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Ch. 3 Penalty Function Method
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3.1 Interior Penalty Function Method
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))(()()(),,,( 2sxguxhvxsuvx  TTfL

Constrained Optimal Design Problem
Minimize )(xf

0xh )(Subject to

0xg )(

Equality constraint

Inequality constraint

Transforming this problem to unconstrained optimal design problem by using the
Lagrangian function

1) If the constraints are satisfied at the current design point,
0xh )(In case of the equality constraints:

In case of the inequality constraints: 0u 

Therefore, )())(()()(),,,( 2 xsxguxhvxsuvx ffL TT   If all the constrains are 
satisfied, the Lagrange 
function is same with 
the original objective 
function.

(The constraints are inactive, i.e, the design point is in feasible region.)

0xg0s  )( (The constraints are active, i.e, the design point 
is on the constraints)

2) If the constraints are violated at the current design point,
0xhv )(TIn case of the equality constraints:

In case of the inequality constraints: 0sxgu  ))(( 2T

Therefore, 2( , , , ) ( ) ( ) ( ( ) )T TL f   x v u s x v h x u g x s
 This term means augmenting a penalty to the original objective function when the 

constraints are violated.

By using the necessary condition for the candidate local optimal solution(L=0), are calculated.

Lagrange Multiplier
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Fiacco and McCormick suggested a method which transforms the constrained optimization problem 
into the unconstrained optimization problem by using the modified objective function in 1968.
The modified objective function is a function augmenting a penalty to the original objective function.

SUMT: Sequential Unconstrained Minimization Technique

f(x)

(x, rk)

g(x) < 0

g(x) > 0

x0

, f

Optimum x*

g(x) = 0





m

j j
kk g
rfr

1 )(

1
)(),(

x
xx where rk is given and positive value and 

getting smaller each iteration.

If the design point approaches to the boundary of 
the inequality constraints in the feasible region, 

( ) 0jg x , the absolute value of this is decreased.

1
0

( )k
j

r
g

 
x

, the absolute value of this is increased.

Since the modified objective function is increased as the 
design point approaches to the boundary of the 
inequality constraint, this method prevents the design 
point violating the constraints.

SUMT: Sequential Unconstrained Minimization Technique
(Interior Penalty Function Method) (1/2)

Constrained Optimal Design Problem
Minimize )(xf

0xh )(Subject to

0xg )( Inequality constraint

Equality constraint

Infeasible
region

Feasible
region
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SUMT: Sequential Unconstrained Minimization Technique
(Interior Penalty Function Method) (2/2)
 If the design point approaches to the boundary of the constraints in the feasible 

region, the objective function is augmented by a penalty.
 The starting design point has to be in the feasible region.

( ) ,f x x ( ) 0g x x  
[Example] Function of a single variable

, (x  0)x  

f(x) = x

rk > rk+1

x = 

(x, r1)

(x, r2)

(x, r3)

g(x) < 0

g(x) > 0

x0

, f

1,k 

1 1

1
( , )x r x r

x



  



x*
1x*

2x*
3

Optimal design 
point: x*1

Starting design point: x*0

x*
0





m

j j
kk g
rfr

1 )(

1
)(),(

x
xx (rk is decreased, when k is increased.)

2,k 

2 2

1
( , )x r x r

x



  


Optimal design 
point : x*2

Starting design point : x*1

3,k 
3 3

1
( , )x r x r

x



  


Optimal design 
point : x*3

Starting design point : x*2

By iterating the above process, we find the optimal design 
point(x*).

- In each iteration, the optimal design point can be obtained by using 
the Gradient method, Hooke & Jeeves or Nelder & Mead method.

Optimum x*

Transform the constrained optimization problem into the 
unconstrained optimization problem.

1 1
( , ) ( )

( )k k kx r f x r x r
g x x




    


- k is the number of iteration.

x* …

Infeasible
region

Feasible
region
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3.2 Exterior Penalty Function Method
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Exterior Penalty Function Method (1/2)

 There will be a penalty for only violating the constraints.

  2

1

( , ) ( ) max ( ),0
m

k k j
j

r f r g


     x x x

f(x) = x

Optimum x*

x = 

g(x) = 0

g(x) < 0g(x) > 0

rk < rk+1

x0

, f

(rk is increased, when k is increased.)

