Lecture Note of Design Theories of Ship and Offshore Plant

Design Theories of Ship and Offshore Plant Part II. Optimum Design

Ch. 5 Applications to Design of Ship and Offshore Plant

Fall 2014

Myung-Il Roh

Department of Naval Architecture and Ocean Engineering Seoul National University

esign Theories of Ship and Offshore Plant, September 2014, Myung-II Roh

ydlab 1

Contents

- ☑ Ch. 1 Introduction to Optimum Design
- ☑ Ch. 2 Enumerative Method
- ☑ Ch. 3 Penalty Function Method
- ☑ Ch. 4 Linear Programming Method
- ☑ Ch. 5 Applications to Design of Ship and Offshore Plant

sign Theories of Ship and Offshore Plant, September 2014, Myung-Il Rol

Ch. 5 Applications to Design of Ship and Offshore Plant

es of Ship and Offshore Plant, September 2014, Myung-II Roh

5.1 Applications to Ship Design

Theories of Ship and Offshore Plant, September 2014, Myung-II Roh

Determination of Optimal Principal Dimensions of a Bulk Carrier

- ☑ Criteria for determining optimal principal dimensions (Objective function)
 - Minimization of shipbuilding cost or Minimization of hull structure weight or Minimization of operation cost
- ☑ Given (Ship owner's requirements)
 - Deadweight (DWT)
 - Cargo hold capacity (CC_{reg})
 - Maximum draft (T_{max})
 - Ship speed (V)

☑ Find (Design variables)

- Length (L)
- Breadth (B)
- Depth (D)
- Block Coefficient (C_B)

- Constraint about the displacement-weight equilibrium condition
- Constraint about the required cargo hold capacity
- Constraint about the required freeboard condition

Theories of Ship and Offshore Plant, September 2014, Myung-II Ro

Formulation for Determining Optimal Principal Dimensions of a Bulk Carrier

Find (Design variables) L,B,D,C_B

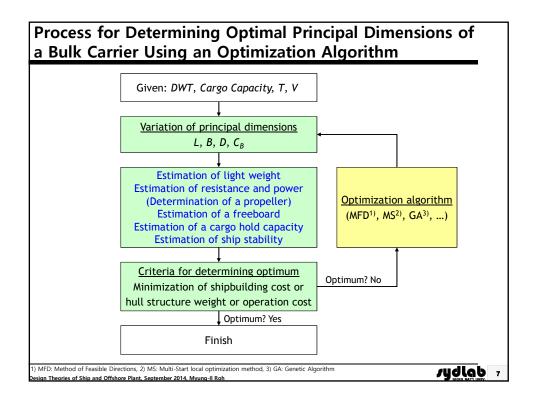
Displacement-Weight equilibrium condition (Equality constraint)

$$\begin{split} L \cdot B \cdot T \cdot C_B \cdot \rho_{sw} \cdot C_\alpha &= DWT_{given} + LWT(L, B, D, C_B) \\ &= DWT_{given} + C_s \cdot L^{1.6}(B+D) + C_o \cdot L \cdot B + C_{ma} \cdot NMCR \\ &= DWT_{given} + C_s \cdot L^{1.6}(B+D) + C_o \cdot L \cdot B \\ &+ C_{power} \cdot (L \cdot B \cdot T \cdot C_B)^{2/3} \cdot V^3 \end{split}$$

Required cargo hold capacity condition (Inequality constraint)

$$CC_{req} \le C_{CH} \cdot L \cdot B \cdot D$$

Required freeboard condition (Inequality constraint)


$$D \ge T + C_{FB} \cdot D$$

Criteria for determining optimal principal dimensions (Objective function)

Building Cost =
$$C_{PS} \cdot C_s \cdot L^{1.6}(B+D) + C_{PO} \cdot C_o \cdot L \cdot B + C_{PM} \cdot C_{ma} \cdot NMCR$$

→ Optimization problem having 4 unknowns, 1 equality and 2 inequality constraints

n Theories of Ship and Offshore Plant, September 2014, Myung-II Roh

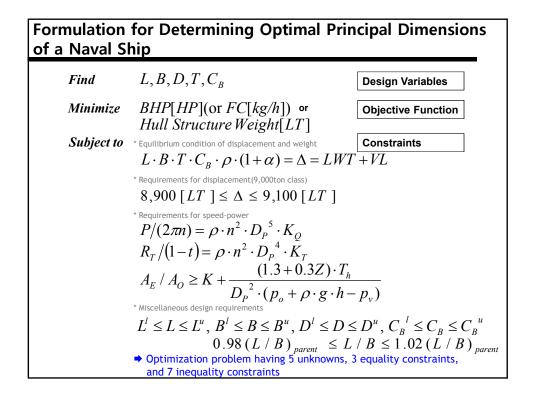
n Inf	ormatio	n for Optimal	Principal Din	nensions of
lk Ca		•	•	
IK C	iiici			
al particu	lars of a deadw	eight 150,000 ton bulk carr	ier (parent ship) and ship	owner's requirements
	Item	Parent Ship	Design Ship	Remark
	L _{OA}	abt. 274.00 m	max. 284.00 m	
$ \begin{array}{c c} & & L_{BP} \\ \hline Principal & & B_{mld} \\ \hline Dimensions & & D_{mld} \\ \hline & & T_{mld} \\ \hline \end{array} $		264.00 m		1
		45.00 m	45.00 m	
		23.20 m		7
		16.90 m	17.20 m	7
	T _{scant}	16.90 m	17.20 m	7
De	adweight	150,960 ton	160,000 ton	at 17.20 m
Speed		13.5 kts	13.5 kts	90 % MCR (with 20 % SM)
	TYPE	B&W 5S70MC		
M /	NMCR	17,450 HP×88.0 RPM		Derating Ratio = 0.9
É	DMCR	15,450 HP×77.9 RPM		E.M = 0.9
	NCR	13,910 HP×75.2 RPM		
F	SFOC	126.0 g/HP.H		
° c	TON/DAY	41.6		Based on NCR
Crui	sing Range	28,000 N/M	26,000 N/M	
Midship Section		Single Hull Double Bottom/Hopper /Top Side Wing Tank	Single Hull Double Bottom/Hopper /Top Side Wing Tank	
	Cargo	abt. 169,380 m ³	abt. 179,000 m ³	Including Hatch Coaming
[Fuel Oil	abt. 3,960 m ³		Total
Capacity	Fuel Oil	abt. 3,850 m ³		Bunker Tank Only
F	Ballast	abt. 48.360 m ³		Including F.P and A.P Tanks

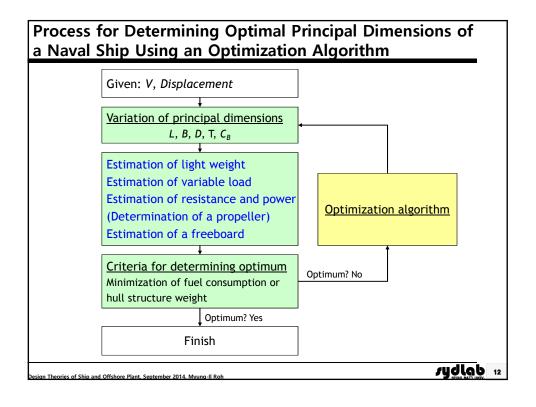
Optimization Result for Optimal Principal Dimensions of a Bulk Carrier

DWT	Unit	MFD ¹⁾	MS ²⁾	213	HYBRID ⁴⁾	LIV(DDID4)	
	ton			GA ³⁾	w/o Refine	HYBRID ⁴⁾ with Refine	
argo Capacity		160,000					
3 , ,	m³		179,000				
T _{max}	m		17.2				
V	knots	13.5					
L	m	265.54	265.18	264.71	264.01	263.69	
В	m	45.00	45.00	45.00	45.00	45.00	
D	m	24.39	24.54	24.68	24.71	24.84	
C _B	-	0.8476	0.8469	0.8463	0.8427	0.8420	
D _P	m	8.3260	8.3928	8.4305	8.4075	8.3999	
P _i	m	5.8129	5.8221	5.7448	5.7491	5.7365	
A _E /A _O	-	0.3890	0.3724	0.3606	0.3618	0.3690	
ding Cost	\$	59,889,135	59,888,510	59,863,587	59,837,336	59,831,834	
ration No	-	10	483	96	63	67	
'U Time ⁵⁾	sec	4.39	209.58	198.60	184.08	187.22	
7	$\begin{array}{c} V \\ L \\ B \\ D \\ C_B \\ D_P \\ P_i \\ A_E/A_O \\ \\ ding \ Cost \\ \\ ation \ No \\ \end{array}$	$\begin{array}{c cccc} V & knots \\ L & m \\ B & m \\ D & m \\ C_B & - \\ D_P & m \\ P_i & m \\ A_E/A_O & - \\ ding Cost & $$ation No & - \\ \end{array}$	V knots L m 265.54 B m 45.00 D m 24.39 C _B - 0.8476 D _P m 8.3260 P _i m 5.8129 A _E /A _O - 0.3890 ding Cost \$ 59,889,135 ation No - 10	V knots L m 265.54 265.18 B m 45.00 45.00 D m 24.39 24.54 C _B - 0.8476 0.8469 D _P m 8.3260 8.3928 P _i m 5.8129 5.8221 A _E /A _O - 0.3890 0.3724 ding Cost \$ 59,889,135 59,888,510 ation No - 10 483	V knots 13.5 L m 265.54 265.18 264.71 B m 45.00 45.00 45.00 D m 24.39 24.54 24.68 C _B - 0.8476 0.8469 0.8463 D _P m 8.3260 8.3928 8.4305 P _I m 5.8129 5.8221 5.7448 A _E /A _O - 0.3890 0.3724 0.3606 ding Cost \$ 59,889,135 59,888,510 59,863,587 ation No - 10 483 96	V knots 13.5 L m 265.54 265.18 264.71 264.01 B m 45.00 45.00 45.00 45.00 D m 24.39 24.54 24.68 24.71 C _B - 0.8476 0.8469 0.8463 0.8427 D _P m 8.3260 8.3928 8.4305 8.4075 P _I m 5.8129 5.8221 5.7448 5.7491 A _E /A _O - 0.3890 0.3724 0.3606 0.3618 ding Cost \$ 59,889,135 59,888,510 59,863,587 59,837,336 ation No - 10 483 96 63	

1) MFD: Method of Feasible Directions, 2) MS: Multi-Start local optimization method, 3) GA: Genetic Algorithm 4) HYBRID: Global-local hybrid optimization method, 5) 테스트 시스템: Pentium 3 866Mhz, 512MB RAM

Determination of Optimal Principal Dimensions of a Naval Ship

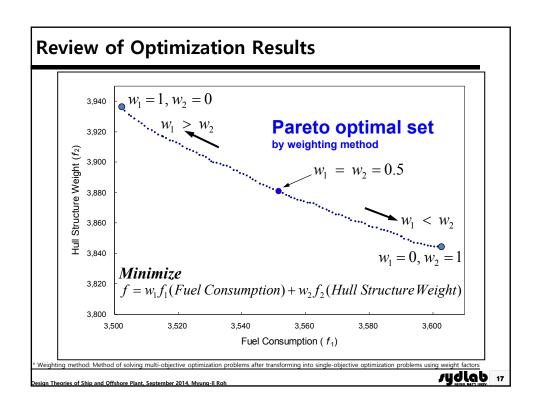

- ☑ Criteria for determining optimal principal dimensions (Objective function)
 - \blacksquare Minimization of a power (BHP) or Fuel Consumption (FC) of a main engine (f₁) or
 - Minimization of hull structure weight (f₂)
- **☑** Given (Ship owner's requirements)
 - ∆: Displacement
 - V: Speed
- ☑ Find (Design variables)
 - L: Length
 - B: Moulded breadth
 - D: Moulded depth
 - T: Draft
 - C_B: Block coefficient

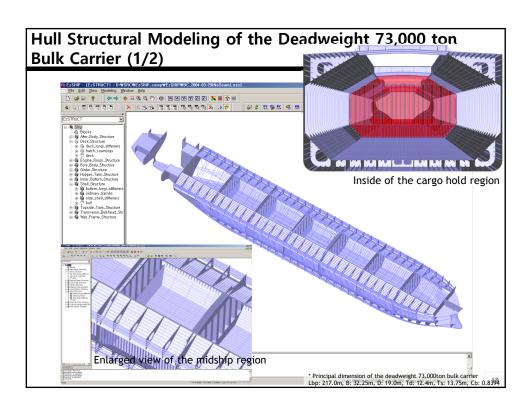


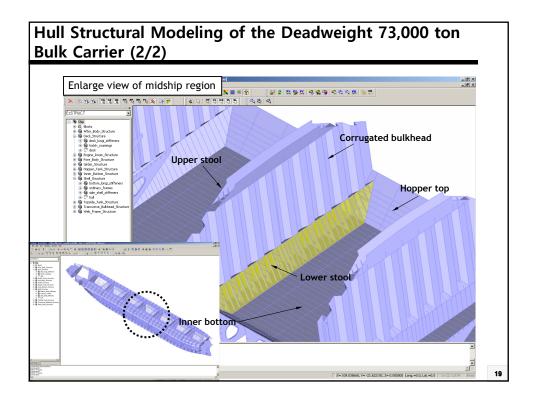
☑ Constraints

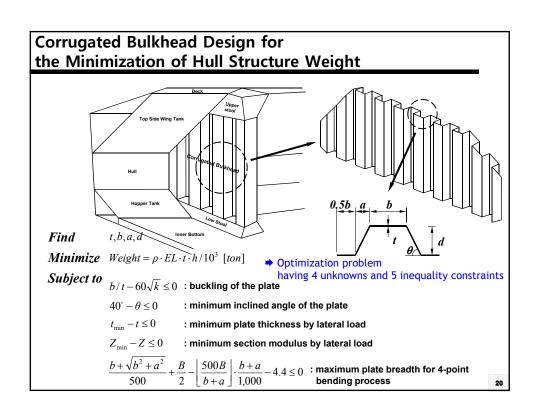
- Constraint about the displacement weight equilibrium condition
- Constraint about the required speed and power

