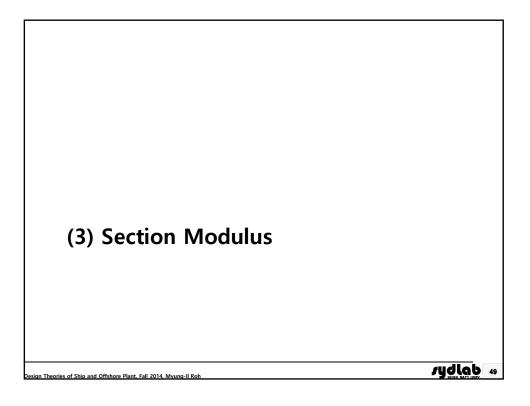


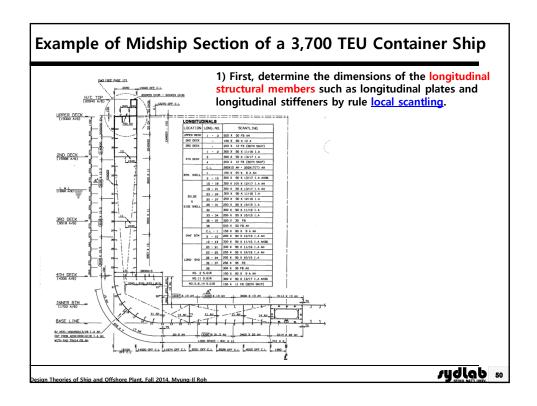


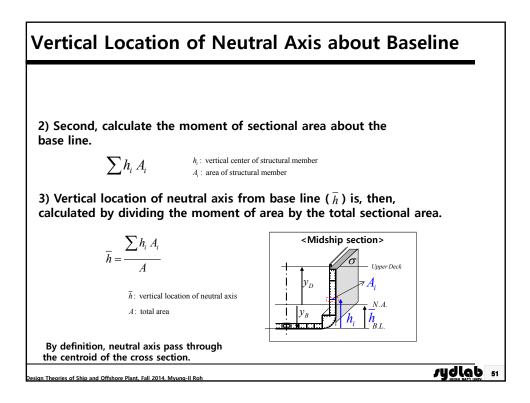


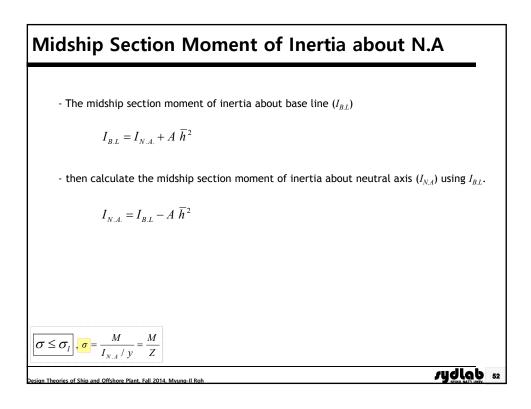


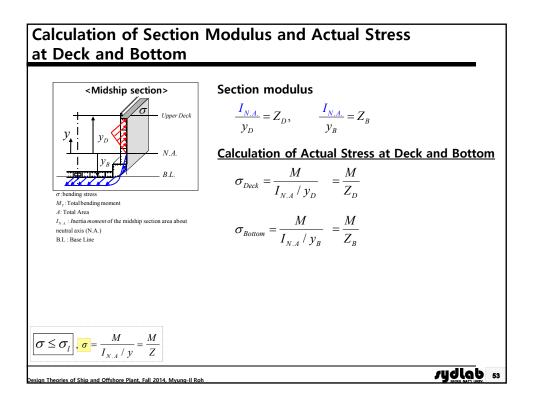


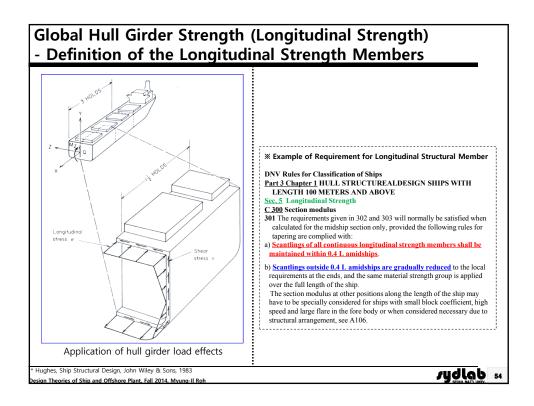


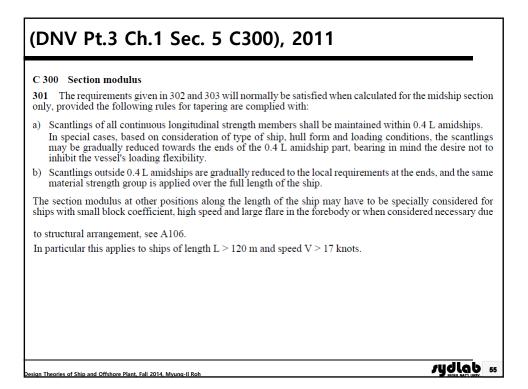


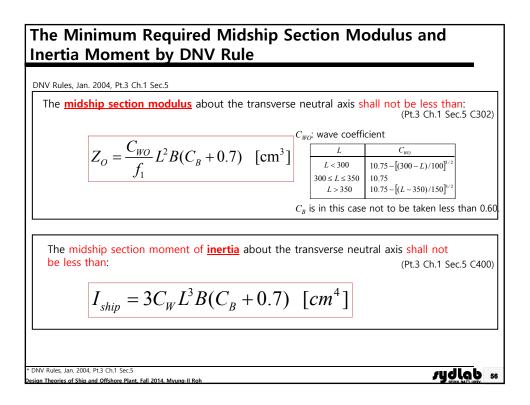


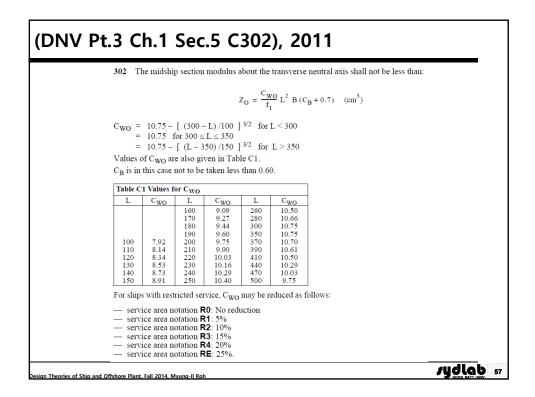

[Example] Rule Values of Still Water Bending Moments (Ms) and Vertical Wave Bending Moment (Mw)

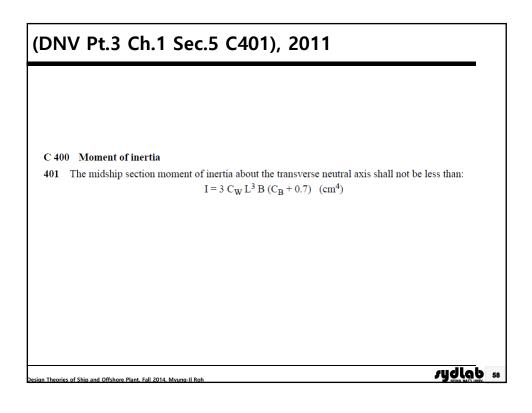

Calculate L_S, C_{B,SCANT}, and vertical wave bending moment at amidships (0.5L) of a ship in hogging condition for sea going condition. Dimension : $L_{OA} = 332.0 m$, $L_{BP} = 317.2 m$, $L_{EXT} = 322.85 m$, B = 43.2 m, $T_s = 14.5 m$ Δ (Displacement (ton) at T_s) = 140,960 ton (Sol.) $L_s = 0.97 \times L_{EXT} = 0.97 \times 322.85 = 313.16$ $M_s = M_{so}(kNm)$ $C_{B,SCANT} = \Delta / (1.025 \times L_s \times B \times T_s) = \frac{140,906}{1.025 \times 313.16 \times 43.2 \times 14.5} = 0.701 \begin{bmatrix} M_{SO} = -0.065C_{WU} L^2 B(C_B + 0.7), \text{ (in sugging)} \\ M_{SO} = -0.065C_{WU} L^2 B(0.1225 - 0.015C_n), \text{ (in sugging)} \end{bmatrix}$ $= C_{WU}L^2B(0.1225 - 0.015C_B),$ (inhogging $M_{_W} = M_{_{WO}}$ (kNm) $\alpha = 1.0$, for sea going condition, $M_{WO} = -0.11\alpha C_W L^2 B(C_B + 0.7), \text{ (insagging)}$ $C_W = 10.75$, if $300 \le L \le 350$ (wave coefficient) $= 0.19 \alpha C_W L^2 B C_B, \text{ (inhogging)}$ $k_{wm} = 1.0$ between 0.4L and 0.65 L from A.P(=0.0) and F.P $M_{WO} = 0.19 \times \alpha \times C_{W} \times L^{2} \times B \times C_{B,SCANT} (kNm)$ $= 0.19 \times 1.0 \times 10.75 \times 313.16^2 \times 43.2 \times 0.701 = 6,066,303 (kNm)$ at 0.5L, $k_{wm} = 1.0$ ¹⁾대우조선해양, 선박구조설계, 5-2 Load on Hull structure, 예제4, 2005 $M_W = 1.0 \times M_{WO}$ So, $M_W = 1.0 \times M_{WO} = 6,066,303 (kNm)$) DSME, Ship Structural Design, 5-2 Load on Hull structure, Example 4, 2005 sydlab 4 ign Theories of Ship and Offshore Plant, Fall 2014, Myung-Il Roh