( ) ,f x x ( ) 0g x x  
[Example] Function of a single variable

  2

1 1( , ) max ( ),0x r x r g x      
Optimal design 
point: x*1

1,k  Starting design point: x*0

Optimal design 
point: x*2

Optimal design 
point: x*3

By iterating the above process, we find the optimal design
point(x*).

x*
0

2,k  Starting design point: x*1

  2

2 2( , ) max ( ),0x r x r g x      

3,k  Starting design point: x*2

  2

3 3( , ) max ( ),0x r x r g x      
x*

2 x*
3

(x, r3)

(x, r2)

(x, r1)

x*
1

… x*

- In each iteration, the optimal design point can be obtained by 
using the Gradient method, Hooke & Jeeves or Nelder & Mead 
method.

Transform the constrained optimization problem into the 
unconstrained optimization problem.

   2 2
( , ) ( ) max ( ),0 max ( ),0k k kx r f x r g x x r g x    

- k is the number of iteration.

, (x  0)x  

Infeasible
region

Feasible
region
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 There will be a penalty for only violating the constraints.

Exterior Penalty Function Method (2/2)

 
1

( , ) ( ) max ( ),0
m

k k j
j

r f r g


   x x x

f(x) = x

Optimum x*
(x, r1)

(x, r2)

(x, r3)

x = 

g(x) = 0

g(x) < 0

g(x) > 0

rk < rk+1

x0

, f

( ) ,f x x ( ) 0g x x  

[Example] Function of a single variable

 1 1( , ) max ( ),0x r x r g x  
Optimal design 
point: we can 
not find it.

1,k  Starting design point: x*0

Optimal design 
point: x*2

Optimal design 
point: x*3

If rk is determined properly, the optimal design point(x*) is 
not changed.

x*
0

r1 is too low2,k  Starting design point: x*1

 2 2( , ) max ( ),0x r x r g x  

3,k  Starting design point: x*2

 3 3( , ) max ( ),0x r x r g x  
x*

2

x*
3

- In each iteration, the optimal design point can be obtained by 
using the Gradient method, Hooke & Jeeves or Nelder & Mead 
method.

Transform the constrained optimization problem into the 
unconstrained optimization problem.

   ( , ) ( ) max ( ),0 max ( ),0k k kx r f x r g x x r g x    

- k is the number of iteration.

x* …

, (x  0)x  

Infeasible
region

Feasible
region

(rk is increased, when k is increased.)
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 Since there will be a penalty for only violating the constraints, if the 
minimum design point is in the feasible region, the result of the 
optimization method by using the exterior penalty function is the same 
with that only using the objective function.

Relationship between External Penalty Function and
Feasible Region (1/2)

  2

1

( , ) ( ) max ( ),0
m

k k j
j

r f r g


     x x x

f(x) = (x-)2

Optimum x*

x = 

g(x) = 0

g(x) < 0

x0

, f

(x, rk)

x=

If the minimum design point(x*) is in 
the feasible region, the penalty term is 
equal to zero. So, the objective function 
augmented by the penalty is the same 
with the original objective function.

Penalty term

 2( ) ,f x x   ( ) 0g x x  

 max ( ),0 0jg x, ( ) 0,where g x

( , ) ( )kr f x x

[Example] Function of a single variable

0

Infeasible
region

Feasible
region
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If the minimum design point(x*) is not 
in the feasible region, the penalty term is 
larger than zero. So, the objective 
function augmented by the penalty is 
different with the original objective 
function.

 Since there will be a penalty for only violating the constraints, if the 
minimum design point is not in the feasible region (infeasible region), the 
result of the optimization method by using the exterior penalty function is 
different with that only using the objective function.

f(x) = (x-)2

x = 

g(x) = 0

g(x) < 0

x0

, f

(x, rk)

x=

Optimum x*

g(x) > 0

  2

1

( , ) ( ) max ( ),0
m

k k j
j

r f r g


     x x x

2

1

( , ) ( ) ( )
m

k k j
j

r f r g


   x x x

Optimal design point 
at k iteration

 max ( ),0 ( )j jg gx x, ( ) 0,where g x

Relationship between External Penalty Function and
Feasible Region (2/2)

Penalty term

Infeasible
region

Feasible
region

[Example] Function of a single variable

 2( ) ,f x x   ( ) 0g x x  
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3.3 Augmented Lagrange Multiplier 
Method
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Augmented Lagrange Multiplier Method

 This method combines the Lagrange multiplier and the penalty 
function methods.

 There is no need for the penalty parameter “r” to go to infinity for 
the exterior penalty function method or zero for the interior 
penalty function method.

 Starting point does not have to be in feasible region for the 
interior penalty function method.