Design Theories of Ship and Offshore Plant, September 2014, Myung-Il Roh




Optimiza he Mini			uel Con	sumptio	n		
CASE 1: Mi	nimize f	uel consum	ption (f_4)				_
	Unit	DDG-51	MFD	MS	GA	HYBRID w/o Refine	HYBRID with Refine
L	m	142.04	157.68	157.64	157.60	157.79	157.89
В	m	17.98	20.11	19.69	19.47	19.60	19.59
D	m	12.80	12.57	12.67	12.79	12.79	12.74
Т	m	6.40	5.47	5.57	5.69	5.68	5.63
C _B	-	0.508	0.520	0.506	0.506	0.508	0.512
P _i	m	8.90	9.02	9.38	9.04	9.06	9.06
A _E /A _O	-	0.80	0.80	0.65	0.80	0.80	0.80
n	rpm	88.8	97.11	94.24	96.86	96.65	96.64
F.C (f ₁)	kg/h	3,391.23	3,532.28	3,526.76	3,510.53	3,505.31	3,504.70
H.S.W	LT	3,132	3955.93	3901.83	3910.41	3942.87	3,935.39
Δ	LT	8,369	9,074	8,907	8,929	9,016	9,001
Iteration No	-	-	6	328	97	61	65
CPU Time	sec	-	3.83	193.56	195.49	189.38	192.02


CASE 2: Mi	nimizo l	null etructur	o woight (f)	1			
OAGE 2. WI	CASE 2: Minimize hull structure we Unit DDG-51		MFD MFD	MS	GA	HYBRID w/o Refine	HYBRID with Refine
L	m	142.04	157.22	155.92	155.78	155.58	155.56
В	m	17.98	20.09	20.09	20.12	20.10	20.09
D	m	12.80	12.72	12.66	12.63	12.66	12.67
Т	m	6.40	5.64	5.63	5.61	5.65	5.66
Св	-	0.508	0.510	0.506	0.508	0.508	0.508
P _i	m	8.90	8.98	9.42	9.04	9.46	9.45
A _E /A _O	-	0.80	0.80	0.65	0.80	0.65	0.65
n	rpm	88.8	97.40	94.06	97.29	93.93	93.98
F.C	kg/h	3,391.23	3,713.23	3,622.40	3,618.71	3,603.89	3,602.60
H.S.W (f ₂)	LT	3,132	3,910.29	3,855.48	3,850.56	3,844.43	3,844.24
Δ	LT	8,369	9,097	9,014	9,008	9,004	9,003
Iteration No	-	-	7	364	95	64	68
CPU Time	sec	-	3.91	201.13	192.32	190.98	192.41


				/linimiza tructure	Weight		
CASE 3: Mi	CASE 3: Minimize fuel consumption (f_1) & hull structure weight (f_2)						
	Unit	DDG-51	MFD	MS	GA	HYBRID w/o Refine	HYBRID with Refine
L	m	142.04	157.37	157.02	156.74	156.54	156.51
В	m	17.98	19.99	19.98	19.82	19.85	19.82
D	m	12.80	12.70	12.69	12.73	12.82	12.84
Т	m	6.40	5.61	5.62	5.67	5.77	5.80
C _B	-	0.508	0.510	0.506	0.506	0.508	0.508
P _i	m	8.90	9.02	9.51	9.33	9.50	9.05
A _E /A _O	-	0.80	0.80	0.65	0.65	0.65	0.65
N	rpm	88.8	97.11	93.49	94.53	93.52	93.51
F.C (f ₁)	kg/h	3,391.23	3,589.21	3,583.56	3,556.15	3,551.98	3,551.42
H.S.W (f ₂)	LT	3,132	3,931.49	3,896.54	3,891.45	3,880.74	3,880.18
$w_1f_1 + w_2f_2$	-	3,261.62	3,760.35	3,740.05	3,723.80	3,716.36	3,715.80
Δ	LT	8,369	9,074	9,048	9,004	9,001	9,001
Iteration No	-	-	7	351	93	65	68
CPU Time	sec	-	3.99	201.63	191.28	190.74	193.22

			CASE 1	CASE 2	CASE 3
	Unit	DDG-51	Minimize f ₁ (fuel consumption)	Minimize f ₂ (hull structure weight)	Minimize w ₁ f ₁ +w ₂ f ₂
L	m	142.04	157.89	155.56	156.51
В	m	17.98	19.59	20.09	19.82
D	m	12.80	12.74	12.67	12.84
Т	m	6.40	5.63	5.66	5.80
C _B	-	0.508	0.512	0.508	0.508
P _i	m	8.90	9.06	9.45	9.05
A _E /A _O	-	0.80	0.80	0.65	0.65
n	rpm	88.8	96.64	93.98	93.51
F.C	kg/h	3,391.23	3,504.70	3,602.60	3,551.42
H.S.W	LT	3,132	3,935.39	3,844.24	3,880.18
Objective	-	-	3,504.70	3,844.24	3,715.80
Δ	LT	8,369	9,001	9,003	9,001
Iteration No	-	-	65	68	68
CPU Time	sec	-	192.02	192.41	193.22

	Unit	MFD	MS	GA	HYE	BRID
	Offic	IVII D	IVIO	OA .	w/o Refine	with Refine
Weight	ton	48.321498	34.056518	34.056518	34.001399	34.001399
t	mm	13.780558	10.000000	10.000000	10.000000	10.000000
Ь	mm	748.804856	500.000000	500.000000	500.000000	500.000000
а	mm	788.425480	630.000000	630.000000	640.000000	640.000000
d	mm	848.562871	1620.000000	1,660.000000	1,720.000000	1,720.00000
Iteration No	-	5	245	48	26	28
CPU Time	sec	0.16	8.03	6.41	6.16	6.38
		50 - 48 - 40 - 44 - 44 - 44 - 44 - 44 - 4		MS GA HYBRID(w/o Refine) HYBRID(with Refine)		

Hatch Cover of a Bulk Carrier as Optimization Target (1/2)

- ☑ Bulk carrier: Dry cargo ship of transporting grains, ores, coals, and so on without cargo packaging
- ☑ Hatch: Opening for loading and off-loading the cargo

esign Theories of Ship and Offshore Plant, September 2014, Myung-Il Roh

/ydlab 22

Hatch Cover of a Bulk Carrier as Optimization Target (2/2)

☑ Hatch cover

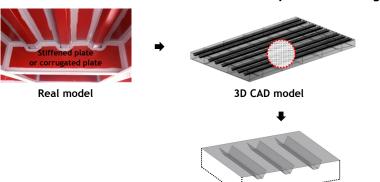
- Cover plate on the hatch for protecting the cargo
- Having a structure of stiffened plate which consists of a plate and stiffeners
- In general, the cost of hatch cover equipment is accounting for 5~8% of shipbuilding cost.
- In spite of the importance of the hatch cover in the B/C, it has hardly been optimized. Thus, the hatch cover was selected as an optimization target for the lightening of the ship weight in this study.

Design Theories of Ship and Offshore Plant, September 2014, Myung-Il Roh

ydlab 23

[Reference] Hatch Cover of a Container Ship

- ☑ Difference from Hatch Over of Bulk Carrier
 - The cargo can be loaded on it.



sign Theories of Ship and Offshore Plant, September 2014, Myung-Il Rol

rydlab 24

Idealization of Hatch Cover of a Bulk Carrier

- ☑ The hatch cover has a structure of stiffened plate which consists
 of a plate and stiffeners and looks like a corrugated plate.
- ☑ The hatch cover can be idealized for the effective optimization.
- ☑ Thus, the idealized model will be used as the optimization target.

Idealized model

Ossian Theories of Chin and Offshore Blant Contember 2014 Manual II Bob

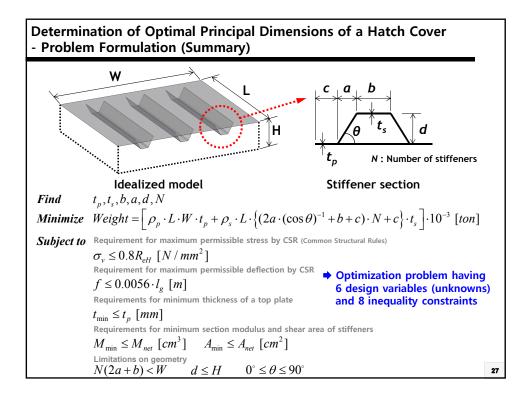
ydlab 25

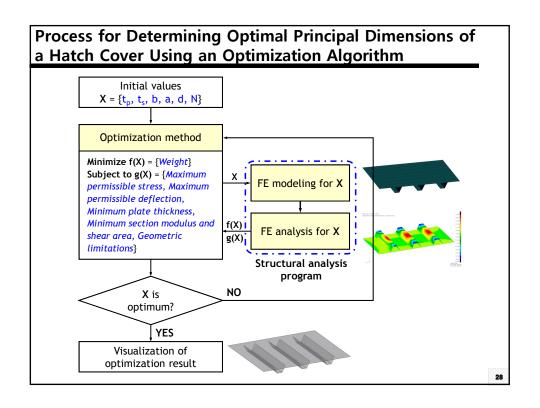
Determination of Optimal Principal Dimensions of a Hatch Cover - Problem Definition

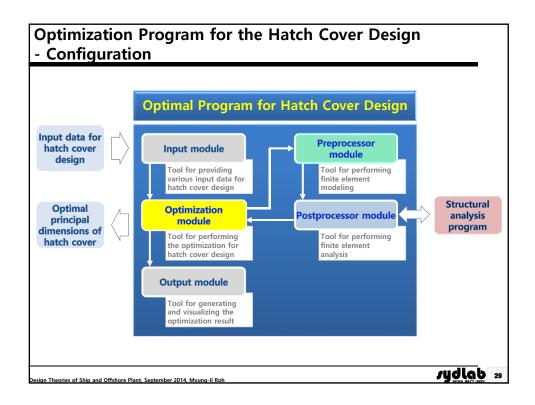
- ☑ Criteria for determining optimal principal dimensions (Objective function)
 - Minimization of the weight of hatch cover

☑ Given

- Length (L), width (W), height (H) of hatch cover
- Total number of girders and transverse web frames
- Load (p_H) on the hatch cover
- The largest span of girders (l_a)
- Materials of the hatch cover

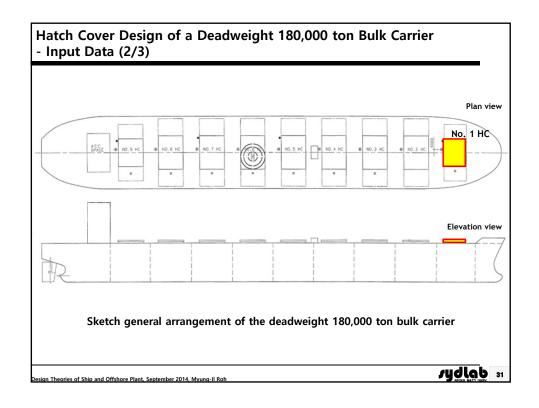

☑ Find (Design variables)

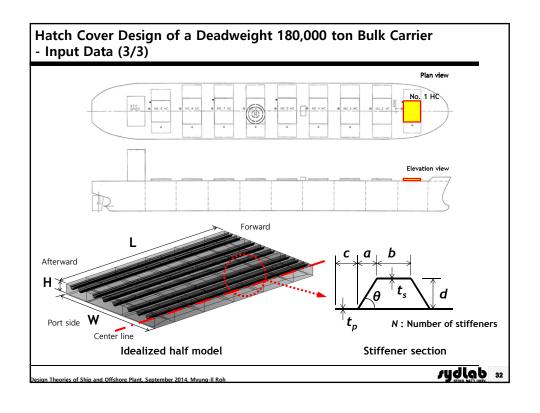

 Plate thickness (tp), stiffener thickness (ts), stiffener size (b, a, d), and number of stiffeners (N)


☑ Constraints

- Constraints about the maximum permissible stress and deflection
- Constraint about the minimum thickness of a top plate
- Constraints about the minimum section modulus and shear area of stiffeners
- Constrains about geometric limitations

esign Theories of Ship and Offshore Plant, September 2014, Myung-Il Roh




Hatch Cover Design of a Deadweight 180,000 ton Bulk Carrier - Input Data (1/3)

- ☑ Target ship: Deadweight 180,000 ton B/C
- ☑ Dimensions of the ship: Length 283.5 m, Breadth 45.0 m, Depth 24.7 m
- ✓ Input data of No. 1 HC for optimization of the hatch cover
 - Length (L) of the hatch cover: 14.929 m
 - Width (W) of the hatch cover: 8.624 m (actually, half width of No. 1 HC)
 - Height (H) of the hatch cover: 0.880 m
 - The largest span of girders (I_q) in the hatch cover: 3.138 m
 - Load (p_H) on the hatch cover by CSR: 86.28 kN/m²
 - Materials of the hatch cover: AH32
 - Specific gravity of plate and stiffeners (ρ_p , ρ_s): 7.8 ton/m³

n Theories of Ship and Offshore Plant, September 2014, Myung-Il Roh

Hatch Cover Design of a Deadweight 180,000 ton Bulk Carrier - Mathematical Formulation

Find
$$t_p, t_s, b, a, d, N$$

$$\begin{aligned} \textit{Minimize} \quad \textit{Weight} &= \left[\rho_p \cdot L \cdot W \cdot t_p + \rho_s \cdot L \cdot \left\{ (2a \cdot (\cos \theta)^{-1} + b + c) \cdot N + c \right\} \cdot t_s \right] \cdot 10^{-3} \; [ton] \\ &= \left[7.85 \cdot 14.929 \cdot 8.624 \cdot t_p + 7.85 \cdot 14.929 \cdot \left\{ (2a \cdot (\cos \theta)^{-1} + b + c) \cdot N + c \right\} \cdot t_s \right] \cdot 10^{-3} \; [ton] \end{aligned}$$