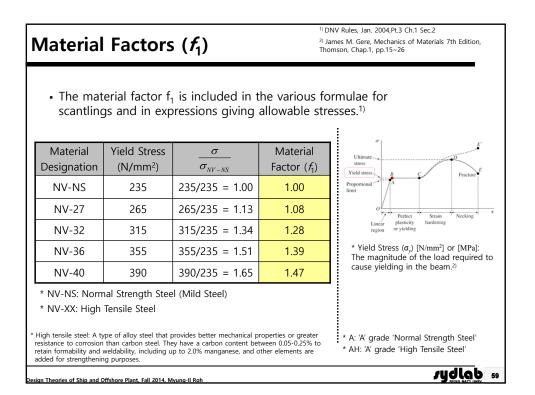


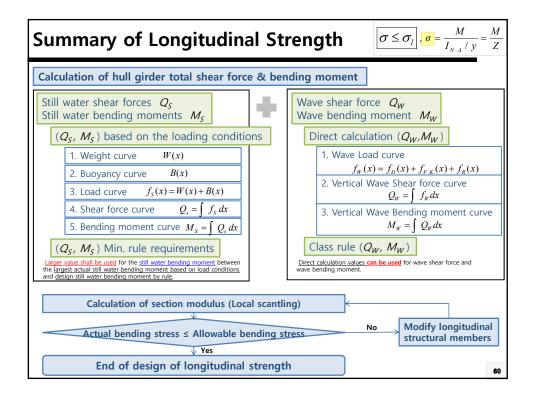


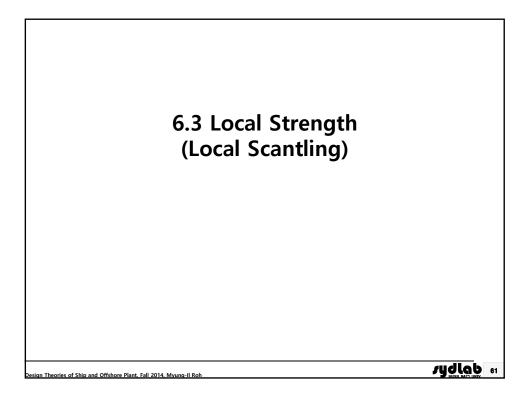


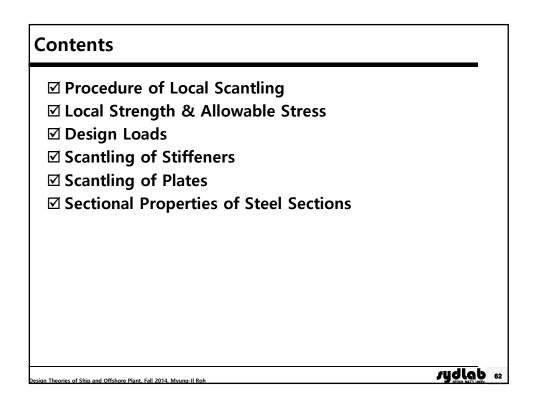


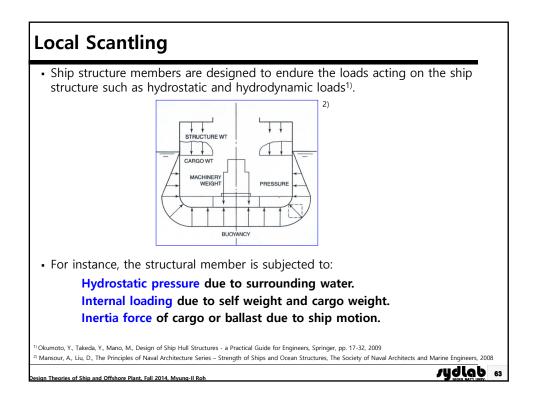


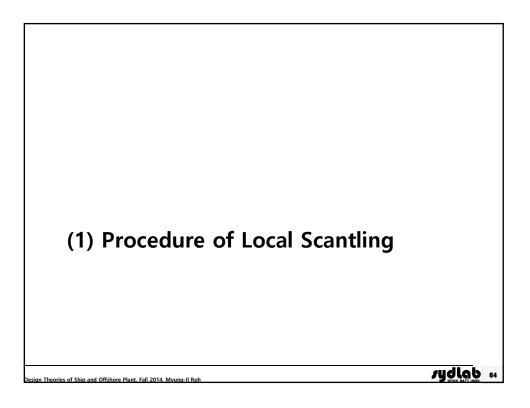


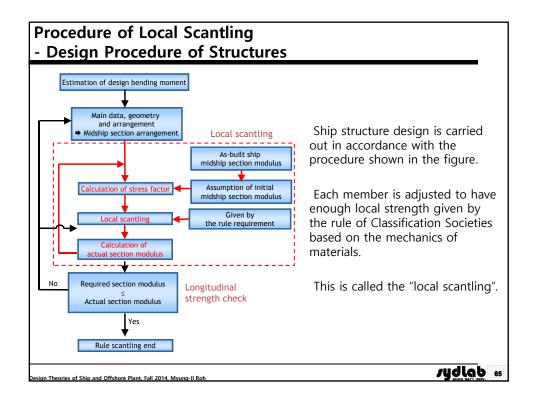


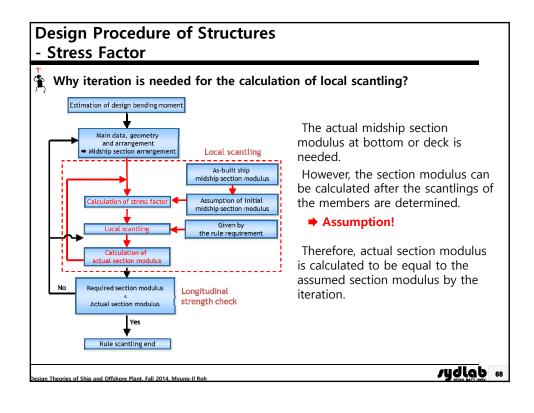


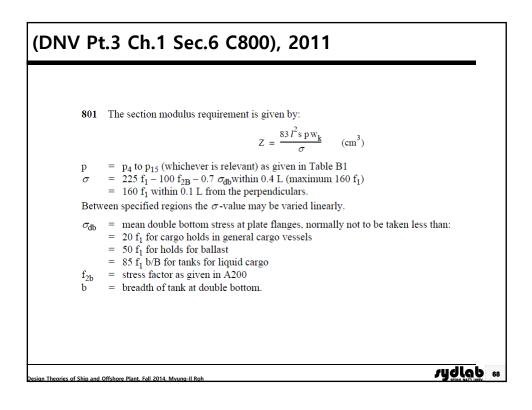


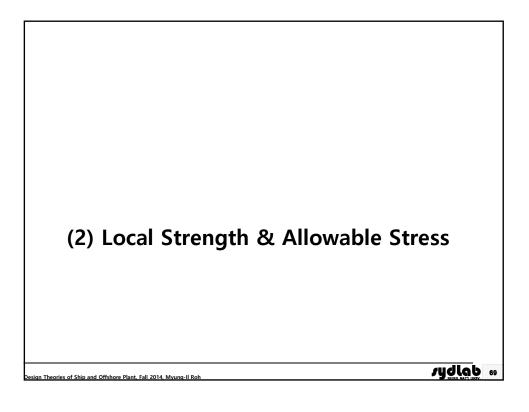


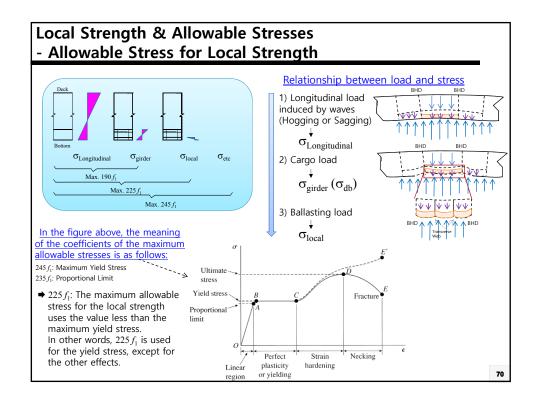


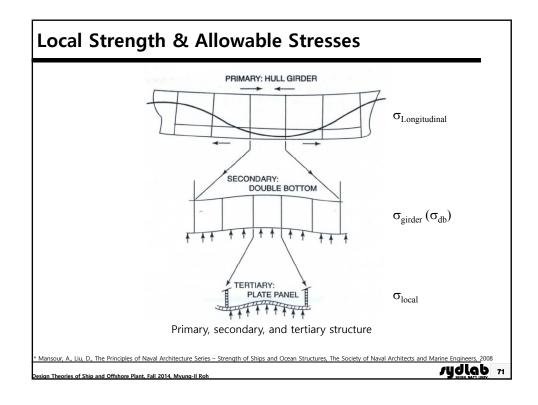


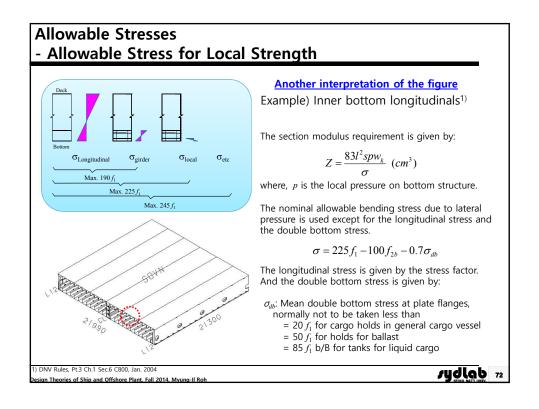


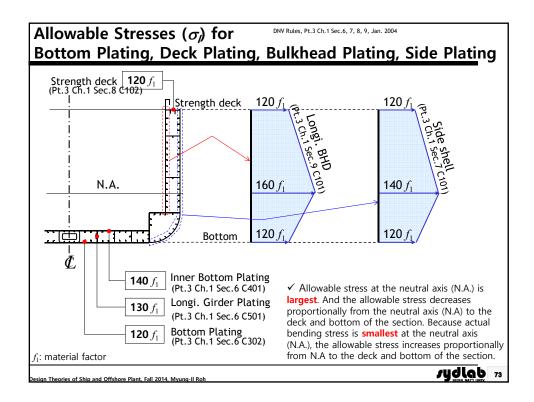


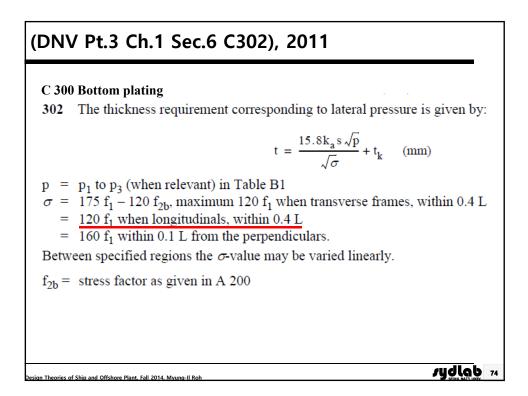


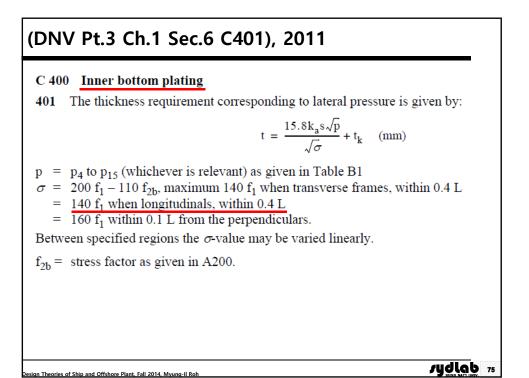


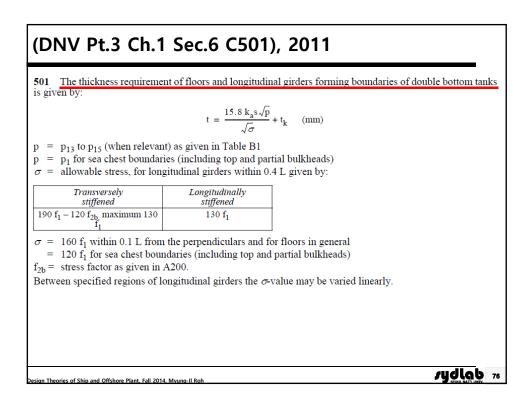


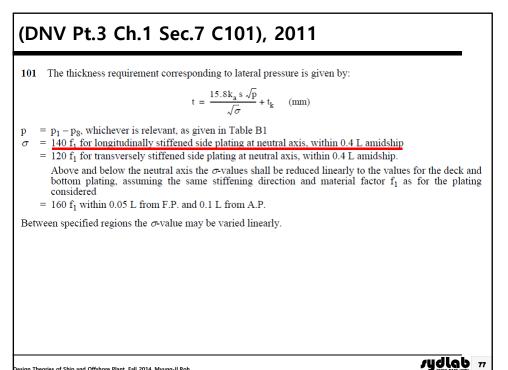


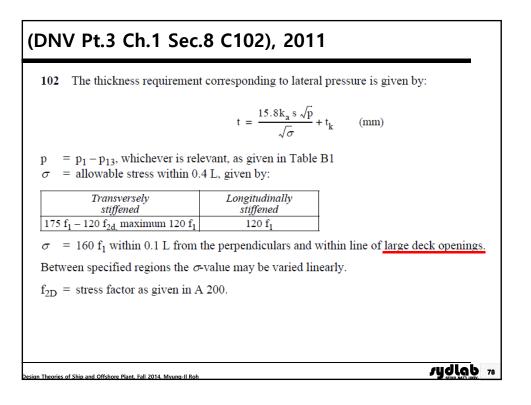


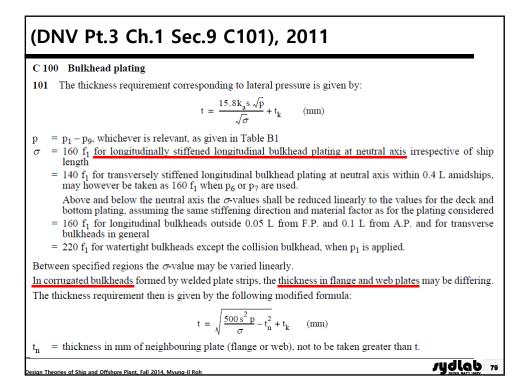


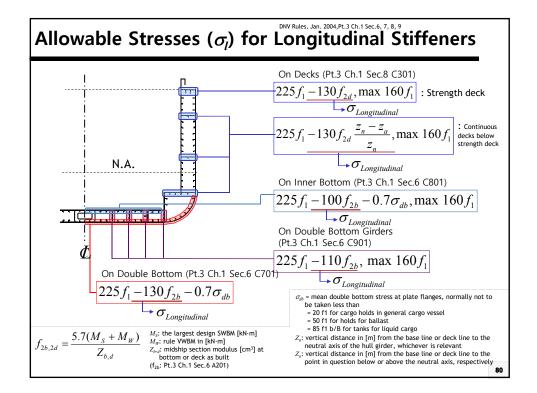


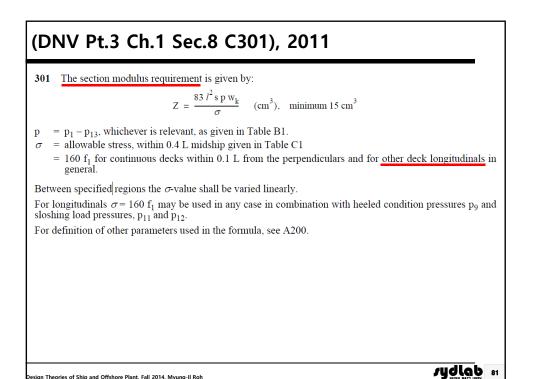


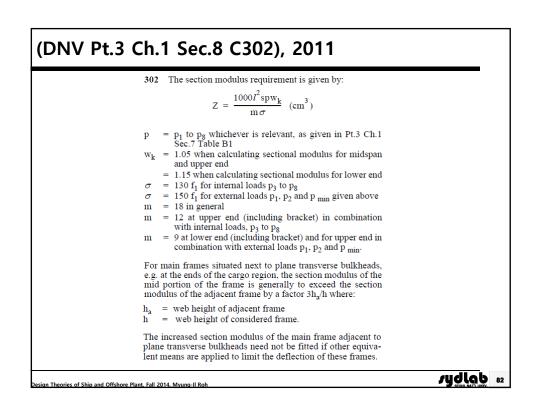


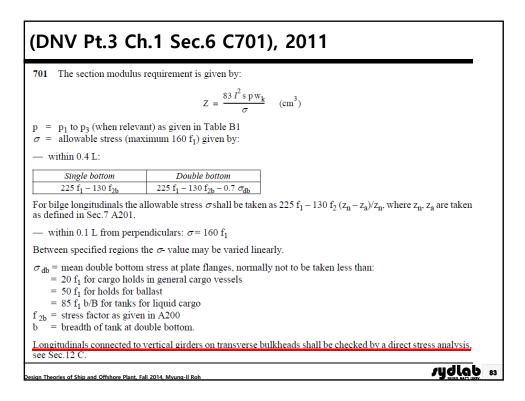


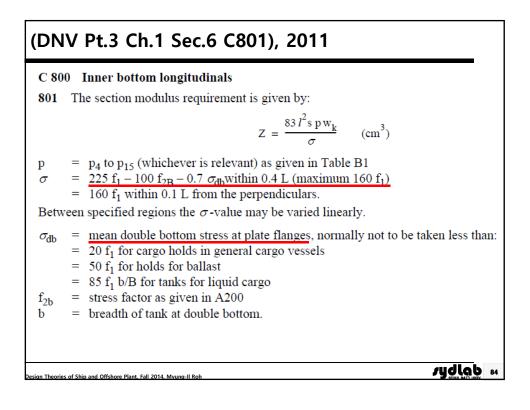


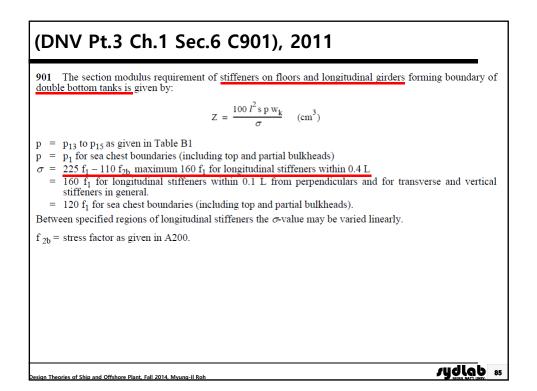


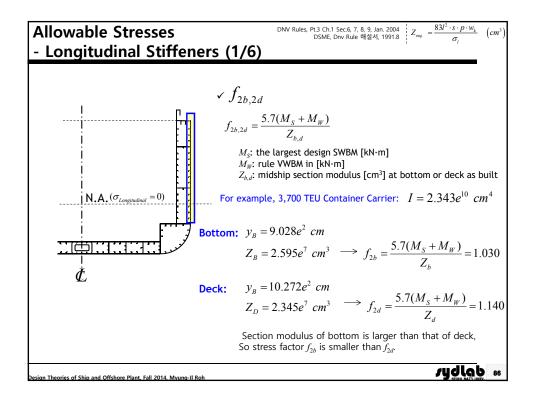


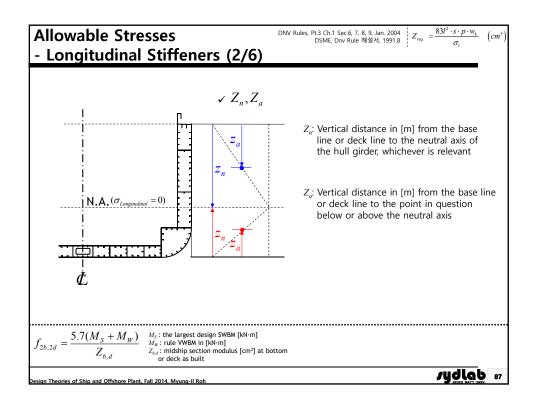

Theories of Ship and Offshore Plant, Fall 2014, Myung-II Rol

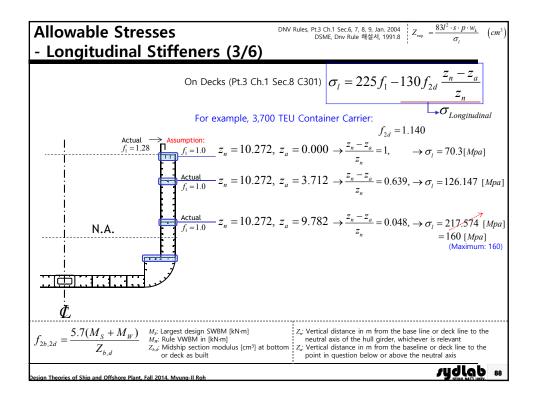


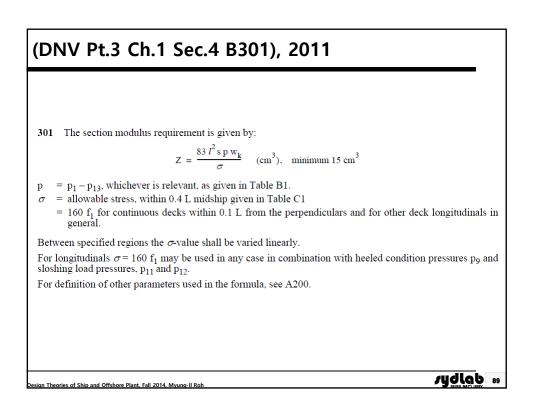


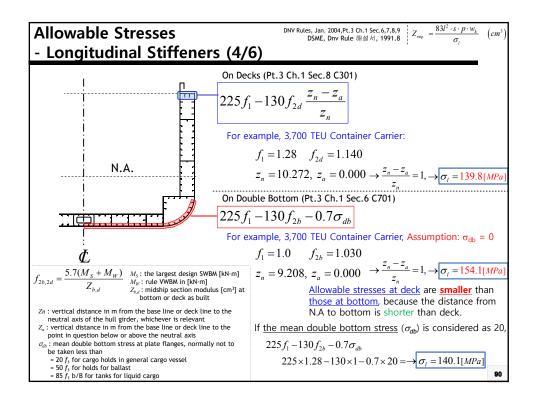


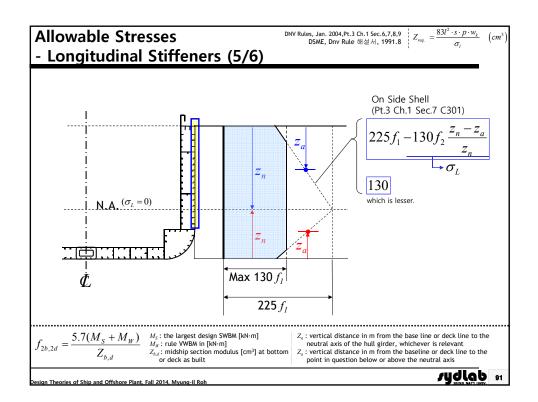


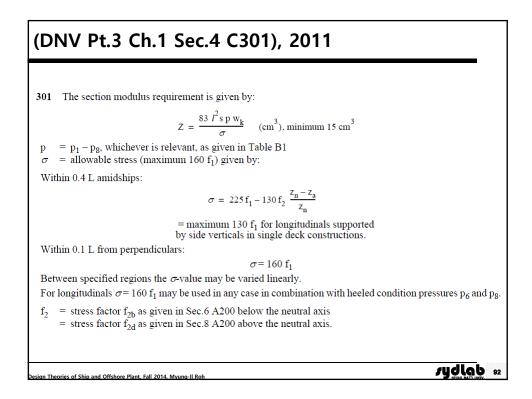


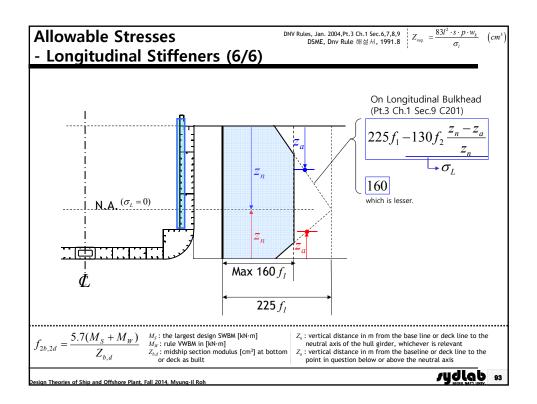


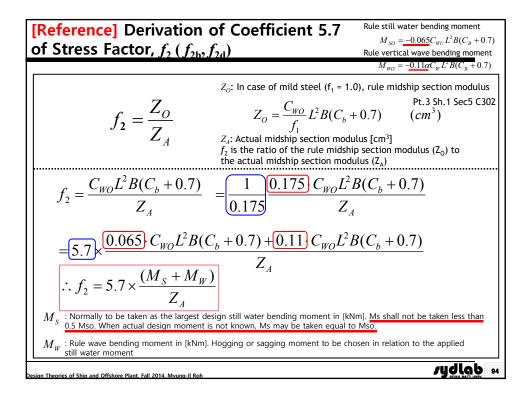


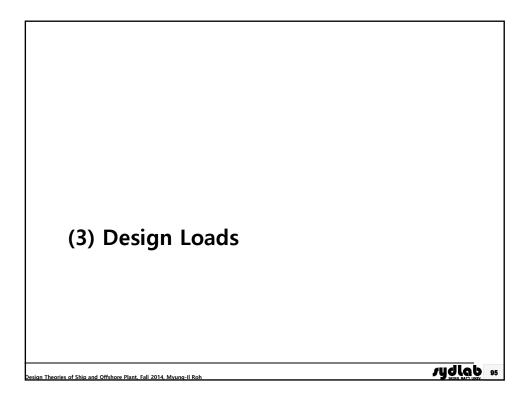