 It has been proven that they possess a faster rate of convergence
than interior and exterior penalty function method.
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1

( , ) ( ) ( )
m

j j
j

L f h


 x λ x x

Lagrangian function of this problem is as follows.

Minimize

Subject to

)(xf
( ) , 1,2,...,jh j m x 0

2

1 1

( , , ) ( ) ( ) ( )
m m

k j j k j
j j

r f h r h
 

    x λ x x x

Augmented Lagrangian function of this problem is follows.

Augmented term to 
Lagrangian function

kr : arbitrary constant

Augmented Lagrange Multiplier Method
in Equality Constrained Problem (1/4)
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2

1 1

( , , ) ( ) ( ) ( )
m m

k j j k j
j j

r f h r h
 

    x λ x x x

Augmented Lagrangian function

*

1

0
m

j
j

ji i i

hL f

x x x




 
  

  

Augmented term to Lagrangian
function

1

( , ) ( ) ( )
m

j j
j

L f h


 x λ x x

Lagrangian function

kr : arbitrary constant

Necessary conditions for the minimum
of Lagrangian function

1

( 2 ) 0
m

j
j i j

ji i i

hf
rh

x x x




 
   

  

Necessary conditions for the minimum 
of Augmented Lagrangian function 

( 1) ( ) ( )2 ( ) 1,2,...,k k k
j j k jr h j m    x

* 2 1,2,...,j j k jr h j m   
Find iterative relation

Augmented Lagrange Multiplier Method
in Equality Constrained Problem (2/4)

Minimize

Subject to

)(xf
( ) , 1,2,...,jh j m x 0



2015-08-05

9

17
Design Theories of Ship and Offshore Plant, September 2014, Myung-Il Roh

2

1 1

( , , ) ( ) ( ) ( )
m m

k j j k j
j j

r f h r h
 

    x λ x x x Augmented term to Lagrangian
function

( 1) ( ) ( )2 ( ) 1,2,...,k k k
j j k jr h j m    x

kr : arbitrary constant

Iterative relation

1. In the first iteration(k=1), the values of       are chosen as 
zero, the value of     is set equal to an arbitrary constant.

(1)
j

kr

2. Find the       that minimize      by using any unconstrained
optimization method and set                .


( 1) ( )*k k x x

( )*kx

Augmented Lagrangian function

Augmented Lagrange Multiplier Method
in Equality Constrained Problem (3/4)

Minimize

Subject to

)(xf
( ) , 1,2,...,jh j m x 0
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3. The values of      and     are then updated by using the 
iterative relation to start the next iteration.

( )k
j kr

1 , 1k kr cr c  

4. If                   , stop the iteration and take            .( 1) ( )k k
j j     * ( )*kx x

( 1) ( ) ( )2 ( ) 1, 2,...,k k k
j j k jr h j m    x

2

1 1

( , , ) ( ) ( ) ( )
m m

k j j k j
j j

r f h r h
 

    x λ x x x Augmented term to Lagrangian
function

( 1) ( ) ( )2 ( ) 1,2,...,k k k
j j k jr h j m    x

kr : arbitrary constant

Iterative relation

Augmented Lagrangian function

Augmented Lagrange Multiplier Method
in Equality Constrained Problem (4/4)

Minimize

Subject to

)(xf
( ) , 1,2,...,jh j m x 0
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2

1 1

( , , ) ( ) ( ) ( )
m m

k j j k j
j j

r f h r h
 

    x λ x x x

( 1) ( ) ( )2 ( ) 1,2,...,k k k
j j k jr h j m    x

1 , 1k kr cr c  

Iterative relation

Augmented Lagrangian function

Algorithm of Augmented Lagrange Multiplier Method

Start with                        .(1) (1)
1 max, , , 1,r c rx λ

Set k=1.

Minimize ( , , )kr x λ from starting point
( )kx and find      .*( )kx

Check for convergence
of       and       .( )kλ *( )kx

Set                                        .( 1) ( ) *( )2 ( ), 1, 2,...,k k k
j j k jr h j p    x

Set          .1k kr cr 

If           , set            .1 maxkr r  1 maxkr r 

Set k=k+1.

Take * *( )kx x

and stop.