: weight of top plate and stiffeners

Subject to

 $\sigma_{v} \leq 0.8 \cdot 315 \left[N / mm^{2} \right]$: maximum permissible stress

 $f \le 0.0056 \cdot 3.138 \ [m]$: maximum permissible deflection

 $t_{\min} \leq t_p \; [mm]$: minimum thickness of a top plate

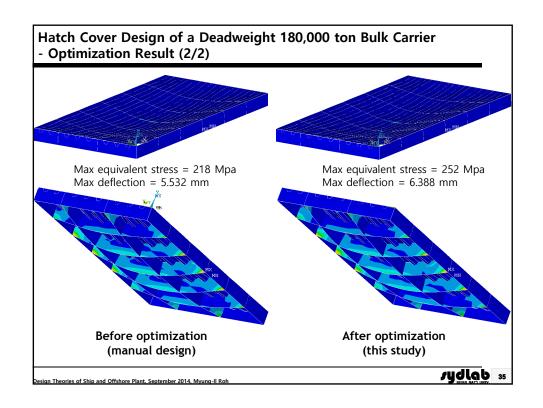
 $M_{\min} \leq M_{\mathit{net}} \; [\mathit{cm}^3]$: minimum section modulus of stiffeners

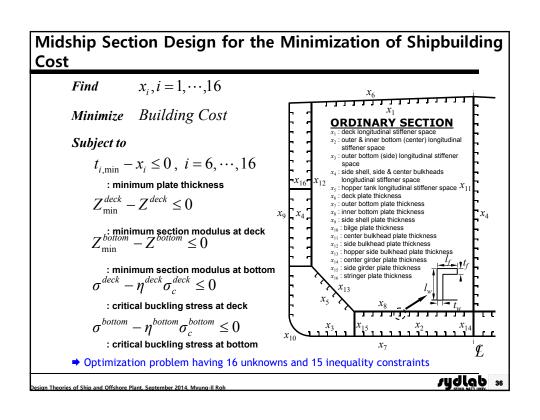
 $A_{\min} \leq A_{net} \ [cm^2]$: minimum shear area of stiffeners

N(2a+b) < W : geometric limitation d < H : geometric limitation $0^{\circ} < \theta \le 90^{\circ}$: geometric limitation

→ Optimization problem having 6 design variables and 8 inequality constraints

Ossian Theories of Chin and Offshare Plant Contember 2014 Marine II Po

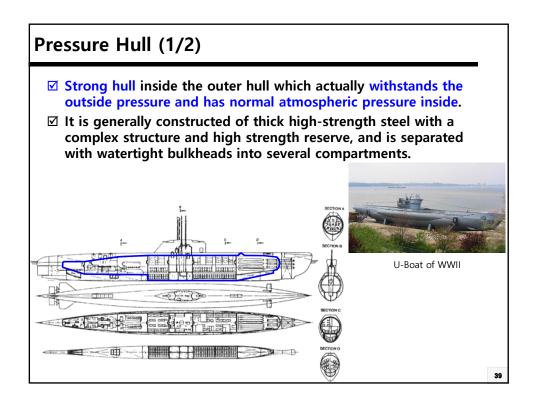

/ydlab 33


Hatch Cover Design of a Deadweight 180,000 ton Bulk Carrier - Optimization Result (1/2)

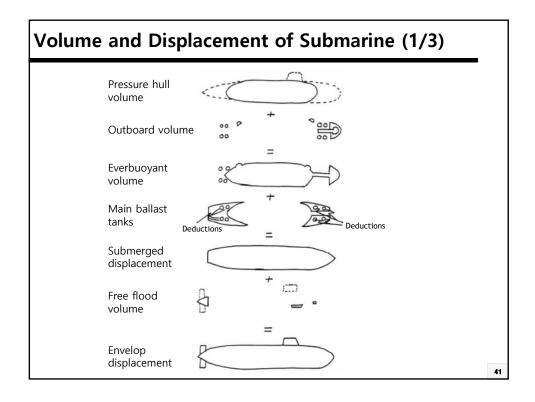
Item	Unit	Manual design	Optimization result
t _p	mm	16	14
t _s	mm	8	8
b	m	0.170	0.160
a	m	0.120	0.111
d	m	0.220	0.198
N	-	8	8
Weight	ton	26.225	23.975
Maximum stress	MPa	218	252
Maximum deflection	mm	5.532	6.388

esign Theories of Ship and Offshore Plant, September 2014, Myung-Il Rol

rydlab 34



Optimization Result for Midship Section Design for
the Minimization of Shipbuilding Cost


	Unit	Actual Ship	MED	MS	GA	HYB	RID
	Unit	Actual Ship	INIFD	IVIS	GA	w/o Refine	with Refine
Building Cost	\$/m	-	21,035.254748	20,637.828634	20,597.330090	20,422.478135	20,350.2868
x_1	mm	800.0	787.038274	811.324938	780.000000	810.000000	810.370132
<i>x</i> ₂	mm	800.0	762.891023	799.038243	750.000000	800.00000	800.128273
x_3	mm	780.0	743.313979	787.034954	770.000000	790.000000	789.092394
x_4	mm	835.0	814.142029	833.909455	820.000000	830.000000	834.838424
<i>x</i> ₅	mm	770.0	756.434513	772.349435	790.000000	780.000000	780.002092
x_6	mm	16.5	16.983723	16.203495	16.000000	16.000000	16.390923
x ₇	mm	16.0	16.829142	16.043803	16.500000	16.000000	15.989044
x_8	mm	15.5	16.020913	15.390394	16.000000	15.500000	15.432091
x_9	mm	17.0	17.329843	17.039439	16.500000	16.500000	17.139433
x ₁₀	mm	14.5	15.001923	14.324335	15.000000	15.000000	14.780908
x ₁₁	mm	13.5	14.192834	14.240495	14.000000	13.500000	13.550214
x ₁₂	mm	14.5	15.123051	15.403945	14.500000	14.500000	14.500130
x ₁₃	mm	17.0	16.902832	16.849387	16.500000	17.000000	17.010902
x ₁₄	mm	14.0	14.784034	14.739454	15.500000	14.500000	14.309324
x ₁₅	mm	14.0	15.129430	14.448504	15.500000	14.500000	14.588917
x ₁₆	mm	14.5	14.824045	14.940584	15.000000	15.000000	14.789992
Iteration No	-	-	8	912	93	64	70
CPU Time	sec	-	2.90	293.28	272.91	265.06	267.92

sydlab 37

Composition of Submarine ☑ Hull Structure **☑** Propulsion Systems **☑** Electric Systems **☑** Command and Control Systems ☑ Auxiliary Systems **☑** Outfit and Furnishing **☑** Armament control for the steam propulsion system access hatch hatch refectory torpedo room propeller guidance sonar rudder electric Jydlab 38 in Theories of Ship and Offshore Plant, September 2014, Myung-II Rol

Volume and Displacement of Submarine (2/3)

☑ Pressure Hull Volume

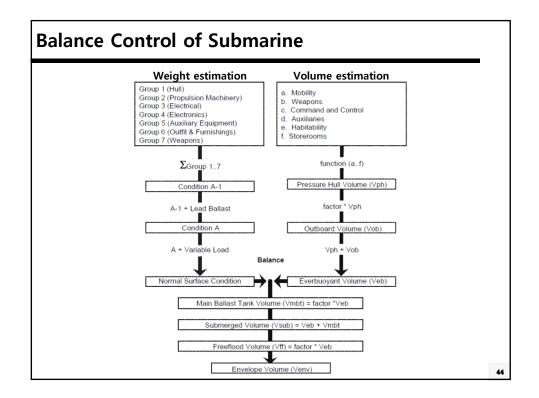
■ Watertight volume having important parts of submarine

☑ Outboard Volume

Volume of weapons and propulsion systems which are installed outside of pressure hull

☑ Everbuoyant Volume

- Total volume related to buoyancy among volumes of submarine
- Basis for calculating Normal Surface Condition Weight (NSCW)
- NSCW = Ever buoyant volume / density of sea water


sign Theories of Ship and Offshore Plant, September 2014, Myung-Il Roh

Volume and Displacement of Submarine (3/3)

- ☑ Main Ballast Tanks
 - Volume of ballast tanks required for controlling trim (attitude) of submarine
- **☑** Submerged Displacement
 - Ever buoyant volume + Main ballast tanks
- **☑** Free Flood Volume
 - Volume of the region that sea water can move freely
- **☑** Envelop Displacement
 - Submerged displacement + Free flood volume

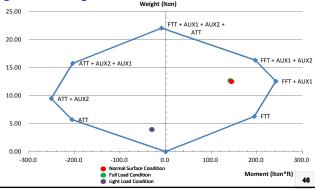
esign Theories of Shin and Offshore Plant Sentember 2014 Myung-II Ro

rydlab 43

Weight Estimation of Submarine

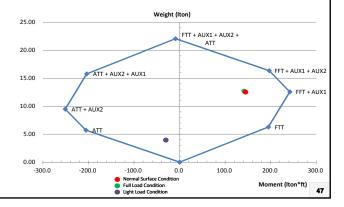
- ☑ Composition of Weight (Displacement)
 - Lightweight (LWT) + Variable Load (VL, cargo weight)
 - Most of displacement becomes the lightweight.
- ☑ Weight Estimation Method (SWBS* Group of US Navy)

Group	ltem
100	Hull Structure
200	Propulsion
300	Electric Systems
400	Communication and Control
500	Auxiliary System
600	Outfitting and Furnishing
700	Armament

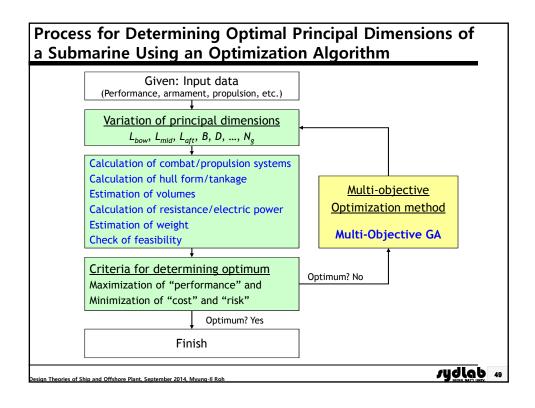

* Straubinger, E.K., Curran, V.L., "Fundamentals of Naval Surface Ship Weight Estimating, Naval Engineers Journal, pp.127-143, 1983.

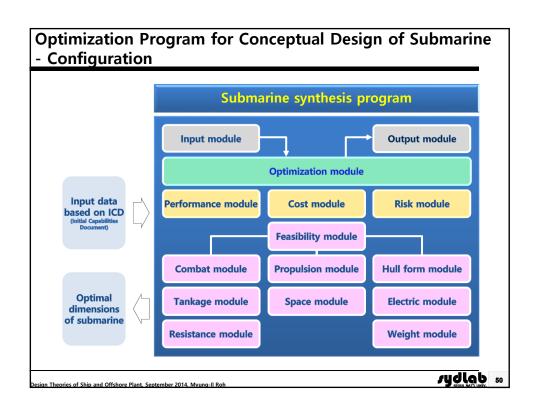
torian Theories of Chin and Offshore Blant Contember 2014 Maring II Bob

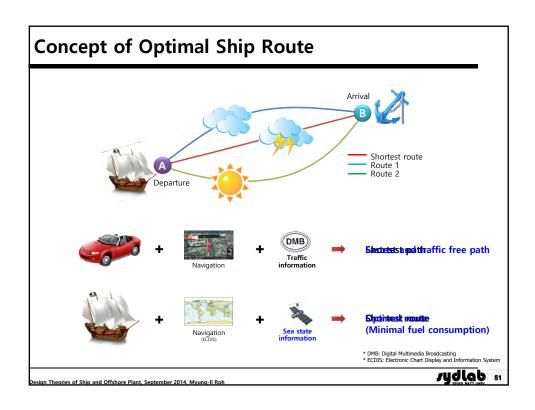
ydlab 45

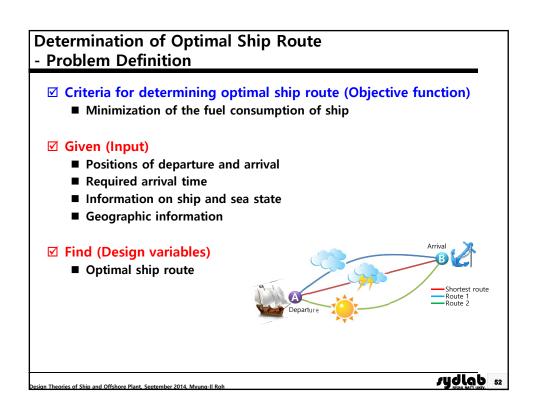

Meaning of Equilibrium Polygon (1/2)

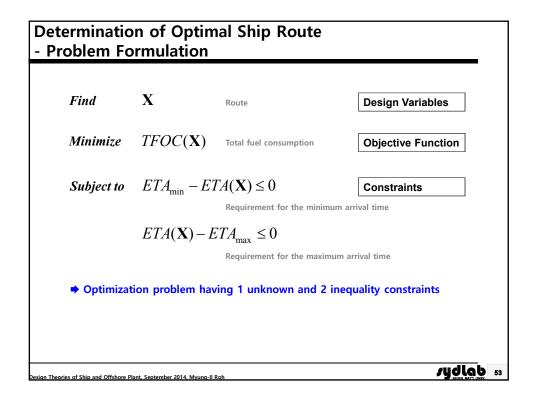
- ☑ The equilibrium polygon is a graphical tool that is used to ensure that the submarine will be able to remain neutrally buoyant and trimmed level while submerged in any operating (loading) condition.
- ☑ In all operating conditions the ship must be able to compensate which is accomplished through the variable ballast tanks.
- ☑ The polygon is a diagram of weight vs. moment.