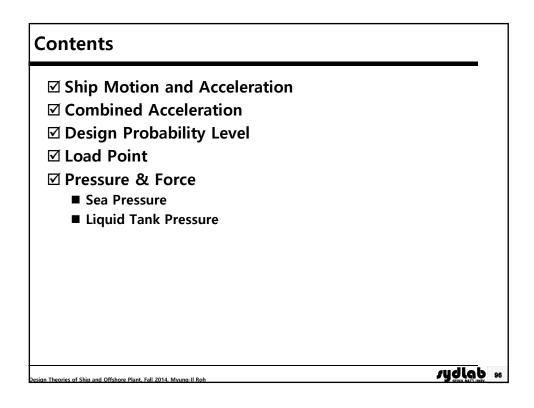


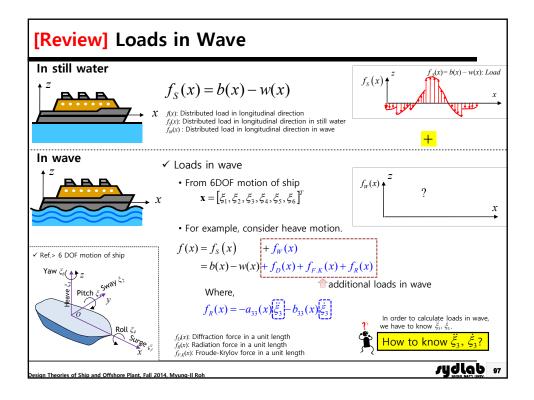


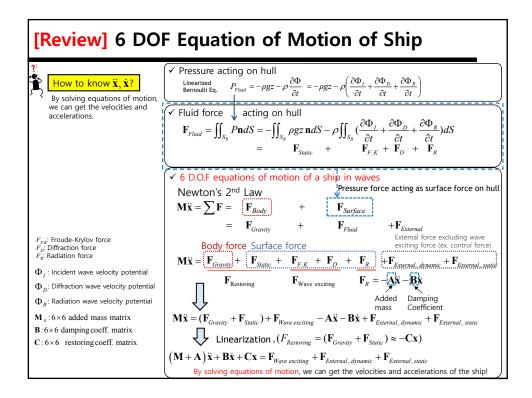


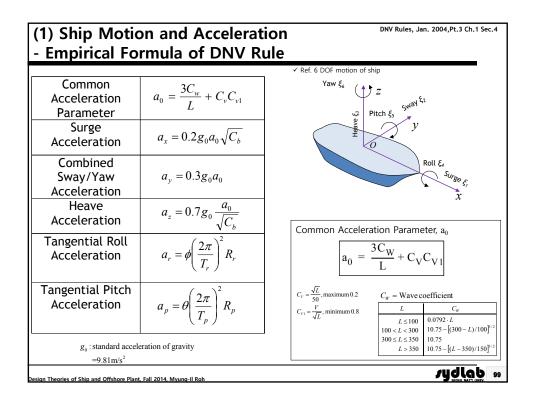


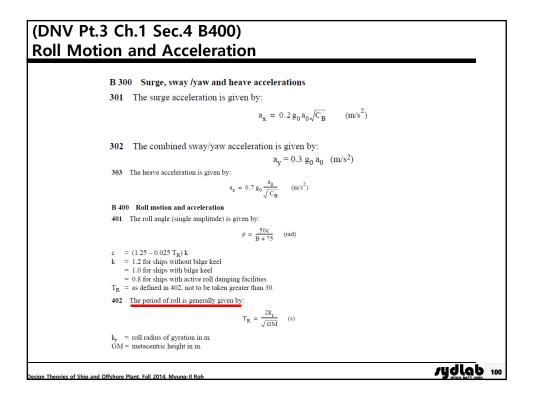


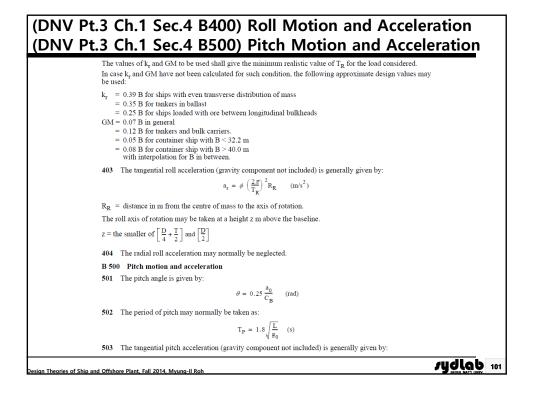


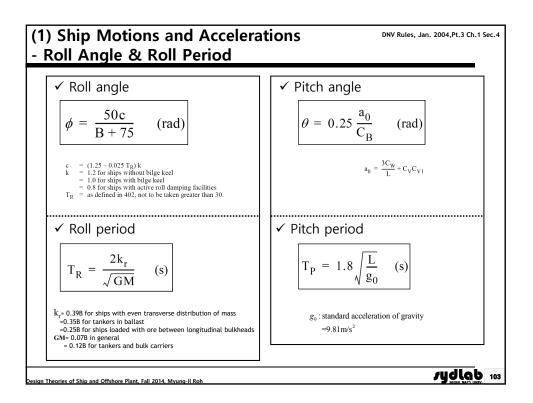


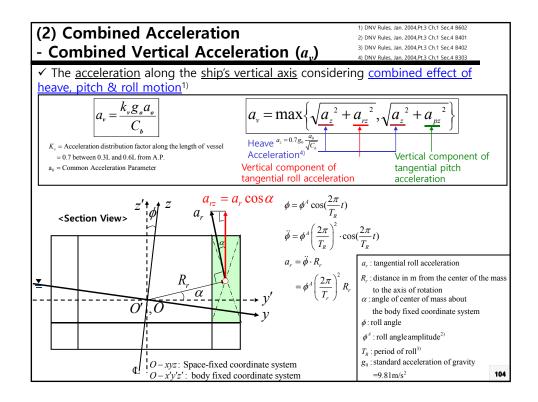


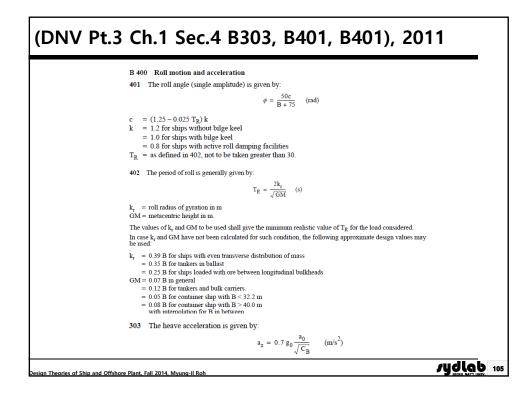


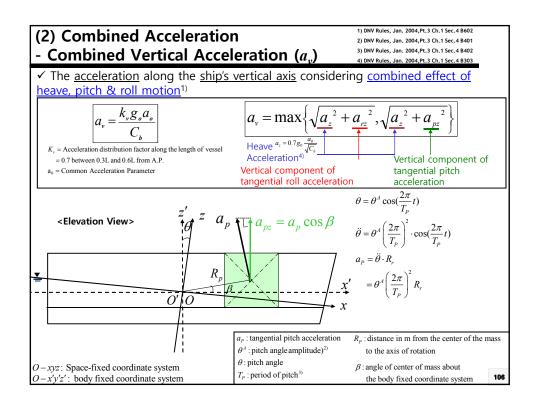


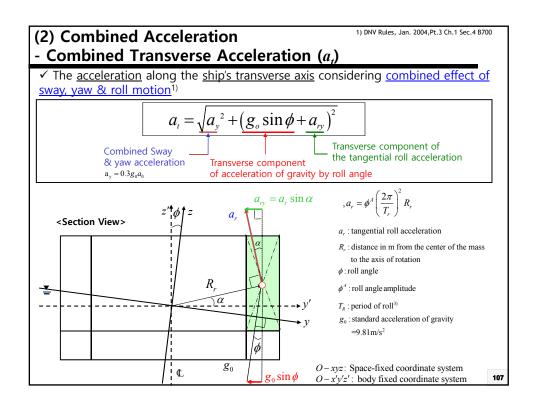


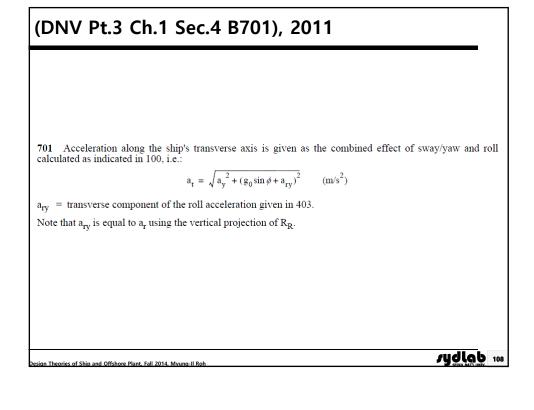


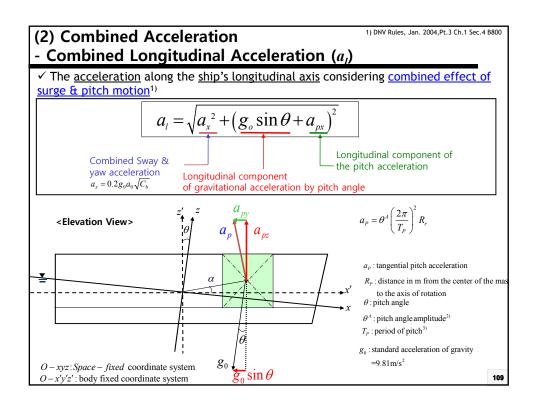


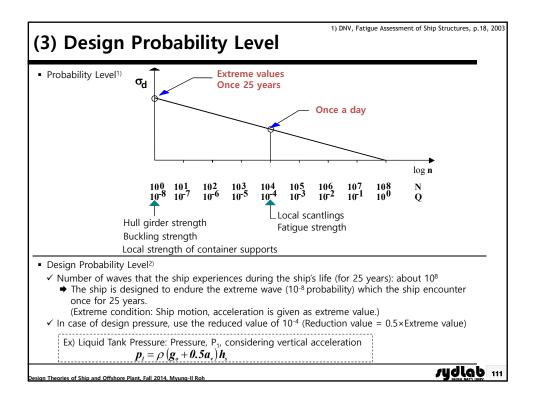


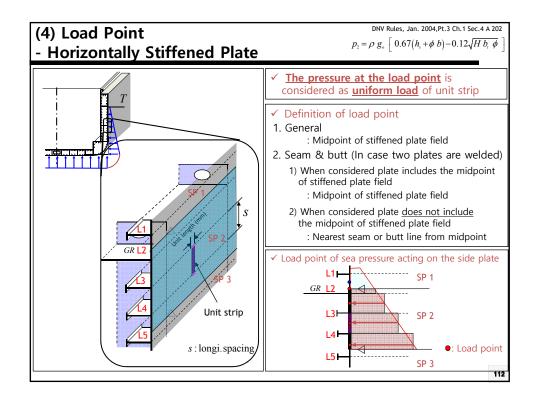


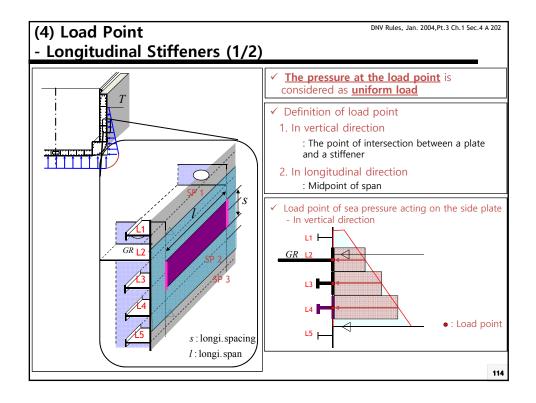

(DNV Pt.3 Ch.1 Sec.4 B600) **Combined Vertical Acceleration** $a_p = \theta \left[\frac{2\pi}{T_p}\right]^2 R_p \quad (m/s^2)$ T_p = period of pitch R_{p} = distance in m from the centre of mass to the axis of rotation. The pitch axis of rotation may be taken at the cross- section 0.45 L from A.P. z meters above the baseline. z = as given in 403.With T_p as indicated in 502 the pitch acceleration is given by: $a_p = 120 \ \theta \frac{R_p}{L} \qquad (m/s^2)$ 504 The radial pitch acceleration may normally be neglected. B 600 Combined vertical acceleration 601 Normally the combined vertical acceleration (acceleration of gravity not included) may be approximated by: $a_v = \frac{k_v g_0 a_0}{C_B}$ (m/s²) $k_v = 1.3$ aft of A.P. = 0.7 between 0.3 L and 0.6 L from A.P. = 1.5 forward of F.P. Between mentioned regions ky shall be varied linearly, see Fig.3. rydlab 102 In Theories of Ship and Offshore Plant, Fall 2014, Myung-Il Roh

