

3

Augmented Lagrange Multiplier Method in Equality Constrained Problem (4/4) Minimize $f(\mathbf{x})$ **Subject to** $h_i(\mathbf{x}) = \mathbf{0}, \quad j = 1, 2, ..., m$ Augmented Lagrangian function $\Phi(\mathbf{x}, \boldsymbol{\lambda}, r_k) = f(\mathbf{x}) + \sum_{j=1}^m \lambda_j h_j(\mathbf{x}) + r_k \sum_{j=1}^m h_j^2(\mathbf{x})$ Augmented term to Lagrangian function r_k : arbitrary constant Iterative relation $\lambda_i^{(k+1)} = \lambda_i^{(k)} + 2r_k h_i(\mathbf{x}^{(k)}) \quad j = 1, 2, ..., m$ 3. The values of $\lambda_j^{(k)}$ and r_k are then updated by using the iterative relation to start the next iteration. $r_{k+1} = cr_k, c > 1$ $\lambda_j^{(k+1)} = \lambda_j^{(k)} + 2r_k h_j(\mathbf{x}^{(k)}) \quad j = 1, 2, ..., m$ 4. If $\left|\lambda_{j}^{(k+1)} - \lambda_{j}^{(k)}\right| < \varepsilon$, stop the iteration and take $\mathbf{x}^{*} = \mathbf{x}^{(k)*}$. rydlab 18 nd Offshore Plant, September 2014, M