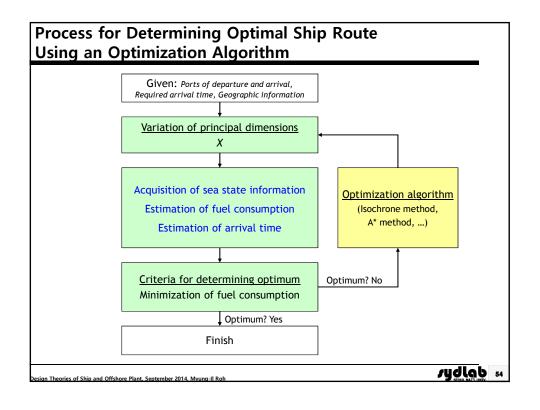

Meaning of Equilibrium Polygon (2/2)

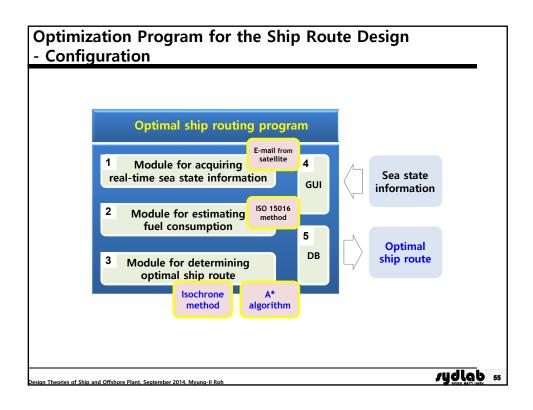

- ☑ The boundaries of the graphic are calculated from the variable tanks.
- ☑ Weights and moments are then calculated based on their compensation for all extreme loading conditions.
- ☑ The ship is adequately able to compensate for each loading conditions if each point lies within the polygon.

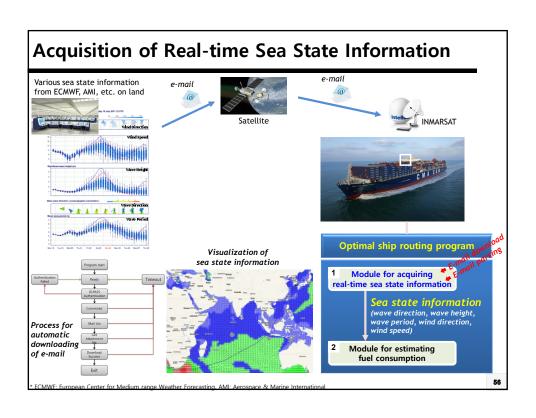


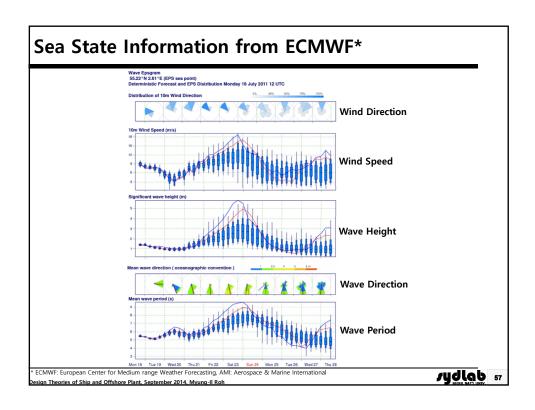

Mathematical Formulation of a Problem for Determining Optimal Principal Dimensions of a Submarine

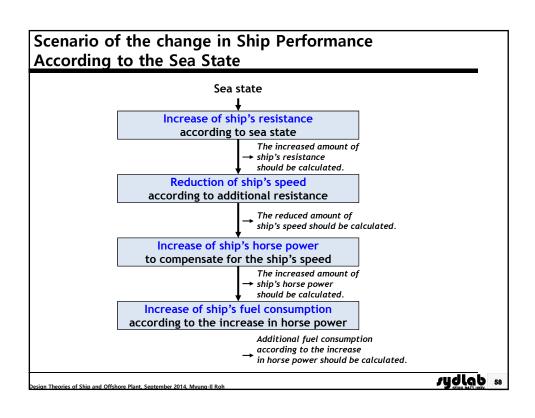

 $\mathbf{X} = \{L_{bow}, L_{mid}, L_{aff}, B, D, C_{man}, ASW, C4I, ISR, MCM, SPW, PSYS, BAT_{typ}, N_g\}$ Find Maximize $F_1 = Performance(\mathbf{X})$ and Optimization problem having Overall measure of performance 14 design variables, $F_2 = Cost(\mathbf{X})$ and $F_3 = Risk(\mathbf{X})$ Minimize 11 inequality constraints, and : Overall measure of risk 3 objective functions Subject to $g_1 = atr - ata(\mathbf{X}) \le 0$: Constraint about the allowable area $g_2 = vff_{\min} - vff(\mathbf{X}) \le 0$: Constraint about the minimum free flood volume $g_3 = vff(\mathbf{X}) - vff_{\text{max}} \le 0$: Constraint about the maximum free flood volume $g_4 = wlead_{min} - W_8(\mathbf{X}) \le 0$: Constraint about the minimum lead ballast $g_5 = W_8(\mathbf{X}) - wlead_{\text{max}} \le 0$: Constraint about the maximum lead ballast $g_6 = Vs_{\min} - Vs(\mathbf{X}) \le 0$: Constraint about the minimum sustained speed $g_7 = KWg_{reg} - KWg(\mathbf{X}) \le 0$: Constraint about the required electrical power $g_8 = GM_{\min} - GM(\mathbf{X}) \leq 0$ $g_9 = GB_{\min} - GB(\mathbf{X}) \leq 0$: Constraints about the minimum GM and GB $g_{10} = E_{\min} - E(\mathbf{X}) \le 0$: Constraint about the minimum endurance range $g_{11} = Es_{\min} - Es(\mathbf{X}) \le 0$: Constraint about the minimum sprint range

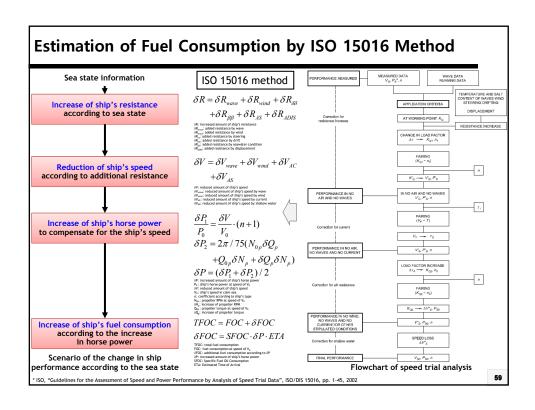


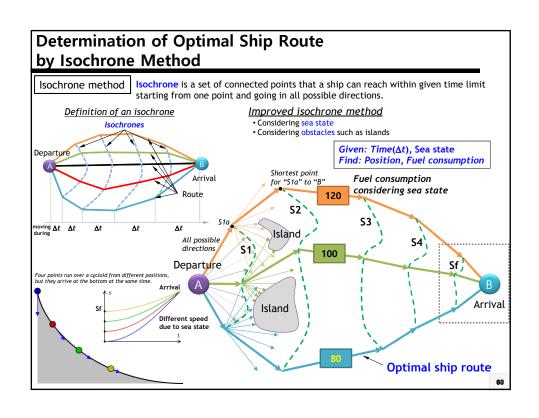


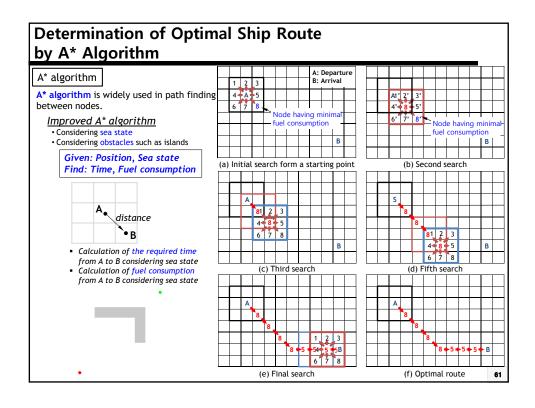


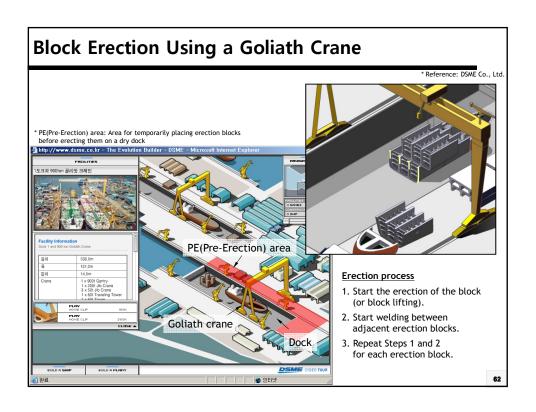


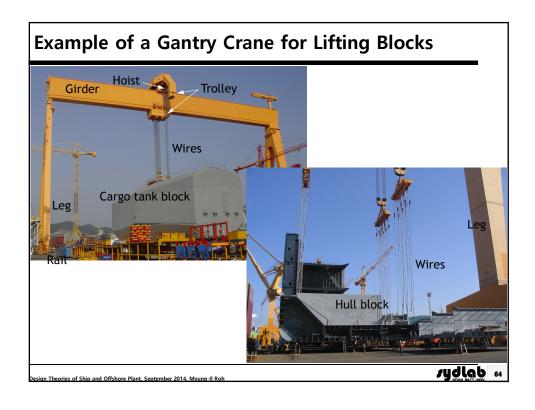


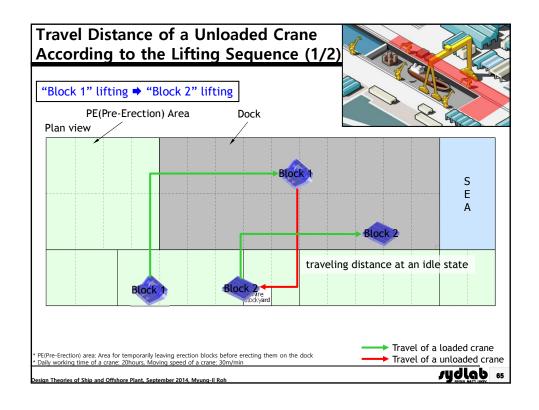


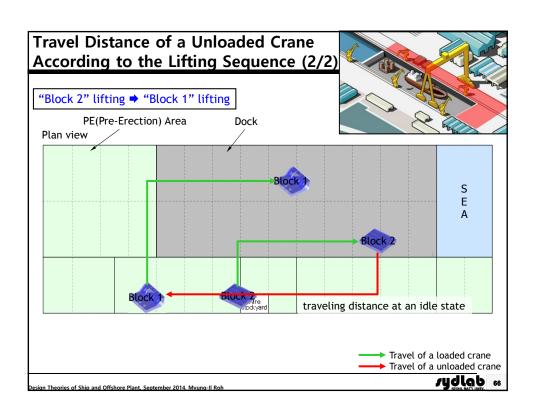


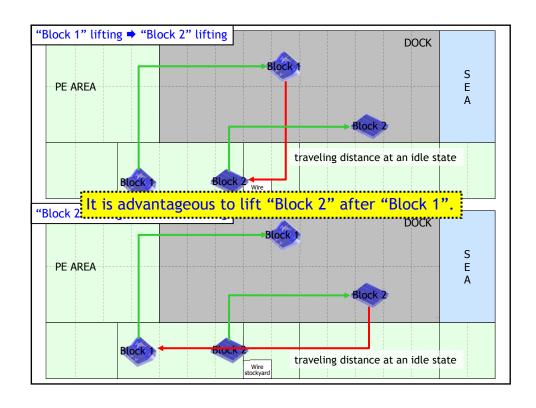


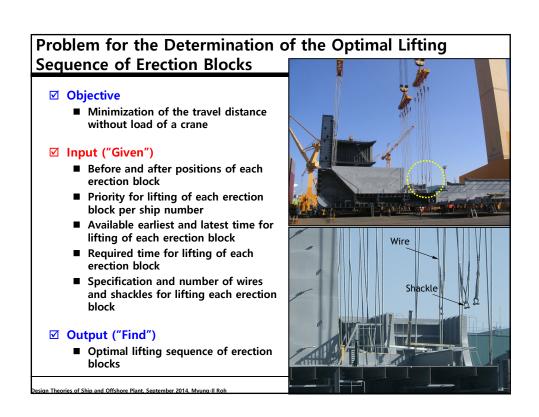












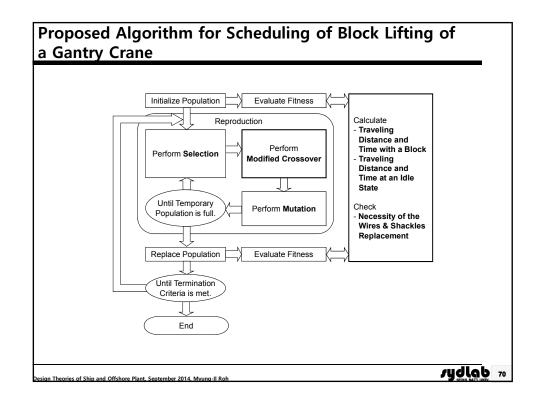
Formulation of a Problem for the Determination of the Optimal Lifting Sequence of Erection Blocks

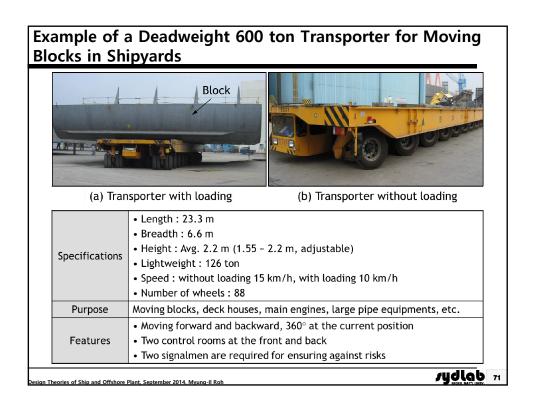
Find
$$x_i$$
 Lifting time for each block Design Variables