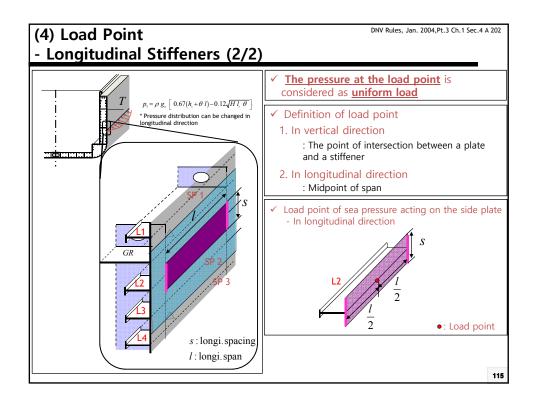


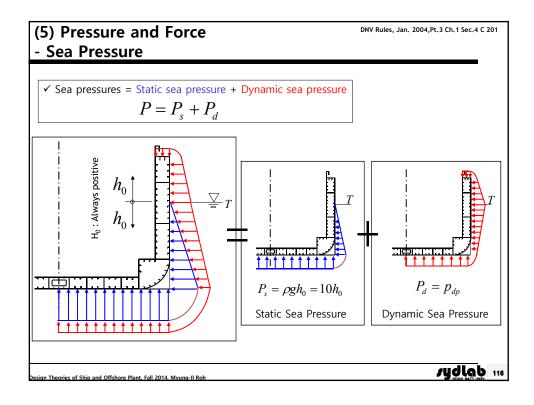


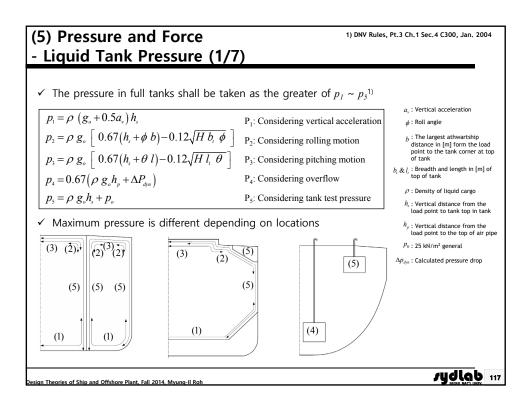


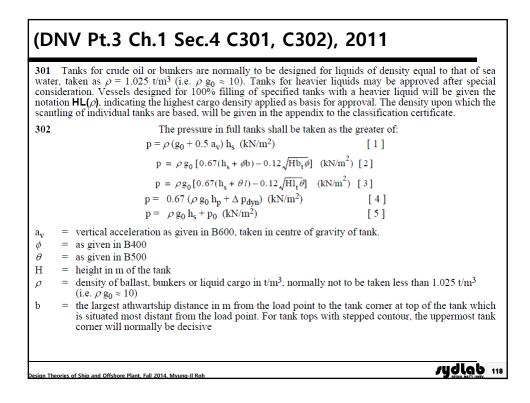


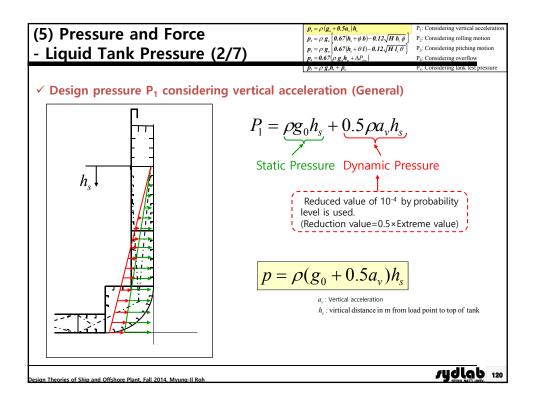


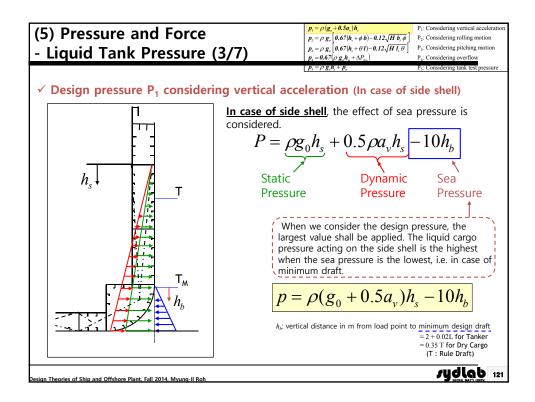

(2) Combined Acceleration - [Example] Vertical Acceleration (Example) Calculate the vertical acceleration of a given ship at 0.5L (amidships) by DNV Rule. [Dimension] L_s =315.79 m, V=15.5 knots, C_B =0.832 K_v = Acceleration distribution factor along the length of vessel $a_v = \frac{k_v g_o a_o}{C_b}$ = 0.7 between 0.3L and 0.6L from A.P. a_0 = Common Acceleration Parameter $g_0 =$ Standard acceleration of gravity (=9.81m/sec²) (Sol.) $a_v = (k_v g_0 a_0) / C_B = (0.7 \times 9.81 \times 0.277) / 0.832$ $= 2.286 (m / \text{sec}^2)$ where, $k_v = 0.7$ at mid ship $a_0 = 3C_W / L + C_v C_{v1} = 3 \times 10.75 / 315.79 + 0.2 \times 0.872 = 0.277$ $C_v = L^{0.5} / 50 = 315.79^{0.5} / 50 = 0.355$ or Max. 0.2 $C_{v1} = V/L^{0.5} = 15.5/315.79^{0.5} = 0.872$ or Min. 0.8 =0.872ydlab 110 n Theories of Ship and Offshore Plant, Fall 2014, M

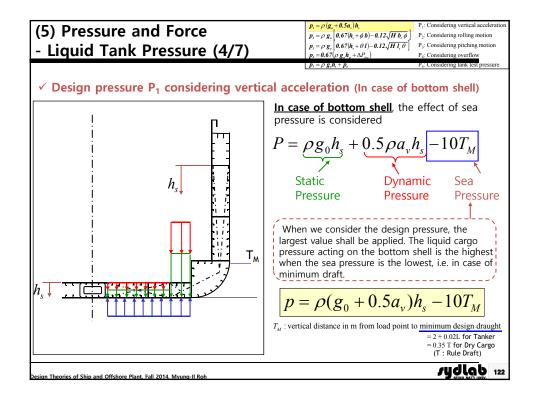


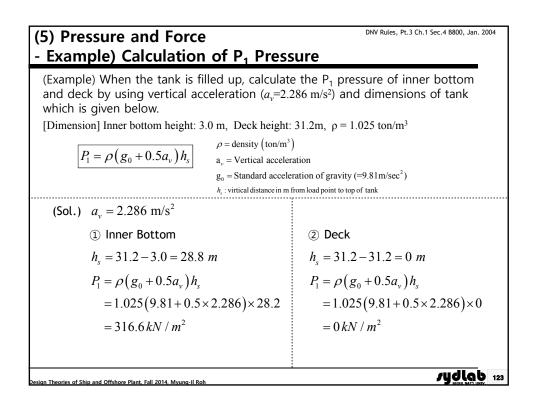


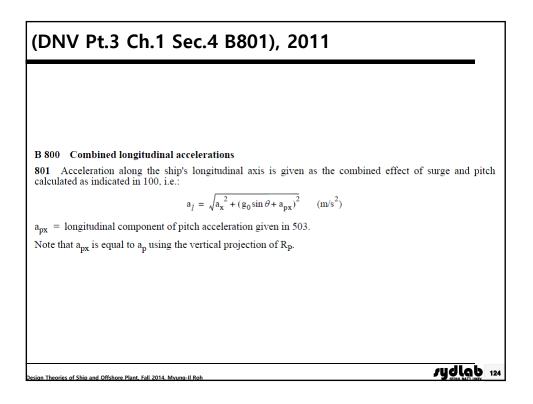

(DNV Pt.3 Ch.1 Sec.4 A201, 202), 2011 A 200 Definitions 201 Symbols: = design pressure in kN/m^2 р = density of liquid or stowage rate of dry cargo in t/m^3 . ρ 202 The load point for which the design pressure shall be calculated is defined for various strength members as follows: a) For plates: midpoint of horizontally stiffened plate field. Half of the stiffener spacing above the lower support of vertically stiffened plate field, or at lower edge of plate when the thickness is changed within the plate field. b) For stiffeners: midpoint of span. When the pressure is not varied linearly over the span the design pressure shall be taken as the greater of: p_m and $\frac{p_a + p_b}{2}$ $\mathbf{p}_{m}, \mathbf{p}_{a}$ and \mathbf{p}_{b} are calculated pressure at the midpoint and at each end respectively. c) For girders: midpoint of load area. rydlab 113 Theories of Ship and Offshore Plant, Fall 2014, Myung-II Rol

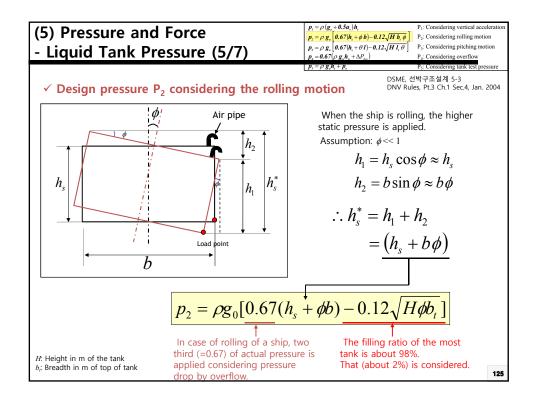


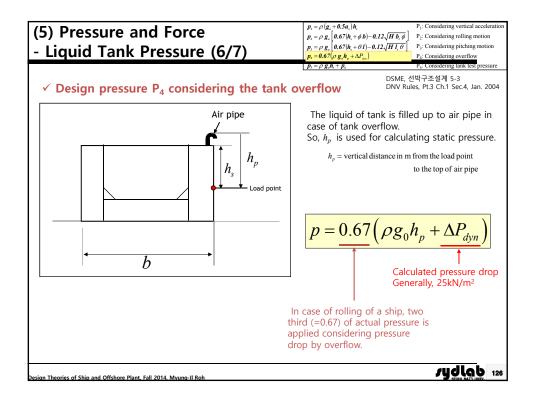


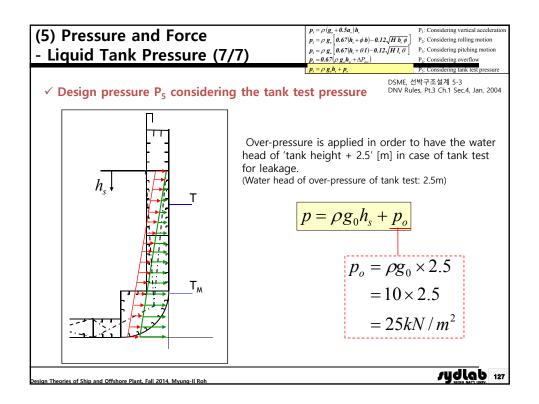


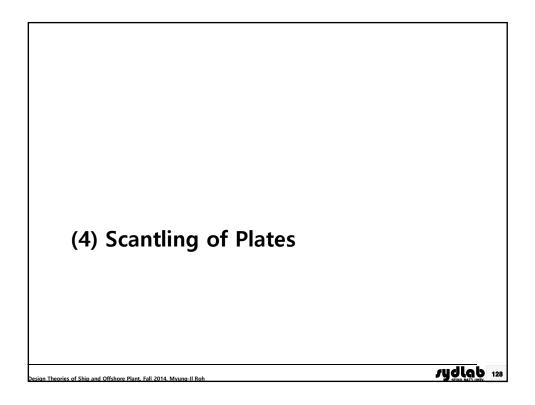


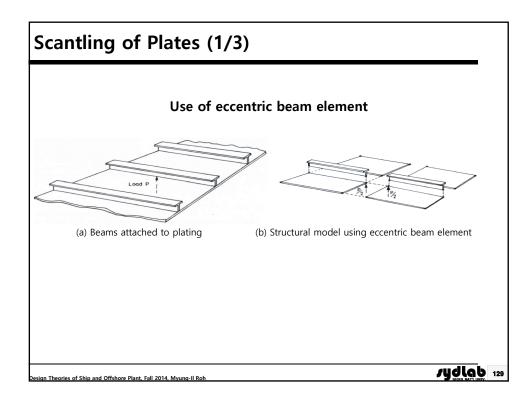

(DNV Pt.3 Ch.1 Sec.4 C302), 2011 breadth in m of top of tank b = the largest longitudinal distance in m from the load point to the tank corner at top of tank which is situated most distant from the load point. For tank tops with stepped contour, the uppermost tank corner will normally be decisive = length in m of top of tank = vertical distance in m from the load point to the top of tank, excluding smaller hatchways. h_s = vertical distance in m from the load point to the top of air pipe hp = 25 kN/m^2 in general p₀ = 15 kN/m² in ballast holds in dry cargo vessels = tank pressure valve opening pressure when exceeding the general value. $\Delta p_{dyn} =$ calculated pressure drop according to Pt.4 Ch.6 Sec.4 K201. For calculation of girder structures the pressure [4] shall be increased by a factor 1.15. The formulae normally giving the greatest pressure are indicated in Figs. 4 to 6 for various types. For sea pressure at minimum design draught which may be deduced from formulae above, see 202. Formulae [2] and [3] are based on a 2% ullage in large tanks. rydlab 119 Theories of Ship and Offshore Plant, Fall 2014, Myung-II Rol