Yes

No
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2 2 2

1 1

( , , , ) ( ) [ ( ) ] [ ( ) ]
m m

k j j j k j j
j j

r f u g s r g s
 

      x u s x x x

Augmented Lagrangian function in the inequality constrained problem

Augmented term to 
Lagrangian function

kr : arbitrary constant

2

1 1

( , , ) ( ) ,
m m

k j j k j
j j

r f u r 
 

    x u x max ( ),
2
j

j j
k

u
g

r


 
  

 
x

This function is equivalent to* 

( 1) ( ) ( )2k k k
j j k ju u r  

Iterative relation

Augmented Lagrange Multiplier Method
in Inequality Constrained Problem 

js : slack variable

Minimize

Subject to

)(xf
( ) , 1,2,...,jg j m x 0

* Rockafellar, R.T., “The Multiplier Method of Hestenes and Powell Applied to Convex Programming”, Journal of Optimization Theory and Applications, 1973
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3.4 Descent Function Method
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Constrained Optimal Design Problem
Minimize

Subject to Equality constraint

Inequality constraint

Pshenichny and Danilin suggested a method which transforms the constrained 
optimization problem into the unconstrained optimization by using the descent function* 
in 1978.

1) If all constraints are satisfied at the current design point,

)()()()(

0)(0)(

xxxx

xx

fVRf

VRV




2) If one of more constraints are violated at the current design point,

)()()()(

0)(

xxxx

x

fVRf

VR




 If all constraints are satisfied at the current design 
point, the descent function is the same with the 
original objective function.

 If one of more constraints are violated at the current 
design point, the value of the positive penalty is 
augmented to the original objective function.

)()()( xxx VRf 

};;0max{)( ghx V

: Penalty parameters which is 
the summation of the all
Lagrange multipliers
(Positive value)

: Maximum penalty by the constraints

)(xf

0xh )(

0xg )(

0
1 1

max , ( )
p m

i i
i i

R R r v u
 

 
   

 
 

The positive value defined by user

* Descent Function
- Modified objective function by augmenting 
a penalty to the original objective function

- It has the same meaning with penalty 
function.

Descent Function Method 
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2 2
1 2( ) 100( 1.5) 100( 1.5)f x x   x

02)( 21  xxg x

Original Problem

Minimize

Subject to

)()()( xxx VRf 
};;0max{)( ghx V

0
1 1

max , ( )
p m

i i
i i

R R r v u
 

 
   

 
 

Since the constraint is satisfied at the point 
C(1,1), the value of the decent function is as 
follows:

 
 

( ) ( ) ( ) 50 max 0, ( )

50 10 max 0,0 50

f R V R g      

   

C C C C

50f 

1

2

0g

C(1,1)

0.5

0.5

( ) 50, ( ) 0.0f g C C

5.0g1 2

D(1.1, 1.1)

Since the constraint is violated at the point 
D(1.1, 1.1), the value of the decent function is 
as follows:

 
 

( ) ( ) ( ) 32 max 0, ( )

32 10 max 0,0.2 32 2 34

f R V R g      

     

D D D D

If ‘R’ is assumed as a constant ‘10’,

Although the constraint is violated, the value of the decent function is decreased,
because the change (“decrease”) in the original objective function f is larger than the change 
(“increase”) in the constraint g. Therefore, if the decrease in the original objective function f is larger 
than the increase in the constraint g, the value of the penalty parameter ‘R’ has to be increased.

[Reference] The Meaning of the Constant ‘R’ in the Decent 
Function (1/2)
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2 2
1 2( ) 100( 1.5) 100( 1.5)f x x   x

02)( 21  xxg x

Original Problem

)()( *** xx guf At point C, the value of                                          
is as follows.

Minimize

Subject to

1

2

1

2 *(1,1)*(1,1)

200( 1.5) 100
( )

200( 1.5) 100

f
x

f
x

x
f

x







      
               xx

x

1

2 *(1,1)*(1,1)

1 1
( )

1 1

g
x

g
x

g






     
        

       xx

x

* 100u 

)()()( xxx VRf 
};;0max{)( ghx V

0
1 1

max , ( )
p m

i i
i i

R R r v u
 

 
   

 
 

50f 

1

2

0g

C(1,1)

0.5

0.5

( ) 50, ( ) 0.0f g C C

5.0g1 2

D(1.1, 1.1)

If the change in the objective function(        ) is larger than the change in the 
constraint(        ) respectively, the value of the Lagrange multiplier is increased. 
Therefore, we use the value of the Lagrange multiplier as the value of ‘R’.

( )g x
( )f x

 
 

( ) ( ) ( ) 32 max 0, ( )

32 100 max 0,0.2 32 20 52

f R V R g      

     

D D D D

If we use the value of the Lagrange Multiplier, 
100, as the value of ‘R’, the value of the decent 
function at the point D increases by 52.

[Reference] The Meaning of the Constant ‘R’ in the Decent 
Function (2/2)