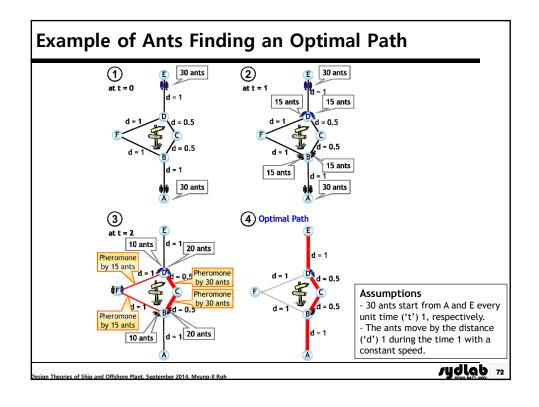
Minimize $F_1 = \sum_{i=0}^{N-1} \{(1-r_{i,i+1}) \cdot t_{i,i+1} + r_{i,i+1} \cdot (t_{i,W} + t_{W,i+1})\}$ Total travel time without block Objective Function

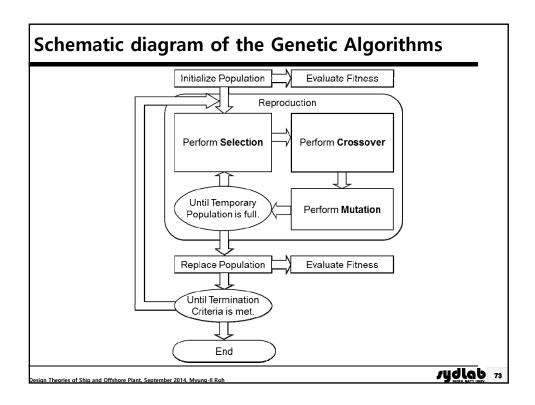
Minimize $F_2 = \sum_{i=0}^{N-1} (r_{i,i+1} \cdot T_r)$ Total time for wires and shackles replacement

Subject to Constraints


 $g_1 = l_i - s_i \le 0$ Constraints about the start of the lifting time


 $g_2 = f_i - u_i \le 0$ Constraints about the end of the lifting time


 $g_3 = p_j - p_k \le 0$ Constraints about the priority for lifting


 $g_4 = f_N - T_e \le 0$ Constraints about the total lifting time

For $i = 0, \dots, N-1$ and $j, k = 1, \dots, N$

Problem for the Determination of the Optimal Transporting Sequence of Erection Blocks

☑ Objective

■ Minimization of the travel distance without block of transporters

✓ Input ("Given")

- Total number of blocks and transporters
- Weight of each block and specifications of each transporter
- Before and after positions of each block
- Priority for transporting of blocks
- Available earliest and latest time for transporting of blocks
- Roads in shipyard for the block transportation

✓ Output ("Find")

 Optimal route and transporting sequence of blocks

esign Theories of Ship and Offshore Plant, September 2014, Myung-Il Roh

sydlab 74

Detailed Input Data for the Determination of the Optimal Transporting Sequence of Erection Blocks

☑ Data on the transporters

- Total number and ID of the transporters
- Specifications (e.g., the speed, maximum deadweight, service time, etc.) of each transporter
- Initial position of each transporter

☑ Data on the blocks

- Total number and ID of the blocks to be moved by the transporters
- Weight of each block
- Initial position and target position after moving each block
- Transportation time limit (lower and upper bounds) of each block
- Priority for the transportation among the blocks

☑ Miscellaneous data

■ Information on the shipyard roads for the block transportation

sydlab 75

Formulation of a Problem for the Determination of the Optimal Transporting Sequence of Erection Blocks

Find
$$x_i$$
 Transporting time for each block

Minimize $F_1 = \sum_{i=1}^B \sum_{k=1}^T x_i^k (e_i^k / V^k)$ and Total transporting time

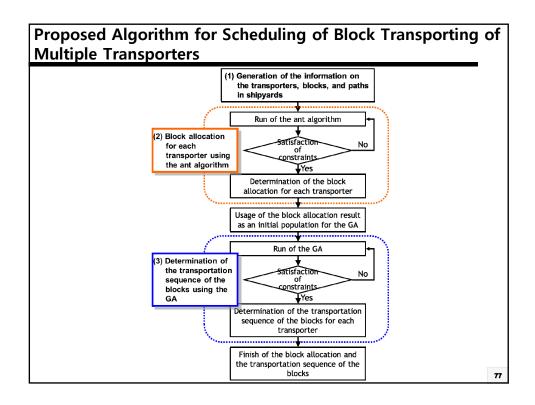
Minimize $F_2 = \sum_{i=2}^B \sum_{j=1}^{i-1} \sum_{k=2}^T \sum_{l=1}^{k-1} x_i^k x_j^l c_{kl}$

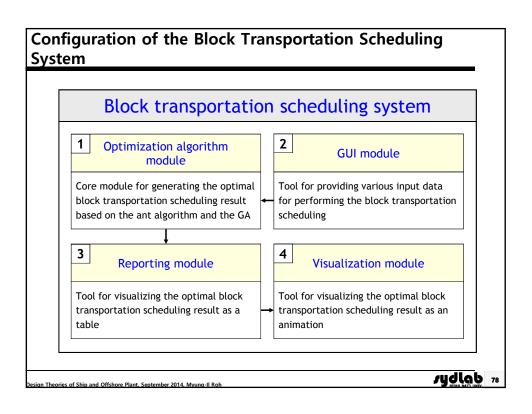
Objective Function

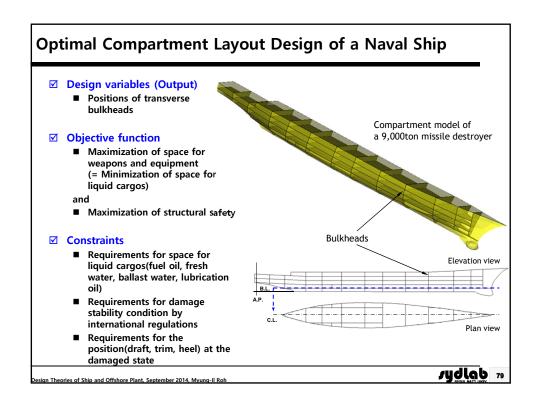
Total number of interferences between transporters

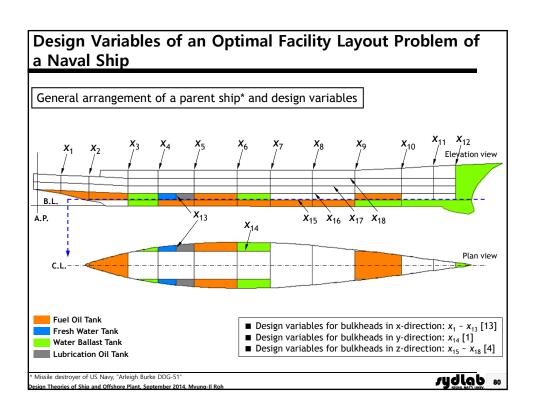
Subject to Constraints

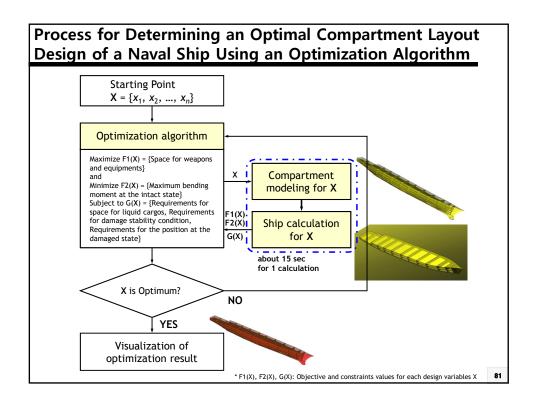
$$g_1 = w_i - t_k \leq 0$$
 Constraints about the maximum deadweight of transporter

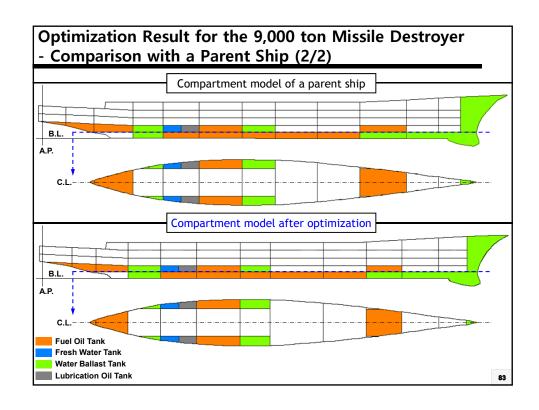

$$g_2 = r_i - p_i^k \le 0$$
 Constraints about the start of the transporting time

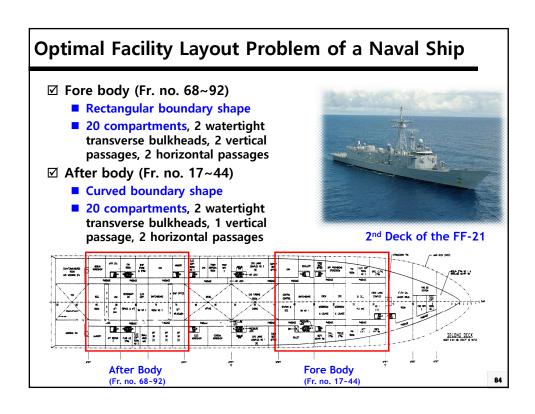

$$g_3 = d_i^k - s_i \le 0$$
 Constraints about the end of the transporting time


$$g_4 = p_i - p_j \le 0$$
 Constraints about the priority for transporting


for $i, j = 1, \dots, B$ and $k, l = 1, \dots, T$


sydlab 76

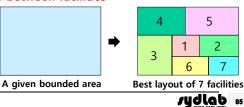

Optimization Result for the 9,000 ton Missile Destroyer - Comparison with a Parent Ship (1/2)


lte	em	Unit	Paren	t ship	Optimizat	ion result	Note		
V _{W.B.T}		m³	1,18	81.4	1,0!	50.6	Objective function (Minimize)		
BM ₁	BM ₂	kN∙m	74,694.3	50,401.1	67,254.7	47,325.6	Objective function (Minimize)		
φ _{0,1}	$\phi_{0,2}$	0	0.000	0.038	0.000	0.038	Requirements for damage stability condition by		
$A_{2,1}/A_{1,1}$	$A_{2,2}/A_{1,2}$	-	40.871	40.544	40.874	40.666	international regulations		
<i>T</i> ₁	T ₂	m	6.919	6.884	6.819	6.787			
t ₁	t ₂	m	0.192	0.396	0.309	0.589			
ϕ_1	ϕ_2	0	1.243	1.336	0.839	0.896			

- Decrease of space for liquid cargos as compared with a parent ship (= Increase of space for weapons and equipment) & Increase of structural safety

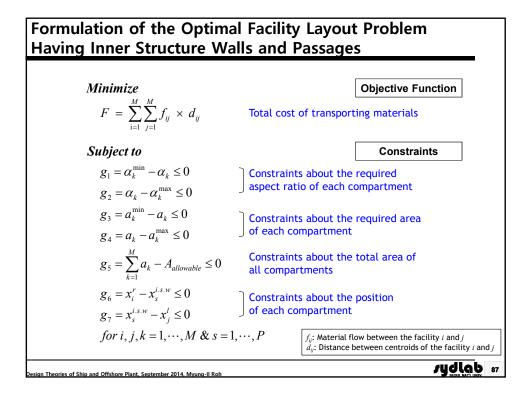
- $V_{W,B,T}$. Total volume of ballast tank BM_i . Maximum bending moment at the ith loading condition $\phi_{0,j}$. Initial heel angle at the jth damage case $A_{1,j}$, $A_{2,j}$. Areas of the negative and the positive righting moment from a statistical stability curve and a heeling arm curve at the jth damage case T_j , t_j : Equivalent draft and trim at the jth damage case ϕ_j : Equivalent heel angle considering beam wind at the jth damage case

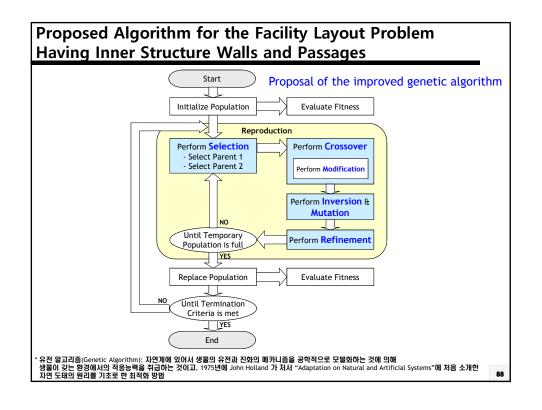
82

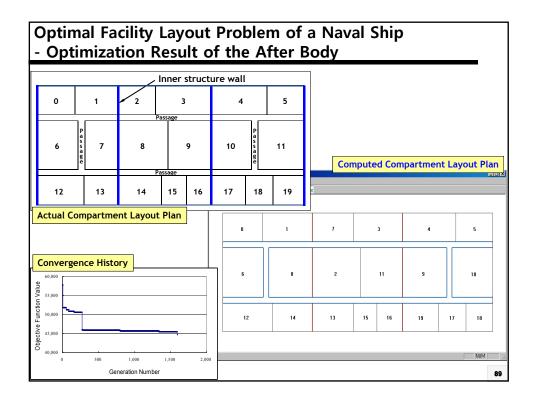

Facility Layout Problem (FLP)

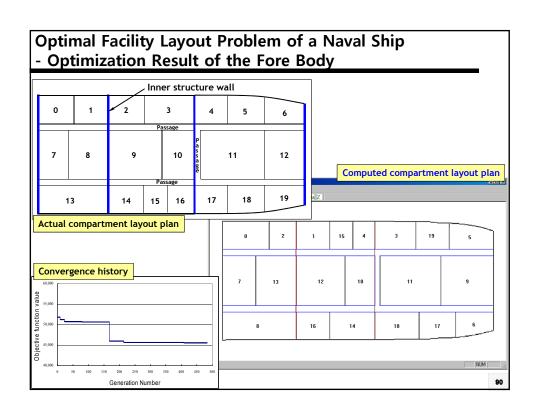
☑ Facility Layout Problem

- Given: Available area, the required area for each facility, material flow between facilities, etc.
- Find: Best facility layout which minimizes total cost of transporting materials between facilities
- Applications: Factory layout, equipment layout in the factory, office layout in the building, etc.