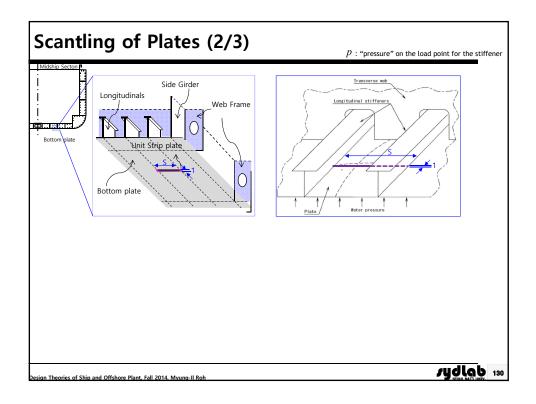


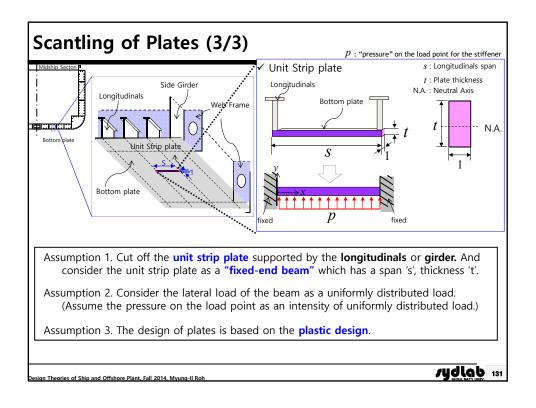


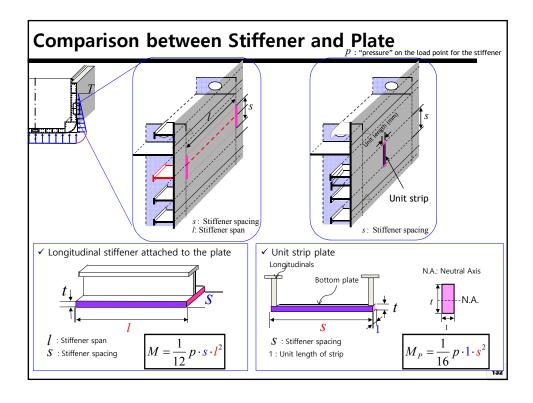


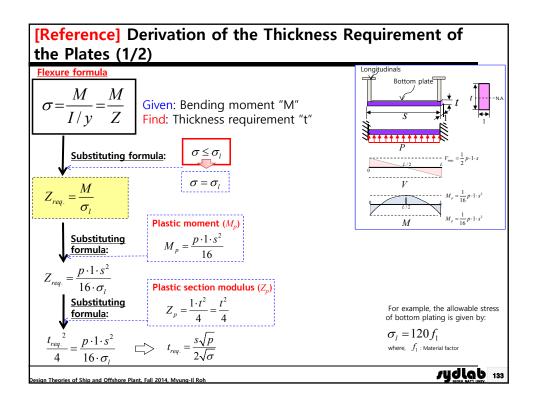


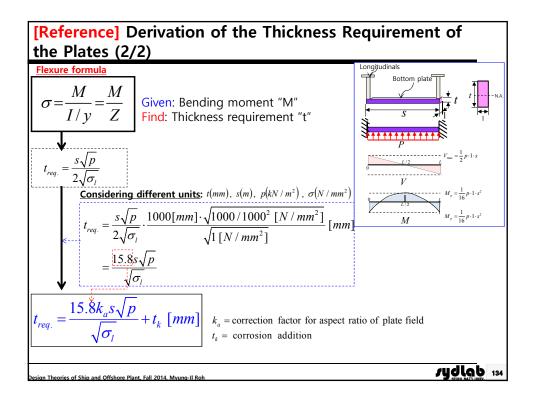


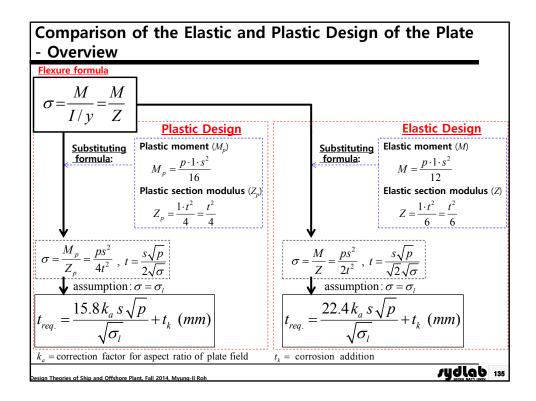


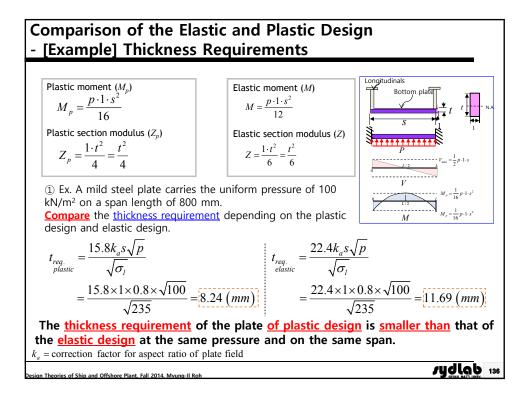


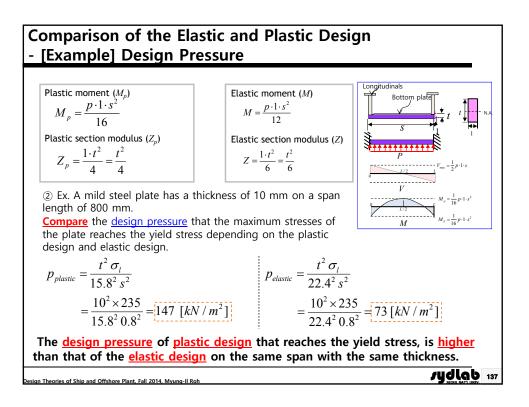


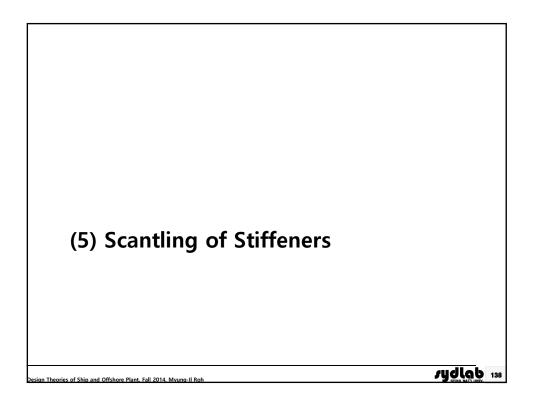


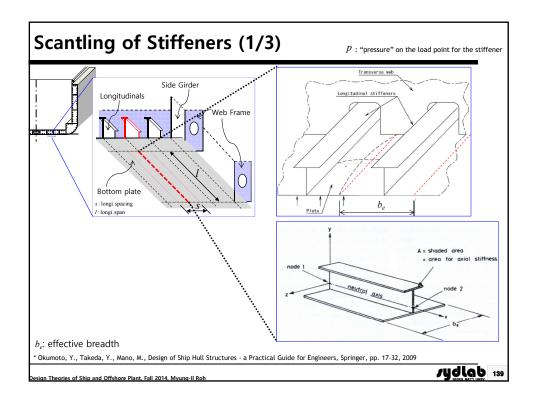


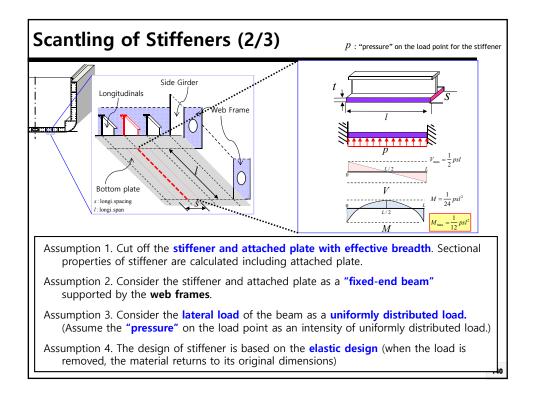


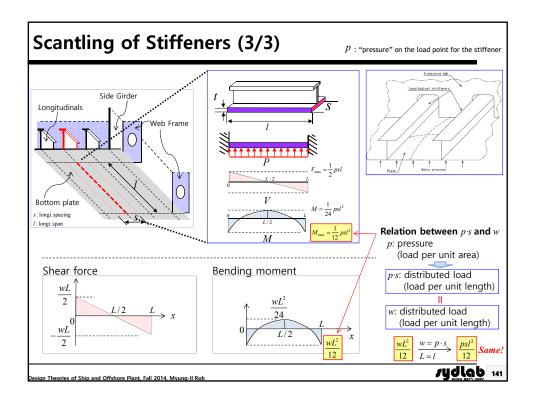


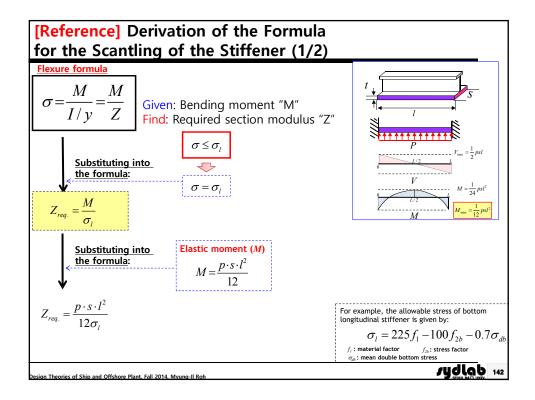


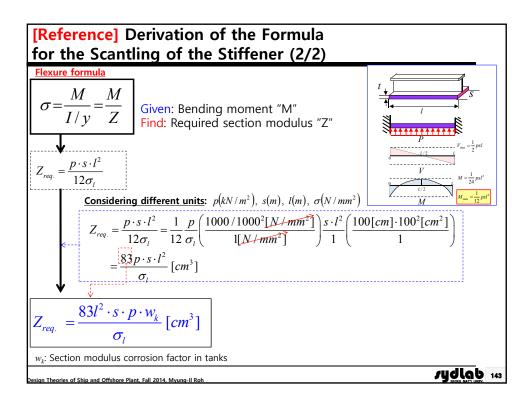


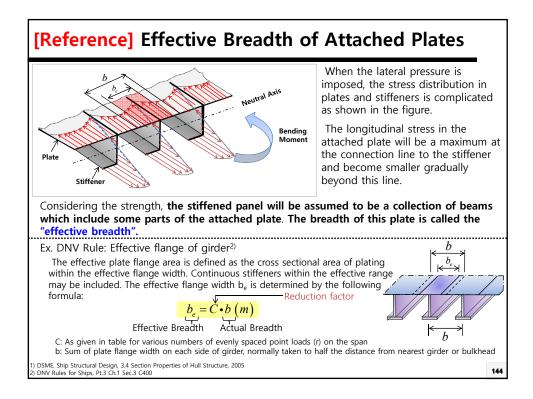


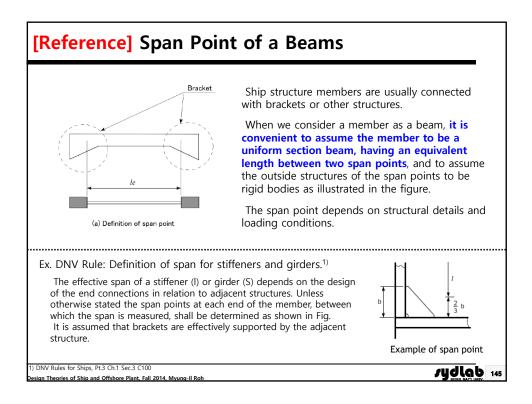


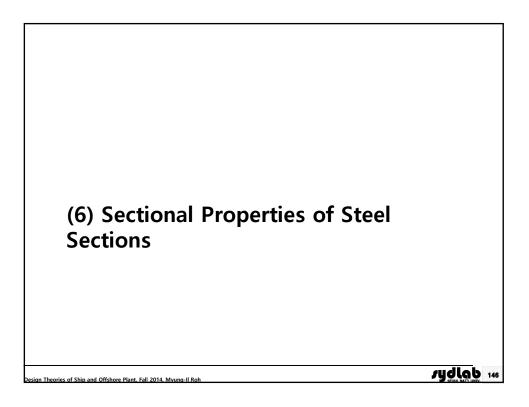












						of St /12)	eel	Se	ectio	ons						
						ions <u>inc</u>	ludin	g att	ached	<u>plate</u> >	^{1) "조·}	선설계편람	", 제 4판 (일본어), 일	본관서조신	년협회, 19
(Base	e pi		<u>≯√t</u> ⊳	b, = brea	dth of p	\$20 x 8) late (mm) plate (mm)	d	tw	16	19	22	25.4	28	32	35	38
	→	<mark>←</mark>	Ч	A = Area inc Z = Section (cm ³) I = Moment	modulus inc	luding plate	200	A Z I	32.0 215 3900	38.0 259 4730	44.0 305 5600	50.8 359 6640	56.0 401 7460	64.0 469 8790	70.0 521 9830	76.0 576 10900
d	t _w	6	9 4.5	11 5.50	12.7 6.35	14 7.00	250	A Z	40.0 325 7120	47.5 390 8600	55.0 458 10100	63.5 536 11900	70.0 597 13400	80.0 694 15600	87.5 769 17400	95.0 845 19200
50	A Z I	3.00 6.05 31.2 3.90	8.81 44.5	10.6 53.0	12.1 59.7	7.00 13.3 75.2 9.10	300	A Z	48.0 455	57.0 546	66.0 639	76.2 746	84.0 829	96.0 961	105.0 1060	114.0 1160
65	A Z I	9.55 62.3	5.85 14.0 88.8	7.15 16.8 105	8.26 19.3 119	21.1 129		I A	11700 56.0	14000 66.5	16500 77.0	19300 88.9	21600 98.0	25100 112.0	27800 122.5	30700 133.0
75	A Z I	4.50 12.3 91.4	6.75 18.1 130	8.25 21.8 154	9.53 25.0 174	10.5 27.3 189	350	ZI	606 17700	726 21200	847 24800	988 29100	1100 32400	1270 37600	1400 41600	1530 45700
90	A Z I	5.40 17.2 150	8.10 25.3 214	9.90 30.5 252	11.4 34.8 284	12.6 38.0 307	400	A Z I	64.0 776 25300	76.0 928 30300	88.0 1080 35400	101.6 1260 41400	112.0 1400 46000	128.0 1610 53300	140.0 1780 58900	152.0 1940 64600
100	A Z I	6.00 20.9 200	9.00 30.6 284	11.0 37.0 335	12.7 42.2 376	14.0 46.1 407	450	A Z	72.0 965 34700	85.5 1150 41500	99.0 1340 48500	114.3 1560 56500	126.0 1730 62800	144.02 2000 72600	157.5 2200 80100	171.0 2400 87700
125	A Z I	7.50 31.7 370	11.3 46.4 521	13.8 55.8 612	15.9 63.6 685	17.5 69.5 738	500	AZ	80.0 1170	95.0 1400	110.0 1630	127.0 18907	140.0 2100	160.0 2420	175.0 2660	190.0
150	A Z I	9.00 44.7 614	13.5 65.2 856	16.5 78.3 1000	19.1 89.1 1120	21.0 97.2 1200		Т	46000	55000 15*1.4 :	64200	4700	82900	95700	10500	11500
							\prec		349.6 [= 97.2	cm³]		1				1

ctional Pro					l Se	ctior	IS ¹⁾	"조선설계편림	†", 제 4판 (일본어), 일본관서조선협회, 1996
tional properties of s the standard dimen	teel sectio	ons <u>incl</u>	uding a	attache			75:420×8	, 75 <a<150< th=""><th>):610×1</th><th>10, 150≤a : 610×15)</th></a<150<>):610×1	10, 150≤a : 610×15)
				nsion	- p	P	Area	Including		
Symbol	a	b	t ₁	t ₂	r ₁	r ₂	A	1	Z	
Unit			m	m			cm ²	cm⁴	cm ³	
Equal angle				L				т	_	
	50 65 75 75 90 90 100 130 130 130 130 150 150 150 150 200 200 200	Ø	6 6 9 12 10 13 10 13 9 12 15 12 15 19 20 25 29	Ø	6.5 8.5 8.5 8.5 10 10 10 10 10 12 12 12 12 14 14 14 14 17 17 17	4.5 4 6 7 7 7 6 8.5 7 10 10 10 12 12 12 12	5.64 7.53 9.76 8.73 12.69 16.56 17.00 21.71 19.00 24.31 11.74 19.76 36.75 34.77 42.74 53.87 7.60 93.75 107.6	90.1 191 229 284 369 433 767 905 1030 1220	18.7 31.9 39.7 42.5 58.2 71.6 96.0 117 119 147	$\begin{array}{c} & \mathbf{b}_{\mathbf{p}} \\ \hline \mathbf{f}_{\mathbf{p}} \\ a \\ c \\ c$
Unequal angle					L			Т	_	
t_1	100 100 125 125	75 75 75 75	7 10 7 10	o	10 10 10 10	5 7 5 7	11.87 16.50 13.62 19.00	674 860 110 1420	72.5 96.2 97.2 130	
	150 150	90 90	9 12		12 12	6 8.5	20.94 27.36	2490 3060	181	148

Sectional						Sect	ions	¹⁾ "조선설	[계편람", 저	4판 (일본어), 일본관서조선협회, 1996
for Ship										
 Sectional propert Use the standard 	ties of ste dimensio	el sectio on of pl	ons <u>incl</u> ate dep	uding a ending	ttached on "a"	plate> (b _p × t _p) =	⊳ (a≤75:4	20×8, 75<	a<150:6	10×10, 150≤a : 610×15)
			Dime	nsion			Area	Including	g plate	þ, i
Symbol	а	b	t ₁	t ₂	r ₁	r ₂	А	1	Z	
Unit			m	im			cm ²	cm ⁴	cm ³	t _p
Unequal angle				L				ר		
	200	90	9	14	14	7.0	29.66	5870	340	
	250	90	10	15	17	8.5	37.47	10300	494	a
1 T	250	90	12	16	17	8.5	42.95	11000	540	"
+ 1, +	300	90	11	16	19	9.5	46.22	16400	681	
	300	90	13	17	19	9.5	52.67	17600	743	*
<i>"</i>	400	100	11.5	16	24	12	61.09	34200	1120	b
	400	100	13	18	24	12	68.59	36700	1230	
<u> </u>	450	125	11.5	18	24 24	12	73.11	51200	1570	
• · · · · · · · · · · · · · · · · · · ·	450 500	150 150	11.5	15 18	24	12 12	73.45 83.6	51700 70400	1590 2020	h .
	500	150	11.5	21	24	12	83.6 95.91	93300	2020	, Ke →
	600	150	12	21	24	12	95.91	93300	3000	-
Channels	000	150	12.5		24	12	107.0			
Channels	150	75	6.5	L	10	F	23.71	-	154	
	200	90	8	13.5	10	5 7	38.65	2160 5650	322	- 95
	250	90	9	13.5	14	7	44.07	9420	439	
	250	90	11	14.5	17	8.5	51.17	10500	439	(b-11)/2 (b-11)/2
a (b-11)/2, (b-11)/2	300	90	9	13	14	7	48.57	14300	567	
	300	90	10	15.5	19	9.5	55.74	16000	646	
	300	90	12	16	19	9.5	61.90	16900	693	+b ⁺ +
	380	100	10.5	16	18	9	69.39	29900	989	
b+	380	100	13	20	24	12	85.71	34900	1190	b,
Bulb flats				l.				Т		
	180	32.5	9.5	-	7	2	21.06	2860	172	
	200	36.5	10	-	8	2	25.23	4160	231	l iL.
11 Yr	230	41	11	-	9	2	31.98	6610	330	
View **	250	45	12	-	10	2	38.13	8960	424	149

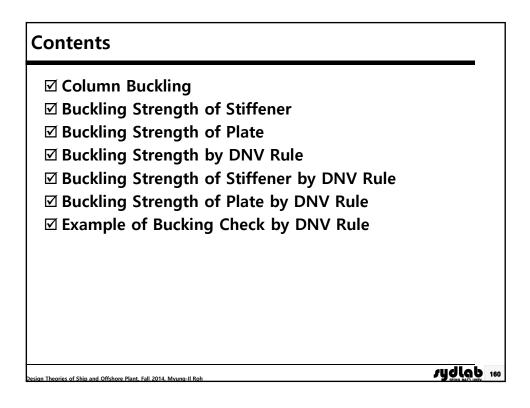
Sectional Properties of Steel	Sections ^{1) "조선설계편람"} , 제 4판 (일본어), 일본관서조선협회, 1996
for Ship Building ¹⁾ (4/12)	
<sectional including<="" of="" p="" properties="" sections="" steel=""></sectional>	g attached plate>
(Base plate dimension: $b_p \times t_p = 610 \times 15$)	0/×/1/2026 1256 1309 150 150 150 150 150 150 200 200 200 200 200 200 200 200 400 40
	300 4 90-5 54-5 8-8 8-9 67-6 72-6 × 77 5 890 000 1310 1320 1320 11-5 7 1 1940 7860 2300 23500 23500 23500 13500 → ↓ tp
	350 4 96-3 60-3 64-3 68-8 73-3 73-4 × Z 955 1090 1220 3350 1500 1560 11-5 Z 1200 30100 32500 35100 35300 42700
	400 4 62-6 65-0 70-0 74-8 79-0 84-1 X-15 7 35666 65:00 11:00 15:00 17:00 19:00 X-15 7 35666 65:00 47:00 13:00 15:00
	40 d 67-8 71-6 75-6 90-3 64-8 85-9 × 1 135 1350 11-5 1 47500 52200 55500 61500 65500 73500
	500 4 73-6 77-5 83-5 86-6 90-5 93-6 A: Sectional area (cm ²) × 2 1507 1700 1190 11940 1110 345 3560 3500 11-5 7 6400 65000 11300 71100 85000 85000 A: Sectional area including plate (cm ²)
	x50 Al 82-0 80-0 90-0 94-5 90-0 10-11 Z: Section modulus including plate (cm ³) x1 Z 1840 70-00 82700 85900 95900 100000 1 Moment of inertia including plate (cm ⁴)
	60 4 92-9 96-2 100-2 104-7 109-2 114-3 121-9 427-0 130-2 140-8 156-7 656- × 2 2150 2370 2398 3580 300 1310 372 3990 4560 4560 5170 5510 5510 12-7 / 95500 130000 110000 118000 125000 145000 155000 155000 150000 119000 119000 119000
	\$0 4 94:0 102-6 102-6 103-9 112-1 115-6 120-7 128-9 33-4 138-6 145-6 139-2 148-1 170-0 × 2 1243 2580 2590 3140 3390 3570 4130 12-7 / 115000 133000 131000 141000 159000 157000 140000 159000 202000 259000 224000 234000
	700 / 4 104-9 102-9 112-9 112-9 127-0 124-9 127-0 134-4 129-7 144-9 152-9 152-5 159-4 179-3 × 2 / 2220 3990 3310 3460 3500 4500 4524 4530 5140 6510 6150 6590 6590 12-7 / 137000146000136000186000186000187000 200000 211000 221000 236000 235000 250000 272000
	700 / 4 138-0 132-0 136-0 140-5 145-0 130-1 157-7 145-8 148-0 178-0 185-6 192-5 192-5 192-4 × 2 / 3/70 3310 3560 1382 070 4370 4330 5330 5430 5580 6450 6550 7230 16 / 15000159001166000178000187000198000 212000 222000 231000 245000 245000 251000 235000
	800 4 117-6 122-6 122-6 122-6 120-1 134-6 129-7 147-8 157-6 157-6 155-6 175-2 132-1 132-1 132-0 × 2 1 2333 1510 1369 1250 1450 1570 5720 5810 6560 7250 7720 8170 12-7 / 188000/20000/211000/224000 231000 250000 240000 313000 333000 346000 360000
	800 / 4 144-0 155-0 155-0 155-0 155-1 173-1 173-7 178-8 184-0 192-0 201-6 208-5 215-4 × 2 1 2780 4950 4330 4530 4203 201 201 2520 5770 5110 6450 6960 7510 8550 8550 8450 16 / 207000/218000/228000/248000/248000/248000 287000 287000 309000 327000 340000 37000 310000 37000
	900 / 4 142-0 46-0 159-0 154-5 159-0 14-1 171-7 172-8 182-0 199-0 199-6 205-5 273-4 2 4220 4530 4464 1371 0500 5820 456. 5860 7340 7880 5550 9550 9550 14 / 255000[224000]287000.303000]318000 335000 3358000 410000 435000 455000 455000
	900 4 178-0 28-0 188-0 190-5 188-0 201 207-7 22-8 218-0 228-0 228-6 242-5 242-5 249-4 × 2 4880 1510 1500 1530 14500 7500 7440 7410 8370 5000 9570 10100 18 7 20000 0000 15000 132000 04000 15000 384000 395000 435000 435000 45000 45000 45000 45000
	1000 4 176-0 80-0 184-0 188-5 133-6 188-1 20-1 20-1 20-1 20-1 20-1 20-1 20-1 20
	1000 4 26-0 210-0 214-0 218-5 223-6 228-1 228-7 26-0 264-0 264-0 264-0 264-0 277-4 × 2 5940 4520 4520 4500 7364 1776 836 8780 9180 9860 16600 11100 11560 19 7 J350004500045000450004520004520064 980005 8150005 5150005 535000 559000 680000 659000 1350000

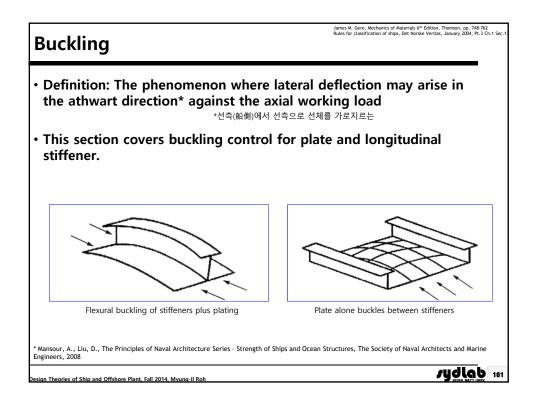
Section shape	А	/	Z _e	Zp
$\begin{array}{c} \prod_{\substack{\substack{i \\ e_{i} \\ e_{i$	$\frac{1}{2}\pi(r_1^2 - r_1^2)$ $t/r_m \delta (r_1 \delta (r_2 \delta \delta$	$-\frac{9\pi(r_1+r_1)}{9\pi(r_1+r_1)}$	$\begin{aligned} \epsilon_1 &= r_1 - \epsilon_2 \\ \epsilon_1 &= \frac{4(r_1 t + r_1 r_1 + r_1^3)}{3\pi(r_1 + r_1)} \\ \epsilon_{1rn} &= \frac{2}{\pi} r_n \approx 0.6366 r_n \end{aligned}$	$2[2(r_1^3 \sin^2 \theta_1 - r_1^3 \sin^2 \theta_1) - (r_2^3 - r_1^3)]/3$ $\subset \subset \subset,$ $r_1 \cos \theta_1 = r_2 \cos \theta_2$
12. e	$\frac{1}{2}r^{2}(2\alpha-\sin 2\alpha)$	$I_{s} = r^{s} \begin{bmatrix} 1 & (4\alpha - \sin \theta) \\ 1 & (4\alpha - \sin \theta) \end{bmatrix}$ $I_{s} = \frac{r^{s}}{12} \begin{bmatrix} 3\alpha - 2\sin 2\theta \\ 3\alpha - 2\sin 2\theta \end{bmatrix}$ $\epsilon_{1} = r \left(1 - \frac{4\sin^{2}\theta}{6\alpha - 3\sin^{2}\theta}\right)$ $\epsilon_{1} = r \left(\frac{4\sin^{2}\theta}{6\alpha - 3\sin^{2}\theta}\right)$	$\frac{\alpha}{\sin 2\alpha}$	$\frac{\frac{2}{3}r^{3}(2\sin^{3}\alpha_{0}-\sin^{3}\alpha)}{2\zeta \leq \zeta_{*}}$ $\frac{2\alpha-\sin 2\alpha}{2\alpha_{0}-\sin 2\alpha_{0}}=4$
$e_{i} \wedge e_{i} \wedge e_{i$	2art	$I_{A} = r^{2} I(\alpha + \sin\alpha \cos\alpha)$ $= 2 \frac{\sin^{2}\alpha}{\alpha} \rangle$ $I_{A} - r^{2} I(\alpha - \sin\alpha \cos\alpha)$	$e_1 = r \left(1 - \frac{\sin \alpha}{\alpha} \right)$ $e_2 = r \left(\frac{\sin \alpha}{\alpha} - \cos \alpha \right)$	$\frac{2rt(r-t/2)}{\times(2\sin\frac{\alpha}{2}-\sin\alpha)}$
	ar ¹	$I_{a} = \frac{1}{4}r^{4}(\alpha + \sin\alpha\cos\alpha)$ $-\frac{16\sin^{4}\alpha}{9\alpha}$ $I_{\mu} = \frac{1}{4}r^{4}(\alpha - \sin\alpha\cos\alpha)$	$\epsilon_1 = r \left(1 - \frac{2 \sin \alpha}{3 \alpha} \right)$ $\epsilon_2 = r \frac{2 \sin \alpha}{3 \alpha}$	$\begin{array}{l} \alpha > 0.590, \\ (2\alpha' - \sin 2\alpha' = \alpha) \\ 2r^{3}(2\sin \alpha' - \sin \alpha)/3 \\ \alpha < 0.996 \\ \frac{2r^{3}}{3} \left[\sin \alpha - \sqrt{\frac{\alpha^{3}}{2\tan \alpha}}\right] \end{array}$
15. 梢円	таб	$\frac{\pi}{4}a^{ib}=0.7854a^{ib}$	π/4α²b≔0•7854 σ²b	$\frac{4}{3}a^{3}b$

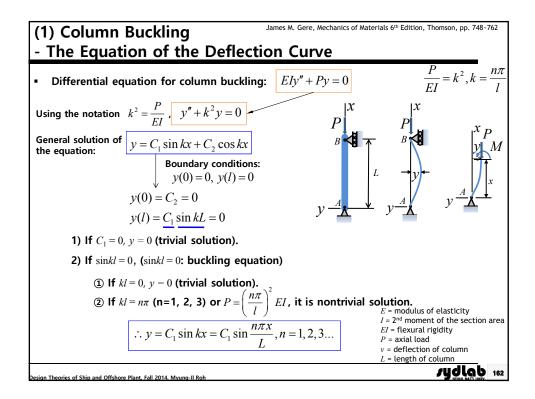
Section shape	А	/	Z _e	Z_P
	$\pi(a_ib_i-a_ib_i)$ t/a _n , t/b _n b^i />ψτιζ δ A _n =π(a _n +b _n):	$\frac{\pi}{4}(a_1{}^{\flat}b_1-a_1{}^{\flat}b_1)$ $I_{\mathbf{m}}=\frac{\pi}{4}a_{\mathbf{m}}{}^{\flat}(a_{\mathbf{m}}+3b_{\mathbf{m}})t$	$\frac{\pi}{4} \frac{a_1 b_2 - a_1 b_1}{a_1}$ $Z_{\mathbf{n}} = \frac{\pi}{4} a_{\mathbf{n}} (a_{\mathbf{n}} + 3b_{\mathbf{n}}) t$	$\frac{4}{3}(a_2{}^{i}b_2-a_1{}^{i}b_1)$
	<u>1</u> жад	$\left(\frac{\pi}{8} - \frac{8}{9\pi}\right)a^{3}b$ $= 0.1098 a^{3}b$	$e_1 = \left(1 - \frac{4}{3\pi}\right)a = 0.5756a$ $Z_1 = 0.1908 a^2b$ $e_1 = \frac{4r}{3\pi} = 0.4244 a$ $Z_1 = 0.2587 a^2b$	⇔0·35362 <i>a1b</i>
$\begin{array}{c} 18 \\ h \\ h \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	$2bt_2 + h_1t_1$	$I_{A} = \frac{bh^{3} - (b - t_{1})h^{3}}{12}$ $I_{B} = \frac{2b^{3}t_{2} + h_{1}t_{3}^{3}}{12}$	$Z_{\mathbf{A}} = \frac{bh^3 - (b - t_1)h_1^3}{6h}$ $Z_{\mathbf{A}} = \frac{2b^3t_1 + h_1t_1^3}{6b}$	$\frac{h_1{}^1t_1}{4} + \frac{bt_2}{2}(h+h_1)$
$19, e_2 \rightarrow e_1$ $h \xrightarrow{A} h \xrightarrow{A} h_1$ t_1 t_2 $h \xrightarrow{A} h_2$	all + h l.	$I_{s} = \frac{bh^{3} - (b - t_{1})h^{3}}{12}$ $I_{s} = \frac{2b^{3}t_{1} + h_{1}t_{1}^{3}}{3} - Ae^{3}$	$e_1 = b - e_2$ $e_2 = \frac{2b^2t_1 + h_1t_1^2}{4bt_2 + 2h_1t_1}$	18.と同じ

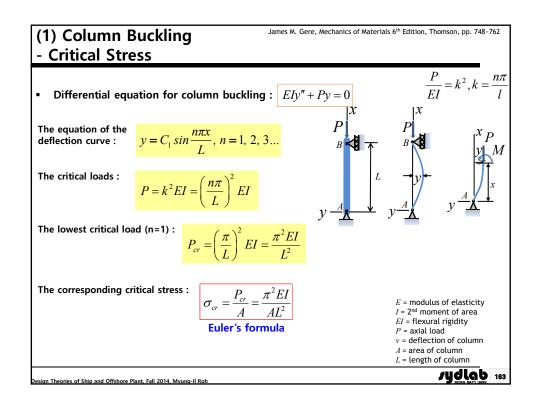
Section shape	А	/	Z _e	Zp
h	bh	$\frac{1}{12}\delta h^*$	$\frac{1}{6}bh^{2}$	$\frac{1}{4}hh^{2}$
$h_1 + h_2$	h_{i} : - h_{i} ?	$\frac{1}{12}(h_{7}{}^{*}-h_{5}{}^{*})$	$\frac{1}{6} \frac{h_3'-h_1'}{h_2}$	$\frac{1}{4}\langle h_{i}{}^{s}-h_{i}{}^{s}\rangle$
	ħ²	$\frac{1}{12}h^{*}$	$\frac{\sqrt{2}}{12}h^1$	$\frac{\sqrt{2}}{6}h^{2}$
4. h. h. h	$h_2^2 - h_1^2$	$\frac{1}{12}(h_1^* - h_1^*)$	$\frac{\sqrt{2}}{12} \frac{h_1 \cdot - h_1 \cdot}{h_2}$	$\frac{\sqrt{2}}{6}(h_2^3-h_3^3)$
5. Pri h	$\frac{1}{2}bh$	$\frac{1}{36}bh'$	$e_1 = \frac{2}{3}h, Z_1 = \frac{bh^3}{24}$ $e_2 = \frac{1}{3}h, Z_2 = \frac{bh^3}{12}$	$\frac{2-\sqrt{2}}{6}bh^7$