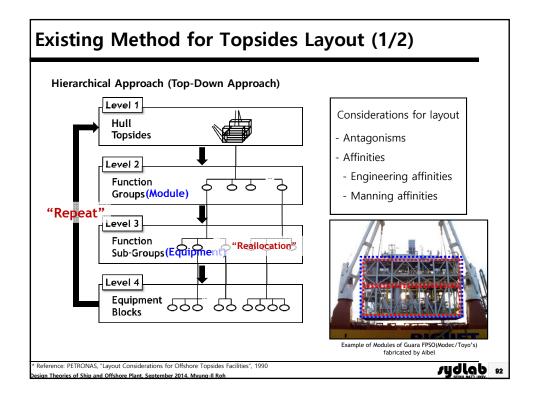

☑ Limitation of Existing Algorithms

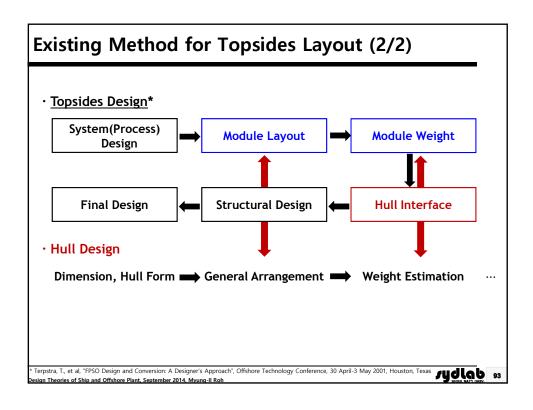

- Limited to a rectangular boundary shape
- No consideration for inside side wall
- No consideration for passages between facilities

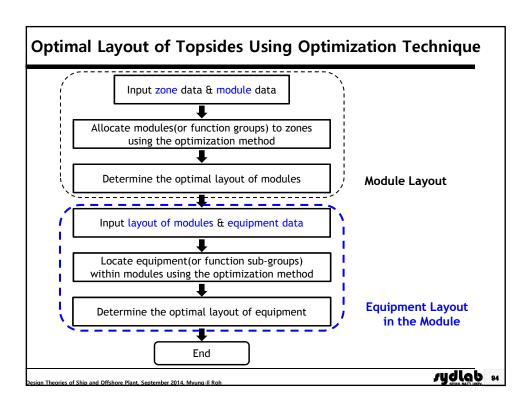



sign Theories of Ship and Offshore Plant, September 2014, Myung-II Rol

Facility Layout Problem Having Inner Structure Walls and Passages ☑ Given ■ Number of facilities to be allocated to the available area ■ Available area and its boundary shape ■ Number and positions of inner structure Number and widths of each vertical and horizontal passage ■ Upper and lower bounds of the Available area required area for each facility Upper and lower bounds of the required aspect ratio for each facility 5 ■ Material flows between facilities ■ Upper and lower bounds of the position of each vertical and horizontal passage 8 7 1 3 ☑ Find **Best facility layout** which minimizes total cost of transporting materials Best layout plan of facilities (1-8) between facilities sydlab *

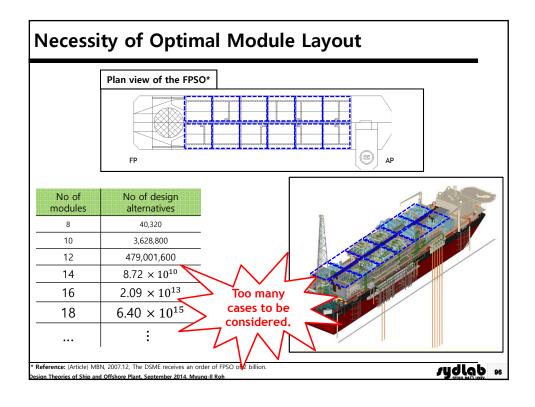


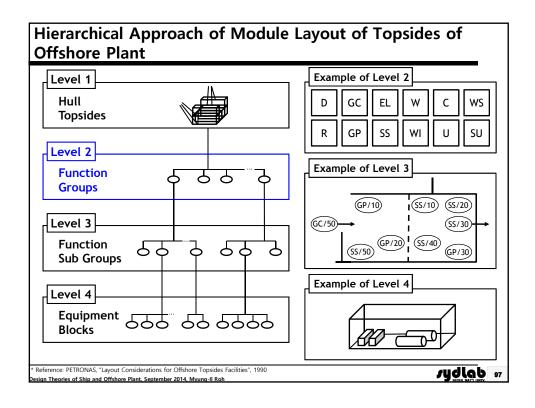


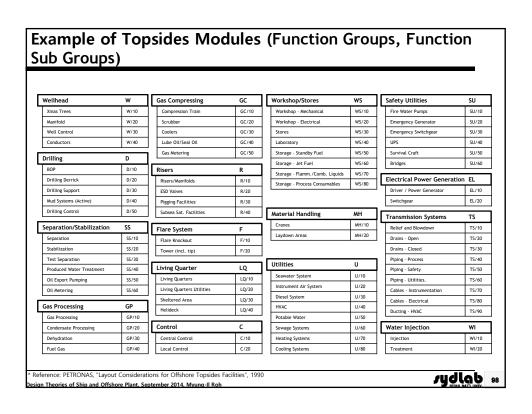


5.2 Applications to Offshore Plant Design

tember 2014, Myung-II Roh







Optimal Module Layout of Topsides of Offshore Plant

Jydlab 95

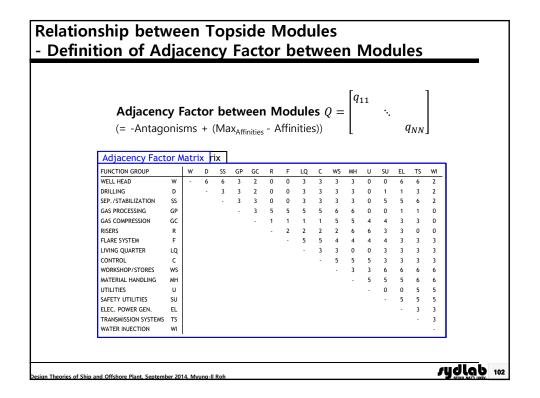
Characteristics for the Representation of Relationship between Topsides Modules

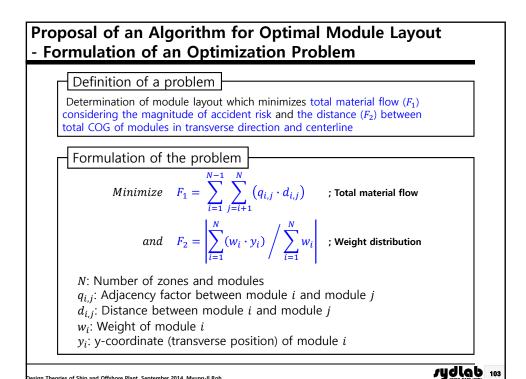
- Antagonisms: Characteristics which preclude an module being safely located near another specific module unless mutually protected (e.g., "two modules should be distant from each other.")
- Affinities: Characteristics which make it particularly advantageous to locate one module close to another specific module (e.g., "two modules should be adjacent to each other.")

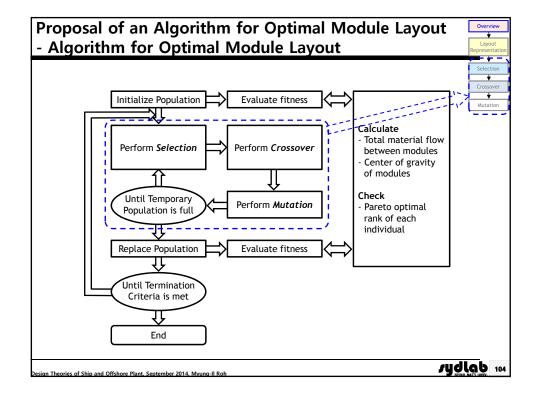
sign Theories of Ship and Offshore Plant, September 2014, Myung-II Rol

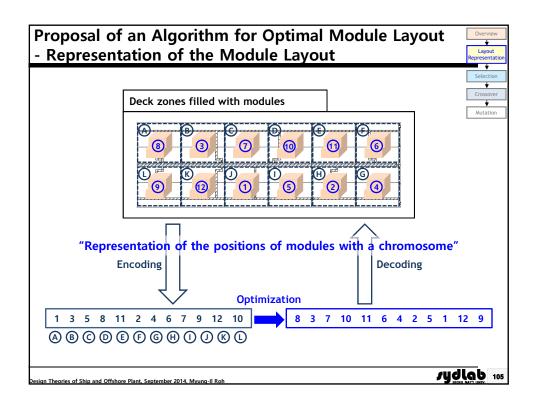
sydlab »

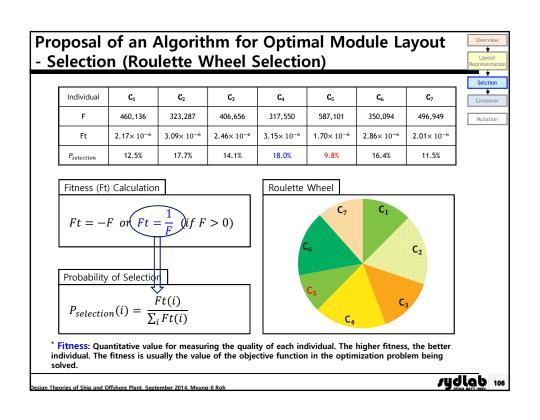
Relationship between Topside Modules

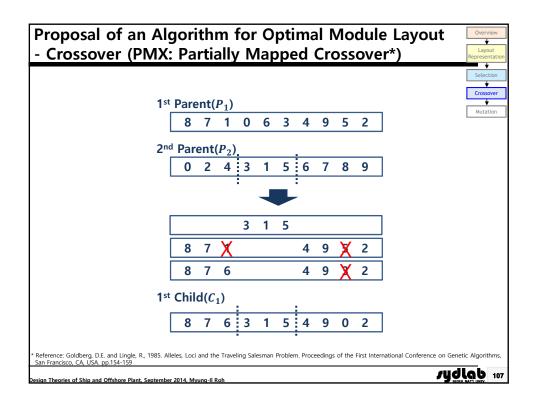

- Antagonisms
 - ☑ Characteristics for defining antagonisms
 - Active behavior characteristics: Probability of a module initiating major incidents
 - Reactive behavior characteristics: Propensity for a module to escalate major incidents initiated elsewhere.

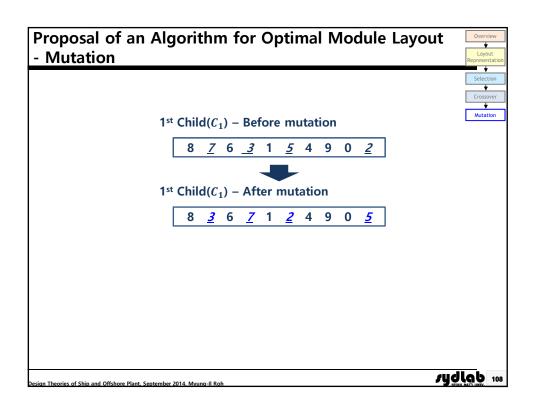

FUNCTION GROUP			W	D	SS	GP	GC	R	F	LQ	C	WS	MH	U	SU	EL	TS	WI	
		REACTIVE	3	3	3	3	2	3	3	3	3	2	2	2	3	3	3	2	
		ACTIVE																	
WELL HEAD	W	3	-																
DRILLING	D	3	3	-						Ea	ch	nu	mb	er	(1-	-3)	re	pres	sents a
SEP./STABILIZATION	SS	2	3	3	-													•	
GAS PROCESSING	GP	2	3	3	3	-				qua	ınτ	ıtaı	ive	Va	aiue	9 0	r tr	ie r	isk when two
GAS COMPRESSION	GC	3	3	3	3	3	-			mo	du	les	are	e lo	oca ⁻	ted	∣in	aď	iacent zones
RISERS	R	3	3	3	3	3	3	-		مام	-	Th	a h	اما	205	nu	ml	200	the more ris
FLARE SYSTEM	F	2	3	3	3	3	3	3	-				e 11	ıyı	iei	IIIu		Jei,	uie illore ris
LIVING QUARTER	LQ	0	3	3	3	3	3	3	3	lay	out	.							
CONTROL	C	0	3	3	3	3	3	3	3	1	-								
WORKSHOP/STORES	WS	0	3	3	2	2	3	3	2	1	1	-							
MATERIAL HANDLING	MH	1	3	3	2	2	3	3	2	2	2	1	-						
UTILITIES	U	1	3	3	2	2	3	3	2	2	2	1	1	-					
SAFETY UTILITIES	SU	1	3	3	3	3	3	3	3	2	2	1	2	2	÷				
ELEC. POWER GEN.	EL	3	3	3	3	3	3	3	3	3	3	2	2	2	3	-			
TRANSMISSION SYSTEMS	TS	3	3	3	3	3	3	3	3	3	3	2	2	2	3	3	-		
WATER INJECTION	WI	0	3	3	2	2	3	3	2	1	1	1	1	1	1	2	2	-	l

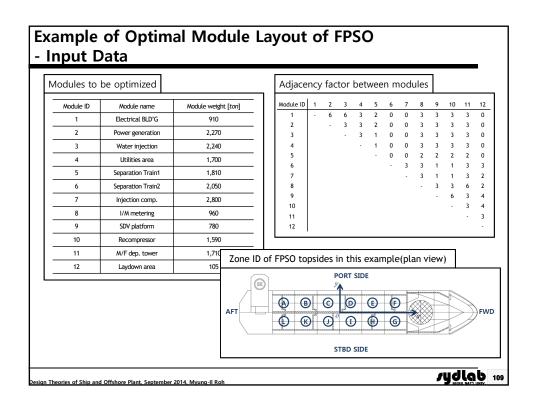

Neterences
 PETRONAS, "Layout Considerations for Offshore Topsides Facilities", 1990
 Quantitative Risk Assessment, SIPM Report EP 55000-18, May 1990
 Guidelines for Risk Analysis Data, Doc. Ref F-RADS, SIPM, June 1990

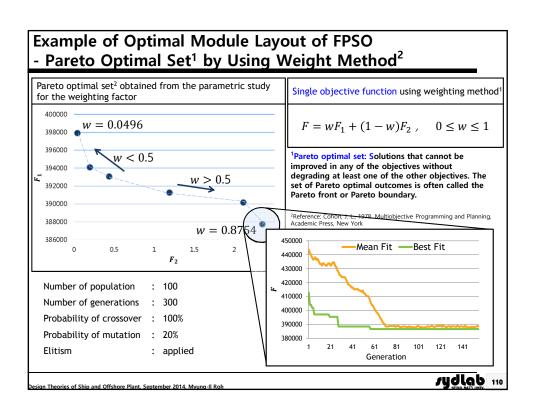

100

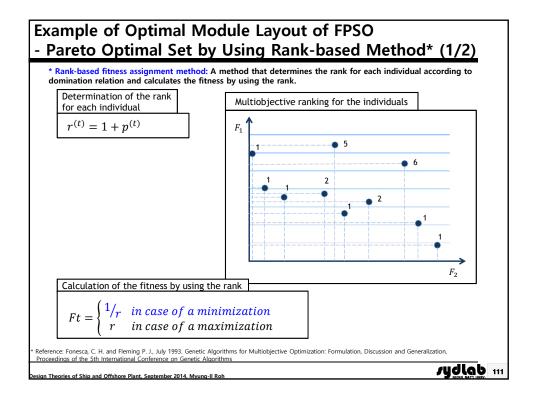

Relationship between Topside Modules Affinities ☑ Characteristics for defining affinities ■ Engineering affinities: The need to locate certain modules close together, the most fundamental being the requirements of the process logic ■ Manning affinities: Ways to minimize the movement of staff around the platform Manning Affinities Matrix ix FUNCTION GROUP WELL HEAD DRILLING SEP./STABILIZATION GAS PROCESSING GC R GAS COMPRESSION RISERS FLARE SYSTEM LIVING QUARTER CONTROL WORKSHOP/STORES MATERIAL HANDLING мн UTILITIES Each number (1~3) represents a quantitative SAFETY UTILITIES SU value of the advantage when two modules have ELEC. POWER GEN. frequent movement of staff each other in the TRANSMISSION SYSTEMS TS WATER INJECTION aspect of manning affinities. sydlab 101 ign Theories of Ship and Offshore Plant, September 2014, Myung-Il Roh

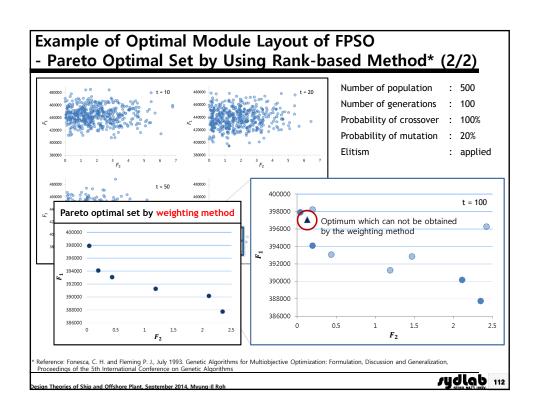


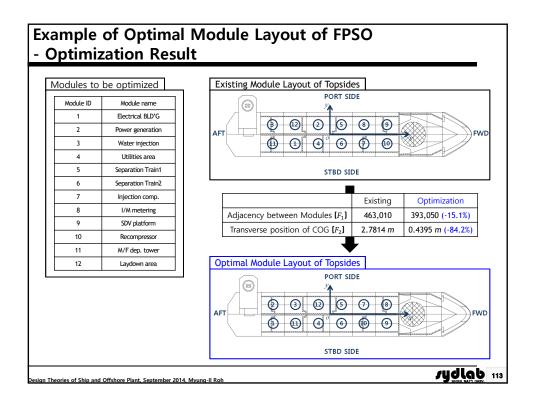












Optimal Equipment Layout in the Topsides Module of Offshore Plant (for Liquefaction Module)

Considerations on Optimal Equipment Layout in the Liquefaction Module for Offshore Plant

Liquefaction process syster

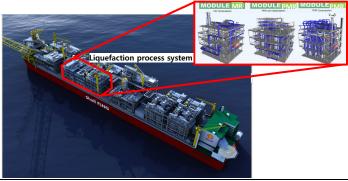
☑ Safety

- Safety studies: HAZard and Operability (HAZOP), HAZard Identification (HAZID), Failure Modes and Effects Analysis (FMEA), Fault Tree Analysis (FTA), Event Tree Analysis (ETA)
- Optimal layout: Maintenance, Working space area, Emergency area

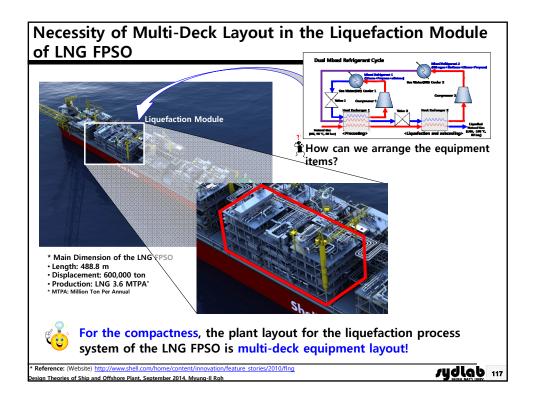
☑ Compactness

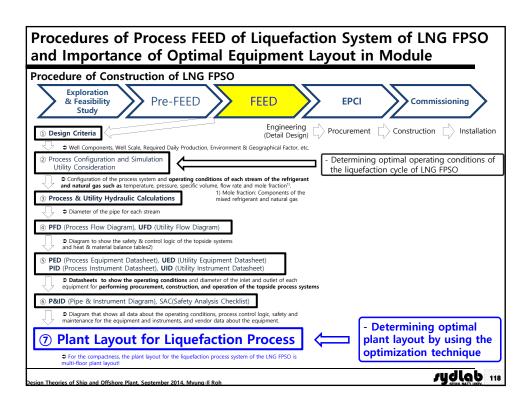
- Available area for the liquefaction cycle of offshore application is smaller than that of onshore
- By determining the optimal operating conditions and doing the optimal synthesis of the liquefaction cycle, the required power for the compressors can be reduced which will result in the reduction of the compressor size and the flow rate of the refrigerant. Thus, the overall sizes of the liquefaction cycle including the pipe diameter, equipment and instrument can be reduced.
- Therefore, the compactness can be achieved by optimization studies such as determination of the optimal operating condition or optimal synthesis of the liquefaction cycle.
- For the optimization of the process layout, 'Compactness' & 'Safety' are the most important consideration.

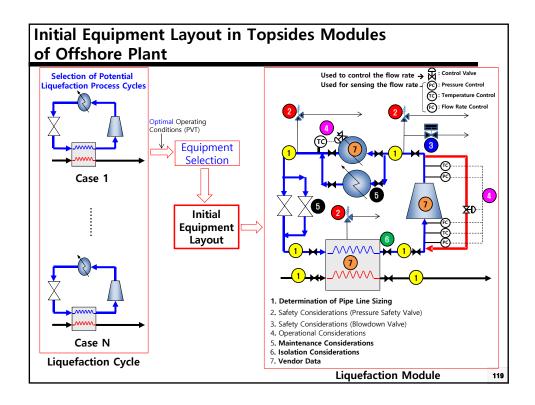
esign Theories of Ship and Offshore Plant, September 2014, Myung-II Rol

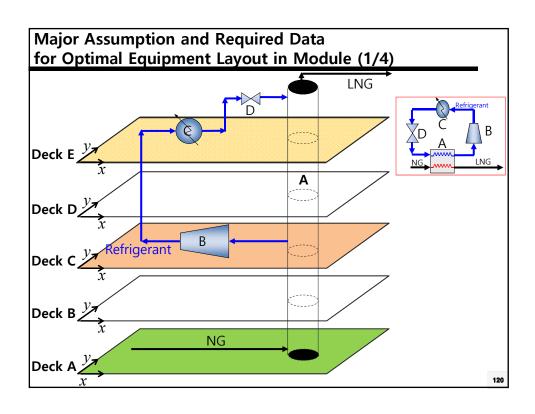

Characteristics of Equipment Layout in Topsides Modules of Offshore Plant

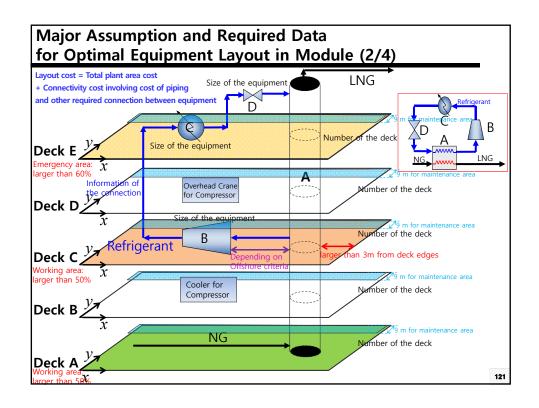
☑ Limited Installation Area

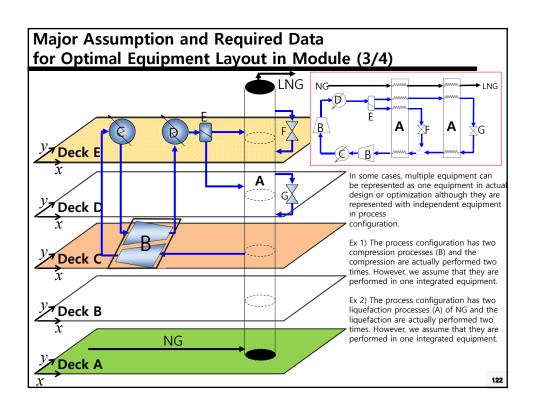

- Considering the limited Hull area, equipment shall be placed on the multi-floors module.
- Same functional systems shall be installed in the same module in order to reduce the piping installation space.

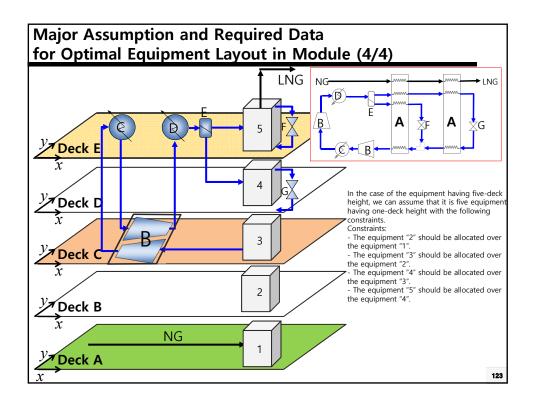

☑ Easy Installation and Maintenance

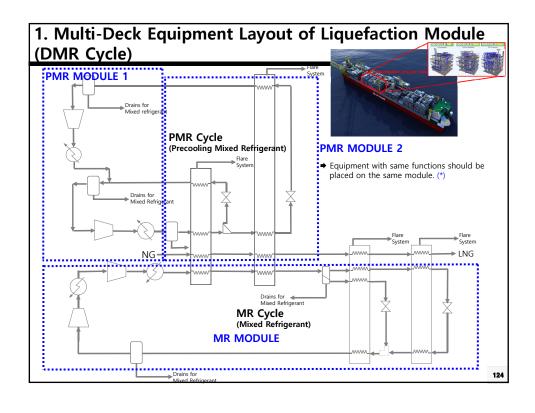

- Offshore installation shall be performed on the module basis to easily install each modules on the hull area.
- Every maintenance can be easily performed on each modules basis.