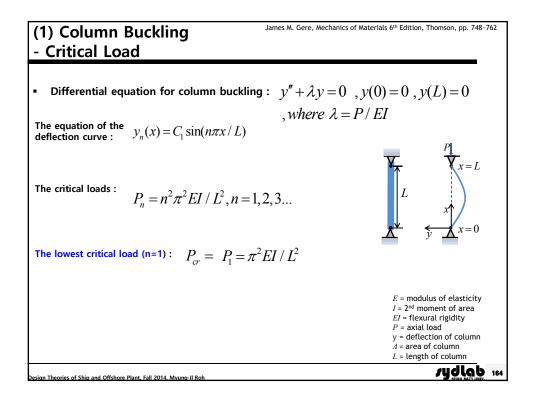
Section shape	А	/	Z _e	Z _P
6. e. e. b. b.	$\frac{1}{2}(b_1+b_2)h$	$\frac{h^{i}(b_{1}{}^{i}+4b_{1}b_{1}+b_{1}{}^{i})}{36(b_{1}+b_{1})}$	$\begin{split} \boldsymbol{\varepsilon}_{1} &= \frac{h(b_{1}+2b_{1})}{3(b_{1}+b_{1})} \\ Z_{1} &= \frac{h^{2}(b_{1}^{1+}+4b_{1}b_{2}+b_{1}^{2})}{12(b_{1}+2b_{1})} \\ \boldsymbol{\varepsilon}_{1} &= \frac{h(2b_{1}+b_{1})}{3(b_{1}+b_{1})} \\ Z_{1} &= \frac{h^{2}(b_{1}^{1+}+4b_{1}b_{2}+b_{1}^{2})}{12(2b_{1}+b_{1})} \end{split}$	$\frac{Ah}{3} \frac{(b_1b_2 + b_2b_3 + b_2b_1)}{(b_1 + b_2)(b_1 + b_2)}$ $ \leq \zeta \leq \zeta,$ $b_3^2 = (b_1^2 + b_2^2)/2$
7. 正用角形 A A Frank Frank	$\frac{1}{2}$ nar ₁	$\frac{A}{24}(6r_{1^{2}}-a^{2})$ $=\frac{A}{48}(12r_{1^{2}}+a^{2})$	$Z_{a} = \frac{A}{48 r_{1}} (12 r_{1}^{2} + a^{2})$ $Z_{b} = \frac{A}{24 r_{2}} (6 r_{2}^{2} - a^{2})$	$n: \bigoplus_{r=1}^{\infty} \mathbb{K}, Z_{P,4} = \frac{a^2 r_1}{6} + \frac{2}{3} a r_1^2 \sum_{n=1}^{\frac{n}{2} - 1} \sin \frac{2k\pi}{n}$
8.	-1. πd²	$\frac{1}{64}\pi d^4$	$\frac{1}{32}\pi d^3$	$\frac{1}{6}d^3$
9. $d_m - t$	$\frac{\frac{1}{4}\pi(d_{2}^{i}-d_{1}^{i})}{t/d_{m}\beta^{i}}$ $\frac{1}{4}\pi(d_{2}^{i}-d_{1}^{i})$ $t/d_{m}\beta^{i}\beta^{i}$ $A_{dm}=\pi d_{m} t$	$\frac{1}{64}\pi(d_{1}^{*}-d_{1}^{*})$ $I_{4m}=\frac{1}{8}\pi d_{m}^{*}t$	$\frac{\pi}{32} \frac{d_2^{i} - d_1^{i}}{d_2}$ $Z_{dm} = \frac{1}{4} \pi d_m^{i} t$	$\frac{1}{6}(d_1^3 - d_1^3)$
$\begin{array}{c} 10, \\ e_1 \\ e_2 \\ e_2 \end{array}$	$\frac{1}{2}\pi r^2$	$\left(\frac{\pi}{8} - \frac{8}{9\pi}\right)r^{4}$ $= 0.1098 r^{4}$	$e_1 = \left(1 - \frac{4}{3\pi}\right)r = 0.5756r$ $Z_1 = 0.1908 r^3$ $e_2 = \frac{4r}{3\pi} = 0.4244 r$ $Z_3 = 0.5287 r^3$: 0·37982 r ³

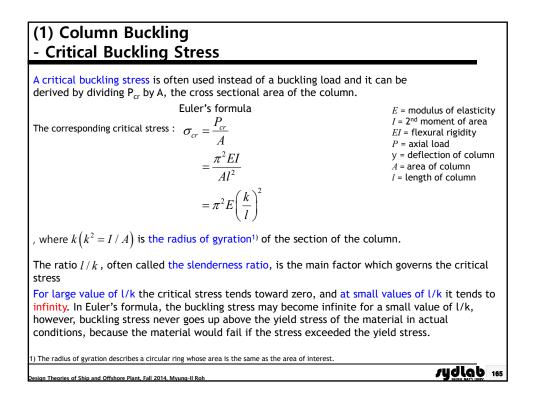

Section shape	А	/	Z _e	Z _P
$ \begin{array}{c} 20. \\ \hline b_B \\ $	$bt_2 + h_1t_1$	$I_{s} = \frac{h^{3}t_{1} + (b - t_{1})t_{s}^{3}}{-Ae^{3}}$ $-Ae^{3}$ $I_{s} = \frac{b^{3}t_{2} + h_{s}t_{s}^{2}}{12}$	$\begin{split} e_{1} &= \frac{h^{2}t_{1} + (b-t_{1})t_{2}^{1}}{2(bt_{2} + h_{2}t_{1})} \\ e_{2} &= h - e_{1} \end{split}$	$\begin{split} t_i &\leq h, t_i \nearrow b \not \supset \geq b \\ & \frac{bt_i}{2} \left(h - \frac{t_i}{t_i} b \right) \\ & + \frac{h_i t_i}{4} \left[h_i + \left(\frac{t_i}{t_i} \right)^* \right. \\ & \times \left(\frac{b_i}{h_i} b \right] \\ & t_i > h, t_i \nearrow b \not \supset \geq b \\ & \frac{bt_i^*}{4} \left[1 - \left(\frac{h_i t_i}{bt_i} \right)^2 \right] \\ & + \frac{h_i h_i t_i}{2} \end{split}$
21. t h h h h h h h h	$(h+h_1)t$	$\frac{t}{3}(h^3+h_1t^2)-Ae_2$	$e_1 = h - e_1$ $e_1 = \frac{h^2 + h_1 t}{2(h + h_1)}$	$\frac{t}{4}[(h\!-\!t)^{2}\!+\!h^{2}]$
$\frac{22}{e_1} \xrightarrow{B}_{h_1} \xrightarrow{h_2}_{B}$	$(h+h_1)t$	$\begin{split} I_{4} = & \frac{(h+1)^{4}}{24} - \frac{h_{1}^{4} + 2t^{4}}{24} \\ & -Ae_{2}^{3} \\ I_{8} = & \frac{1}{12}(h^{4} - h_{1}^{4}) \end{split}$	$e_1 = \frac{h^2 + h_1 t}{\sqrt{2(h+h_1)}}$ $e_2 = \frac{h^2}{\sqrt{2(h+h_1)}}$	$\frac{t}{\sqrt{2}}[h(h-t)+t^{2}]$
23. l_i h h_i e_i e_2	$bt_2 + h_1t_1$	$\frac{h^3 t_1 + (b-t_1) t_2^3}{3} - A e_2^2$	$e_1 = h - e_2$ $e_2 = \frac{h^2 t_1 + (b - t_1) t_2^2}{2(b t_1 + h_1 t_1)}$	20. と同じ

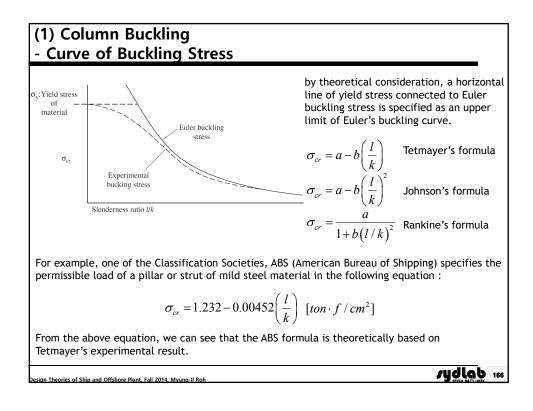

Section shape	А	/	Z _e	Z _P
24. b_0 c_1 c_2 b_1 c_2 b_1 b_1 b_1 b_1 b_2 b_1 b_1 b_2 b_1 b_2 b_1 b_2 b_1 b_2 b_1 b_2 b_1 b_2 b_1 b_2 b_1 b_2 b_1 b_2 b_2 b_1 b_2 b_2 b_1 b_2 b_1 b_2 b_1 b_2 b_1 b_2 b_1 b_2 b_2 b_1 b_2 b_2 b_1 b_2 b_1 b_2 b_2 b_1 b_2 b_2 b_1 b_2 b_2 b_1 b_2 b_2 b_1 b_2 b_2 b_1 b_2 b_2 b_1 b_2 b_2 b_1 b_2 b_1 b_2 b_2 b_1 b_2 b_1 b_2 b_2 b_1 b_2 b_1 b_2 b_2 b_1 b_2 b_2 b_1 b_2 b_1 b_2 b_2 b_1 b_2 b_2 b_1 b_2 b_1 b_2 b_2 b_1 b_2 b_2 b_1 b_2 b_2 b_1 b_2 b_2 b_2 b_1 b_2 b_2 b_1 b_2 b_2 b_2 b_1 b_2 b_2 b_2 b_2 b_1 b_2 b_2 b_2 b_2 b_1 b_2 b_2 b_1 b_2 b_2 b_1 b_2 b_2 b_1 b_2 b_2 b_1 b_2 b_2 b_1 b_2 b_2 b_1 b_2 b_2 b_2 b_1 b_2 $b_$	$b_{2}t_{4}+bt_{3}+h_{1}t_{3}$	$I = \frac{b_{1}t_{s}^{2}}{3} + \frac{bh^{3}}{3} - \frac{(b)}{2A}$ $e_{1} = t_{s} + \frac{bh^{2} - (b - t_{1})}{2A}$ $e_{2} = h - \frac{bh^{2} - (b - t_{1})}{2A}$	$h_{1^2} - b_0 t_{0^2}$	$\begin{split} t_{0} &\leq (bt_{1} + h, t_{1}) \neq b_{0} \mathcal{O} \geq \mathfrak{F} \\ \frac{bt_{1}}{2} & (h_{1} + t_{0}) + \frac{bt_{1}h}{2} \\ &+ \frac{h_{1}^{2}t_{1}}{4} - \frac{1}{4t_{1}} \\ &\times (bt_{1} - b_{0}t_{0})^{2} \\ t_{0} &> (bt_{1} + h, t_{1}) \neq b_{0} \mathcal{O} \geq \mathfrak{F} \\ \frac{b_{0}t_{0}^{2}}{4} - \frac{1}{4b_{0}} (bt_{1} + h, t_{1})^{2} \\ &+ \frac{(h_{1} + t_{0})(h_{1}t_{1} + bt_{2})}{2} \\ &+ \frac{bt_{1}h}{2} \end{split}$
	<i>t</i> (<i>a</i> + <i>b</i>)	$\frac{td^2}{12}(3a+b)$	$\frac{td}{6}(3a+b)$	$\frac{adt}{2} + \frac{bdt}{4}$
26. a b b t		$\frac{a^{3}t}{12}\left(1+\frac{3}{4}\pi\right)+\frac{1}{2}a^{3}bt$ $=0.2797a^{3}t+0.5a^{3}bt$		$\frac{3}{4}a^2t + abt + \frac{t^3}{6}$

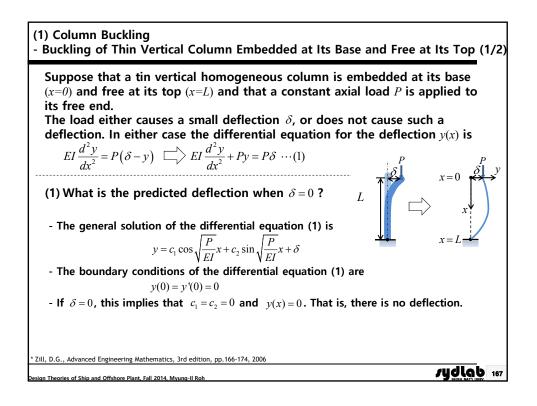

Section shape and distribution of shear force	$\tau_{r} = \frac{F}{z_{1}I} \int_{y_{1}}^{y_{1}} zy dy$	$\tau_{rmax} = \frac{\alpha F}{A}$
1. 1 1 1 1 1 1 1 1	$\frac{3}{2} \cdot \frac{F}{b\hbar} \Big\{ 1 - \Big(\frac{2y_1}{\hbar}\Big)^2 \Big\}$	$\frac{3}{2} \cdot \frac{F}{bh} = \frac{3}{2} \cdot \frac{F}{A}$
	$\sqrt{2} \frac{F}{a^2} \left\{ 1 + \sqrt{2} \frac{y_1}{a} - 4 \left(\frac{y_1}{a} \right)^2 \right\}$	$\frac{9}{8}\sqrt{2}\frac{F}{a^{2}}=1.591\frac{F}{A}$
3	$\frac{4}{3} \cdot \frac{F}{\pi r^i} \Big\{ 1 - \Big(\frac{y_i}{r}\Big)^i \Big\}$	$\frac{4}{3} \cdot \frac{F}{\pi r^2} = \frac{4}{3} \cdot \frac{F}{A}$
	$\frac{F}{\pi rt} \left\{ 1 - \left(\frac{y_1}{r}\right)^2 \right\}$	$\frac{F}{\pi rt} = 2\frac{F}{A}$
5.	$\frac{4}{3} \cdot \frac{F}{\pi ab} \left\{ 1 - \left(\frac{y_i}{a}\right)^2 \right\}$	$\frac{4}{3} \cdot \frac{F}{\pi d b} = \frac{4}{3} \cdot \frac{F}{A}$

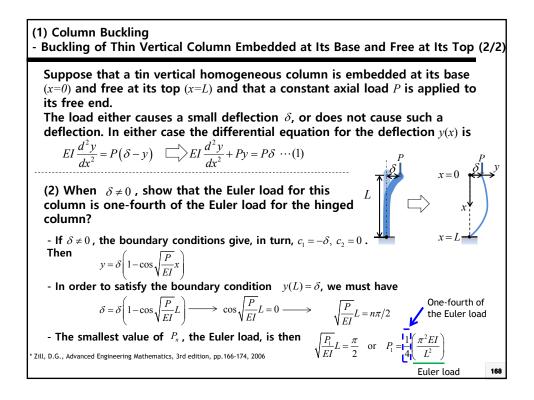

ctional Properties Ship Building ¹⁾ (1		¹⁾ "조선설계편람", 제 4판 (일본어), 일본관서조선협회
$\begin{array}{c} 6 \\ \hline \\ 1 $	$\begin{split} \frac{h_1}{2} &\geq y_1 \geq \frac{h_1}{2}; \\ &\frac{3F}{2(b_1h_2^{-1}-b_1h_1^{-1})}(h_2^{-1}-4y_1^{-1}) \\ \frac{h_1}{2} &\geq y_1 \geq 0; \\ &\frac{3F}{2(b_1h_2^{-1}-b_1h_1^{-1})} \left(\frac{b_2h_2^{-1}-b_2h_1^{-1}}{b_2-b_1^{-1}}-4y_1^{-1}\right) \end{split}$	$\frac{\frac{3(\delta_{j}k_{1}^{i}-\delta_{j}k_{1}^{i})F}{2(\delta_{j}k_{1}^{i}-\delta_{j}k_{1}^{i})(\delta_{2}-\delta_{1})}}{\frac{3(\delta_{j}k_{1}^{i}-\delta_{j}k_{1}^{i})(\delta_{j}-\delta_{1})}{2(\delta_{j}k_{1}^{i}-\delta_{j}k_{1}^{i})(\delta_{j}-\delta_{1})}\cdot\frac{F}{A}}$
7. 2r. 2r.	$r_{1} \ge y_{1} \ge r_{1};$ $\frac{4F}{3\pi(r_{1}^{4} - r_{1}^{4})} (r_{1}^{2} - y_{1}^{2})$ $r_{1} \ge y_{1} \ge 0;$ $\frac{4F}{3\pi(r_{1}^{4} - r_{1}^{4})} \{r_{2}^{2} + r_{1}^{2} - 2y_{1}^{2}$ $+ \sqrt{(r_{2}^{2} - y_{1}^{2})(r_{1}^{2} - y_{1}^{2})}\}$	$\frac{4(r_{i}^{1}+r_{i}r_{1}+r_{1}^{1})F}{3\pi(r_{i}^{1}-r_{1}^{1})}$ $=\frac{4(r_{i}^{1}+r_{i}r_{1}+r_{1}^{1})}{3(r_{i}^{1}+r_{1}^{1})}\cdot\frac{F}{A}$
8. 22/2 1-2/	$\begin{aligned} & a_1 \ge y_1 \ge a_1; \\ & \frac{4F}{3\pi(a_1^{1}b_2 - a_1^{1}b_1)} (a_1^2 - y_1^{1}) \\ & a_1 \ge y_1 \ge 0; \\ & \frac{4F}{3\pi(a_1^{1}b_2 - a_1^{1}b_1)} \\ & \frac{b_1}{4\pi(a_1^2 - y_1^2)^{\frac{3}{2}} - \frac{b_1}{a_1}(a_1^2 - y_1^{1})^{\frac{3}{2}}} \\ & \times \frac{b_1}{a_1} (a_2^2 - y_1^2)^{\frac{3}{2}} - \frac{b_1}{a_1} (a_1^2 - y_1^{1})^{\frac{3}{2}} \end{aligned}$	$\frac{4(a_1^{i}b_1-a_1^{i}b_1)F}{3\pi(a_1^{i}b_2-a_1^{i}b_1)(b_1-b_1)} = \frac{4(a_1^{i}b_2-a_1^{i}b_1)(a_2b_2-a_2b_1)}{3(a_1^{i}b_2-a_1^{i}b_1)(b_2-b_1)} \cdot \frac{F}{A}$