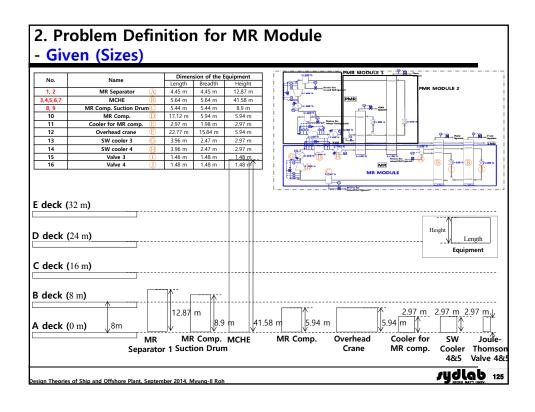


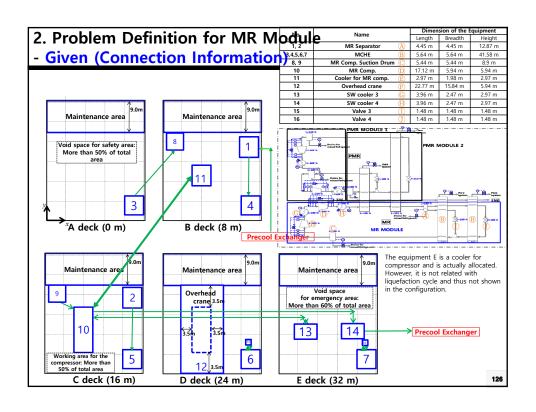

MR: Mixed Refrigerant, PMR: Pre-Mixed Refrigerant lesign Theories of Ship and Offshore Plant, September 2014, Myung-Il Rol sydlab 116

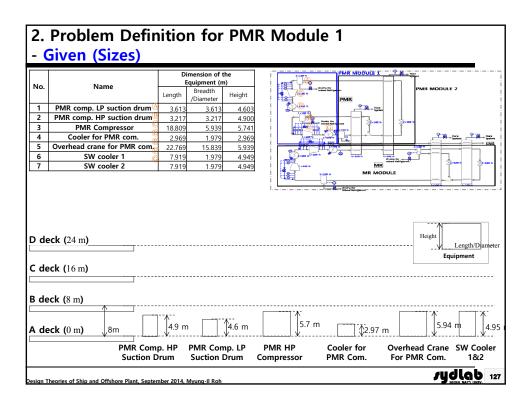


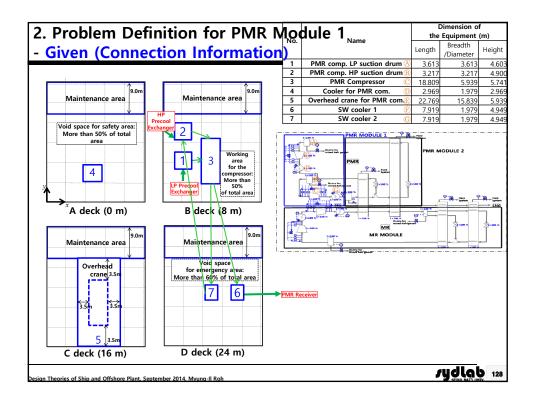


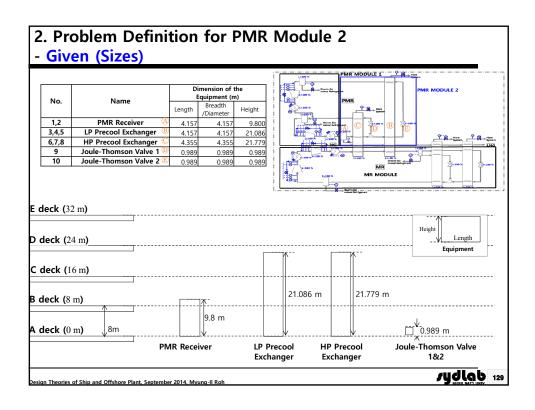


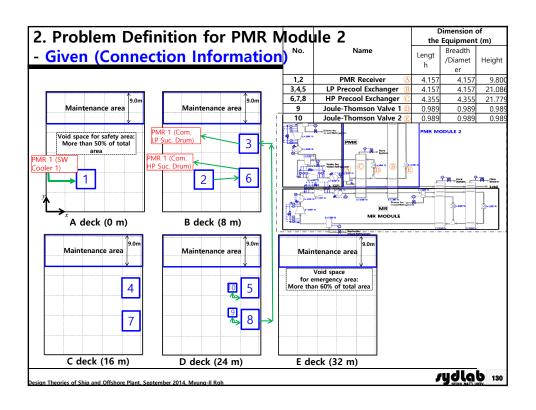


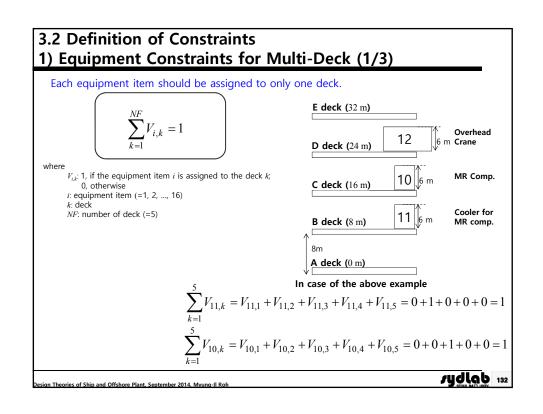


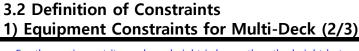









sydlab 131

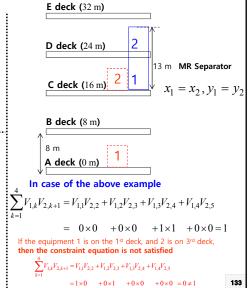

3. Mathematical Module for Multi-Deck Equipment Layout 3.1 Definition of Design Variables • Find: Layout for the Main Cooling and Precooling Modules Deck B(2) Deck A(1) Deck B(2) 1) Coordinates of the equipment item (x, y) x_i, y_i; coordinates of geometrical center of the equipment item i [Real values] 2) Orientation of the equipment item O_i: 1, if the length of the equipment item i is parallel to x-axis; 0, otherwise [Binary values] 3) Deck number of the equipment item

 $V_{i,k}$: 1, if the equipment item i is assigned to the deck k;

Example: In case of the above figure, $V_{1,1}=0, V_{1,2}=1, \ V_{2,1}=1, V_{2,2}=0$

0, otherwise [Binary values]

For the equipment item whose height is larger than the height between each deck(8 m), the following constraints are considered.

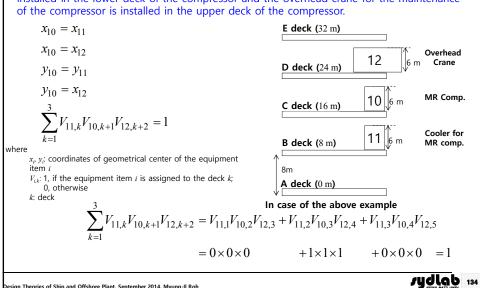

 $\begin{array}{ll} \text{MR Separator} & \text{MR Comp. Suction Drum} \\ x_1 = x_2 & x_8 = x_9 \\ y_1 = y_2 & y_8 = y_9 \\ \\ \sum_{k=1}^4 V_{1,k} V_{2,k+1} = 1 & \sum_{k=1}^4 V_{8,k} V_{9,k+1} = 1 \end{array}$

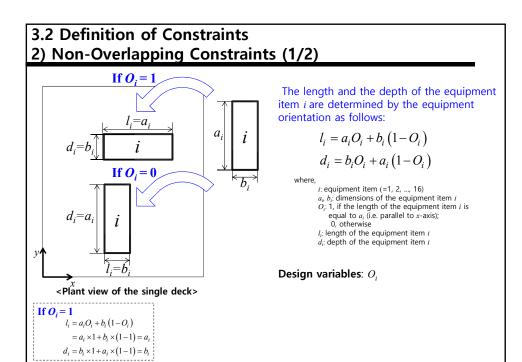
MCHE

(Main Cryogenic Heat Exchanger)

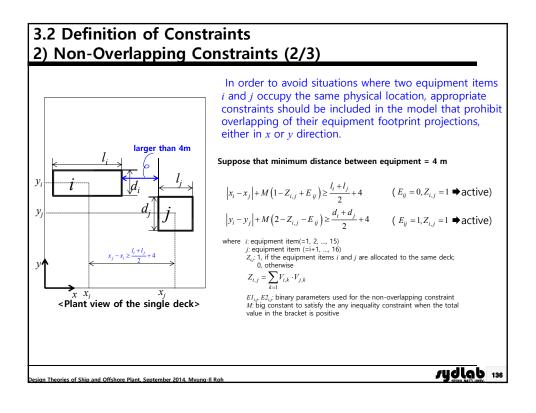
$$x_i = x_{i+1}, i = 3, 4, 5, 6$$

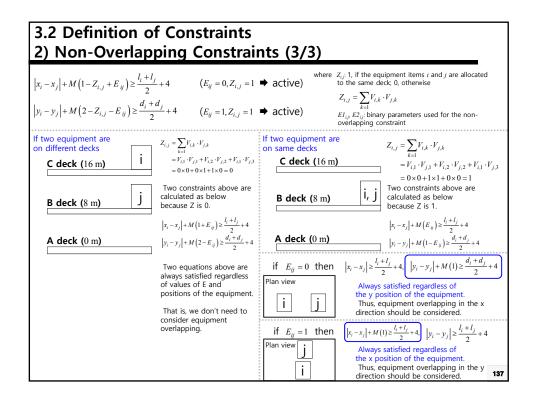
 $y_i = y_{i+1}, i = 3, 4, 5, 6$
 $V_{3,k}V_{4,k+1}V_{5,k+2}V_{6,k+3} = 1$

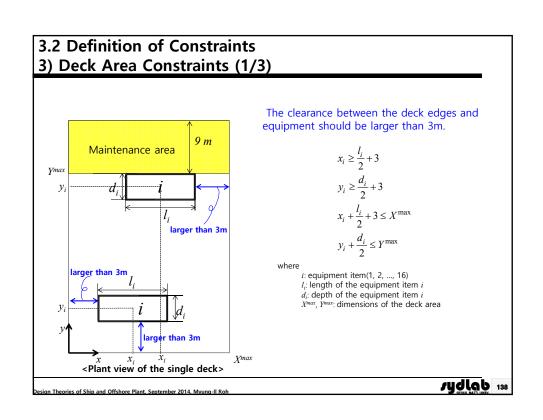

MR Separator: Mixed Refrigerant Separator MCHE: Main Crygenic Heat Exchanger MR Comp. Suction Drum: Mixed Refrigerant Compressor Suction Drum

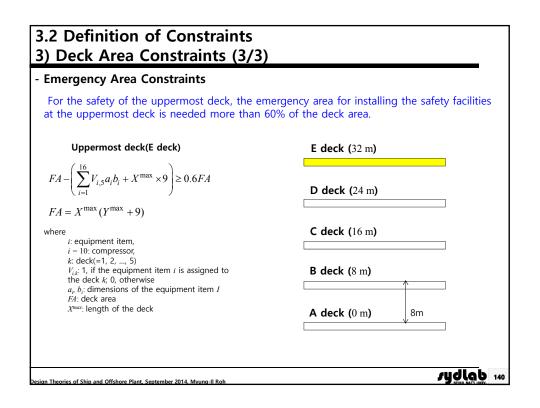

3.2 Definition of Constraints

1) Equipment Constraints for Multi-Deck (3/3)


For the Mixed Refrigerant Compressor(MR Comp.), the cooler for the compressor is installed in the lower deck of the compressor and the overhead crane for the maintenance of the compressor is installed in the upper deck of the compressor.




/ydlab 135


ries of Ship and Offshore Plant, September 2014, Myung-Il Rol

3.2 Definition of Constraints 3) Deck Area Constraints (2/3) - Working Space Area Constraints For the A deck and the deck where the compressor is installed, the working space at those decks is needed more than a 50% of the deck area. A deck E deck (32 m) $\sum_{i=1}^{6} V_{i,1} a_i b_i + X^{\max} \times 9 \ge \frac{1}{2} FA$ D deck (24 m) $FA = X^{\max} \left(Y^{\max} + 9 \right)$ C deck (16 m) where i: equipment item, B deck (8 m) a_i , b_i : dimensions of the equipment item iA deck (0 m) 8m \vec{FA} : deck area X^{max} : length of the deck sydlab 139 Theories of Ship and Offshore Plant, September 2014, Myung-Il Rol

3. Mathematical Module for Multi-Deck Equipment Layout 3.3 Definition of Objective Functions (1/2)

The objective function (W) is the minimization of the plant layout cost (connectivity cost + construction cost) and distance between the heat exchanger and centerline.

$$W = \sum_{i} \sum_{j \neq i} \left[W_{1,ij} \cdot TD_{ij} \right] + W_2 \cdot FA + W_3 \cdot y_i$$

i, j: equipment item TD_{ij} : total rectilinear distance between the equipment items i and j, connected each other by pipe E4: deck area

yi: distance between the heat exchanger and the centerline

$$FA = X^{\max} (Y^{\max} + 9)$$

Xmax, Ymax: dimensions of the deck area

$$TD_{ij} = |x_i - x_j| + |y_i - y_j| + U_{ij}$$

$$U_{ij} = \left| H \sum_{k=1}^{NF} k \left(V_{ik} - V_{jk} \right) + z_i - z_j \right|$$

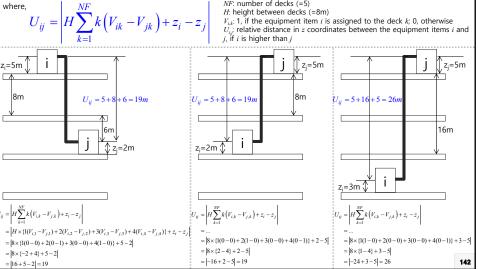
k: deck number

NF: number of decks (=5) H: height between decks (=8m)

 $V_{i,k}$ 1, if the equipment item i is assigned to the deck k; 0, otherwise relative distance in z coordinates between the equipment items iand j, if i is higher than j

of Ship and Offshore Plant, September 2014, Myung-II Ro

Maintenance 9 n


ydlab 141

3. Mathematical Module for Multi-Deck Equipment Layout 3.3 Definition of Objective Functions (2/2)

(1) Check where the equipment i and j are installed, (2) calculate the deck height, (3) and then calculate pipe length between them by considering the installation height of each equipment from bottom.

 $TD_{ij} = |x_i - x_j| + |y_i - y_j| + U_{ij}$

k: deck number
NF: number of decks (=5)

3. Mathematical Module for Multi-Deck Equipment Layout 3.4 Model for Optimal Equipment Layout of MR Module

- Design Variables [128]
 - 1) Coordinate of the equipment item (x, y)
 - x_i, y_i coordinates of geometrical center of the equipment item i [32 Real values]
 - 2) Orientation of the equipment item
 - O_i : 1, if the length of the equipment item i is parallel to x-axis; 0, otherwise [16 Binary values]
 - 3) Deck number of the equipment item
 - $V_{i,k}$: 1, if the equipment item i is assigned to the deck k; 0, otherwise [80 Binary values]
- Constraints [30+98=128]
 - 1) Equipment constraints for multi-deck
 - 30 equality constraints
 - 2) Non-overlapping constraints
 - 32 inequality constraints
 - 3) Deck area constraints
 - 66 inequality constraints
- **▶** Number of the design variables is larger than the number of the equality constraints.
- **▶** Indeterminate problem (Optimization problem)

Optimal Solution using Genetic Algorithm (GA)

acian Theories of Chin and Offshore Blant Contember 2014 Maring II Bol

/ydlab 143