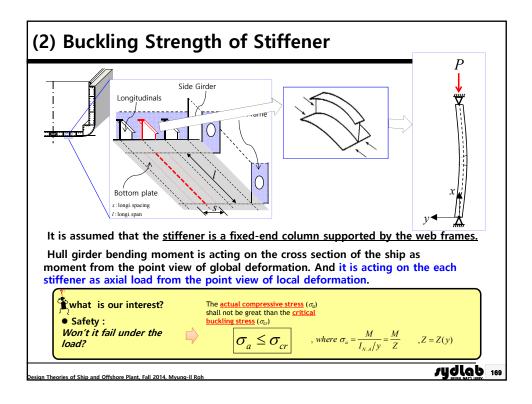


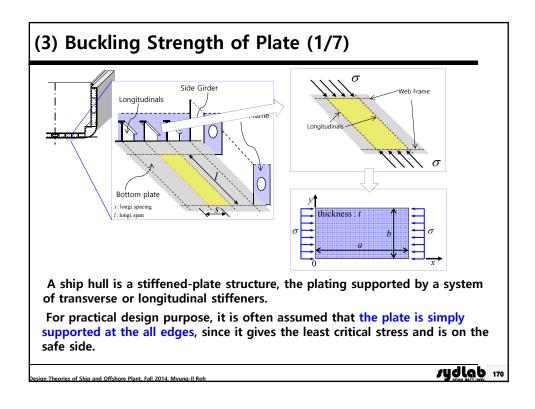


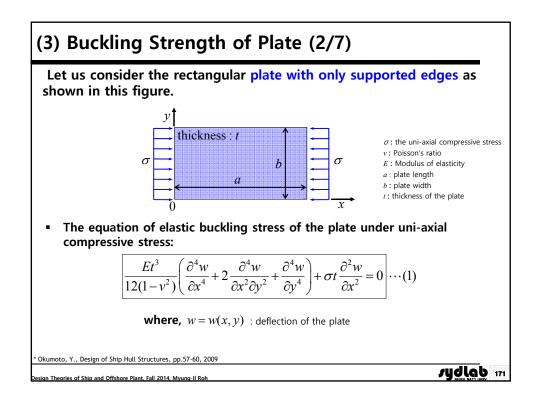


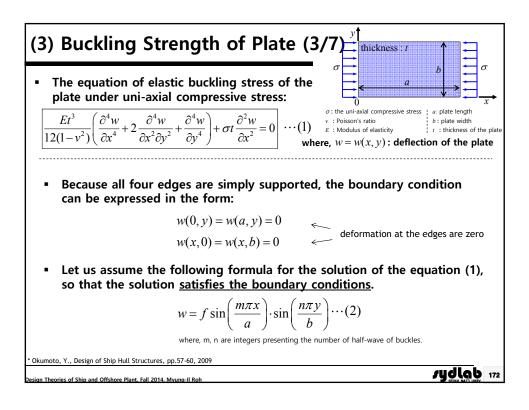


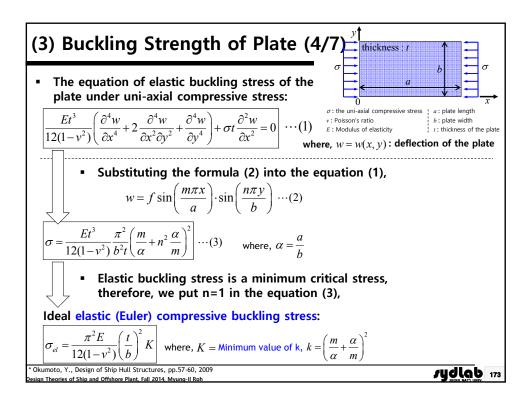


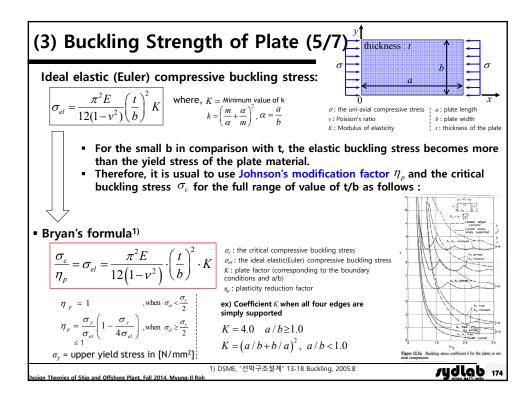


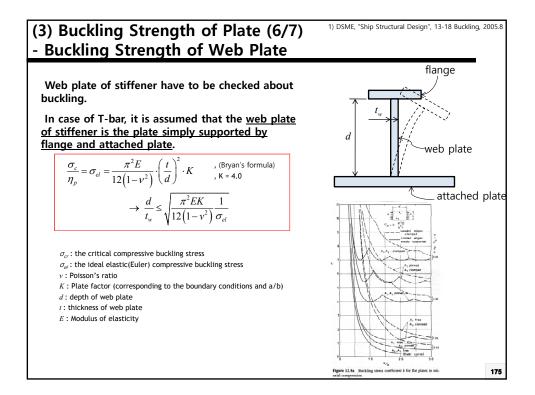


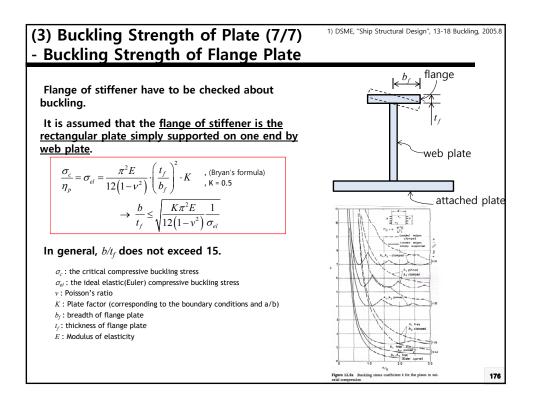


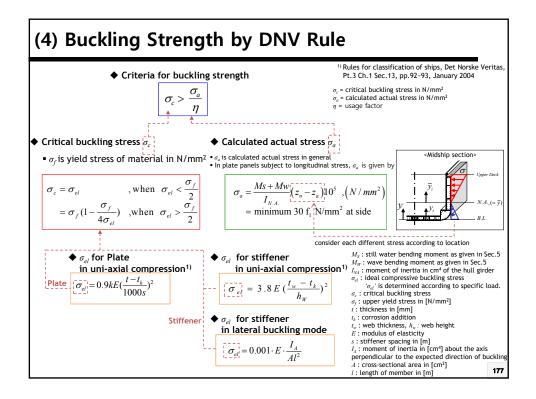












(DNV Pt.3 Ch.1 Sec.13, B100, B102, B103), 2011

B 100 General

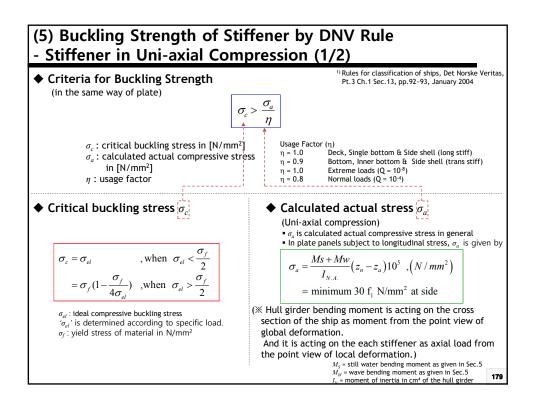
101 Local plate panels between stiffeners may be subject to uni-axial or bi-axial compressive stresses, in some cases also combined with shear stresses. Methods for calculating the critical buckling stresses for the various load combinations are given below.

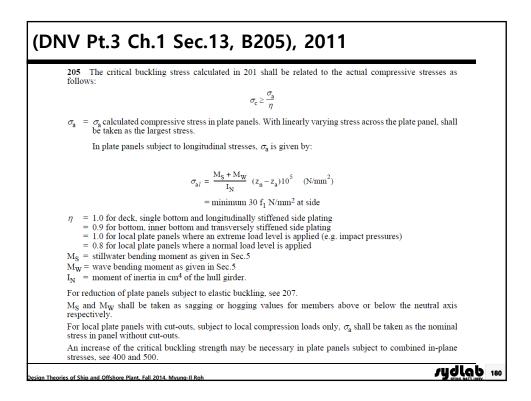
102 Formulae are given for calculating the ideal compressive buckling stress $\sigma_{\alpha'}$. From this stress the critical buckling stress σ_c may be determined as follows:

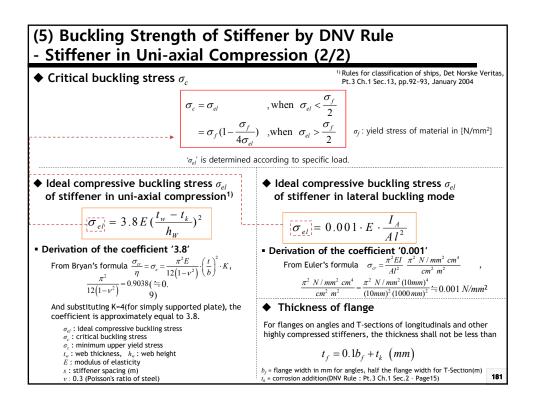
$$\sigma_{\rm c} = \sigma_{\rm el}$$
 when $\sigma_{\rm el} < \frac{\sigma_{\rm f}}{2}$

=
$$\sigma_{\mathbf{f}} \left(1 - \frac{\sigma_{\mathbf{f}}}{4 \sigma_{\mathbf{e}l}} \right)$$
 when $\sigma_{\mathbf{e}l} > \frac{\sigma_{\mathbf{f}}}{2}$

103 Formulae are given for calculating the ideal shear buckling stress $\tau_e l$. From this stress the critical buckling stress τ_c may be determined as follows:


$$\tau_{e} = \tau_{el}$$
 when $\tau_{el} < \frac{\tau_{f}}{2}$
= $\tau_{f} \left(1 - \frac{\tau_{f}}{4\tau_{el}} \right)$ when $\tau_{el} > \frac{\tau_{f}}{2}$


 $\tau_{\rm f}$ = yield stress in shear of material in N/mm²


ries of Ship and Offshore Plant, Fall 2014, Myung-II Rol

 $=\frac{\sigma_{\rm f}}{\sqrt{3}}$

ydlab 178

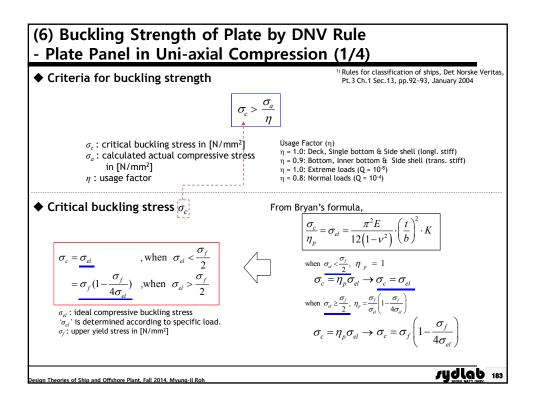
(DNV Pt.3 Ch.1 Sec.13, B102, B103), 2011

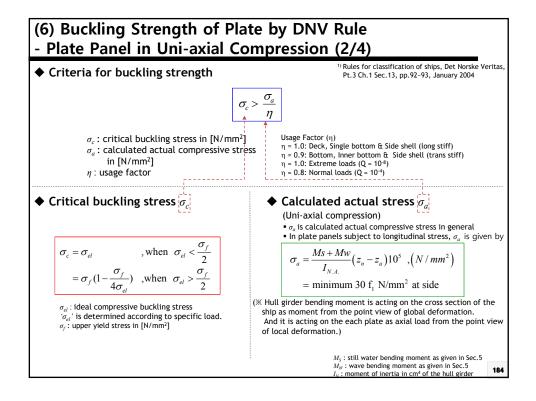
102 Formulae are given for calculating the ideal compressive buckling stress σ_{el} . From this stress the critical buckling stress σ_c may be determined as follows:

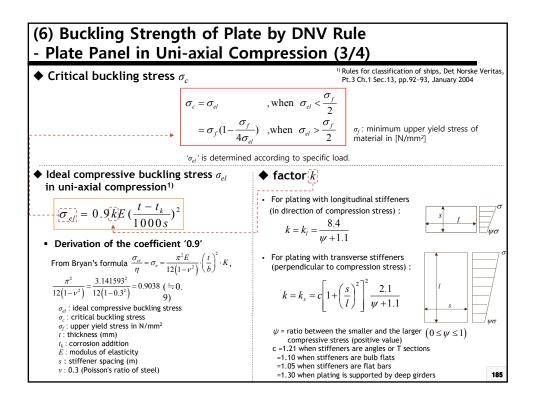
$$\begin{split} \sigma_{\rm c} &= \sigma_{\rm el} \quad {\rm when} \quad \sigma_{\rm el} < \frac{\sigma_{\rm f}}{2} \\ &= \sigma_{\rm f} \Big(1 - \frac{\sigma_{\rm f}}{4 \, \sigma_{\rm el}} \Big) \quad {\rm when} \quad \sigma_{\rm el} > \frac{\sigma_{\rm f}}{2} \end{split}$$

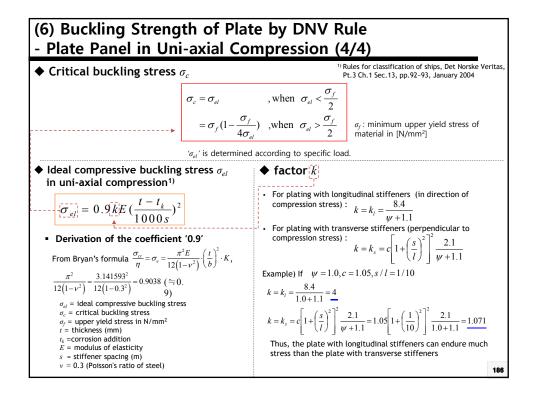
103 Formulae are given for calculating the ideal shear buckling stress $\tau_e l$. From this stress the critical buckling stress τ_c may be determined as follows:

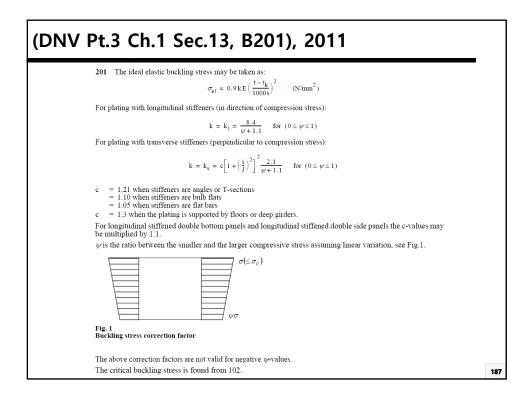
$$\begin{split} \tau_{\mathbf{c}} &= \tau_{\mathbf{e}l} \quad \text{when} \quad \tau_{\mathbf{e}l} < \frac{\tau_{\mathbf{f}}}{2} \\ &= \tau_{\mathbf{f}} \Big(1 - \frac{\tau_{\mathbf{f}}}{4 \tau_{\mathbf{e}l}} \Big) \quad \text{when} \quad \tau_{\mathbf{e}l} > \frac{\tau_{\mathbf{f}}}{2} \end{split}$$


 $\tau_{\rm f}$ = yield stress in shear of material in N/mm²


an Theories of Ship and Offshore Plant, Fall 2014, Myung-II Rol


$$\frac{\sigma_{\rm f}}{\sqrt{3}}$$
.


=


/ydlab 182

