System Control 3. Transfer Function and State Equation

Professor Kyongsu Yi

©2014 VDCL

Vehicle Dynamics and Control Laboratory Seoul National University Mathematical models

Simplicity versus accuracy

Linear systems – principle of superposition

Linear time invariant systems and time-varying systems

Transfer Functions

• Transfer Functions (Linear Time Invariant Systems)

-The ratio of the Laplace Transform of the output (response function) to the Laplace Transform of the input (driving function) under the assumption that all initial conditions are zero. Y(s)

$$\frac{Y(s)}{U(s)} = G(s)$$

$$U(s) \longrightarrow G(s) \longrightarrow Y(s)$$

Differential Equation

$$a_{0}y^{(n)} + a_{1}y^{(n-1)} + \dots + a_{n-1}y' + a_{n}y = b_{0}x^{m} + b_{1}x^{m-1} + \dots + b_{m-1}x' + b_{m}x$$

T. F.
$$G(s) = \frac{Y(s)}{X(s)} = \frac{b_{0}s^{m} + b_{1}s^{m-1} + \dots + b_{m-1}s + b_{m}}{a_{0}s^{n} + a_{1}s^{n-1} + \dots + a_{n-1}s + a_{n}} \quad n \ge m$$

Transfer Functions

$$\frac{Y(s)}{U(s)} = G(s)$$

$$U(s) \longrightarrow G(s) \longrightarrow Y(s)$$

• T.F.

- 1. A mathematical model
- 2. A property of a system itself independent of the magnitude and nature of the input
- 3. T. F. includes the units(input-output relations)
- 4. however, does not provide any information concerning the physical structure of the

system, many different systems can have identical T. F.

Convolution integral

$$\frac{Y(s)}{U(s)} = G(s)$$

Y(s) = G(s)U(s)

$$y(t) = \int_0^t g(\tau)u(t-\tau)d\tau$$
$$= \int_0^t g(t-\tau)u(\tau)d\tau$$

• Impulse response

$$\frac{Y(s)}{U(s)} = G(s)$$

Y(s) = G(s)

$$y(t) = L^{-1}[G(s)] = g(t)$$

• Transfer function and block diagram

$$\frac{Y(s)}{U(s)} = G(s)$$

Modern Control Engineering, Fifth Edition Katsuhiko Ogata

Figure 2-3 Block diagram of a closed-loop system.

Modern Control Engineering, Fifth Edition Katsuhiko Ogata

Modern Control Engineering, Fifth Edition Katsuhiko Ogata

Figure 2-5 (a) Cascaded system; (b) parallel system; (c) feedback (closed-loop) system.

Modern Control Engineering, Fifth Edition Katsuhiko Ogata

Figure 2-6 Block diagram of an industrial control system, which consists of an automatic controller, an actuator, a plant, and a sensor (measuring element).

Modern Control Engineering, Fifth Edition Katsuhiko Ogata **Controller Block**

ON-Off Control

Modern Control Engineering, Fifth Edition Katsuhiko Ogata

Figure 2-7 (a) Block diagram of an on-off controller; (b) block diagram of an on-off controller with differential gap.

Figure 2-9 Level h(t)-versus-*t* curve for the system shown in Figure 2–8(a).

PID Control

Figure 2-10 Block diagram of a proportional-plus-integral-plus-derivative controller.

Figure 2-11 Closed-loop system subjected to a disturbance.

Modern Control Engineering, Fifth Edition Katsuhiko Ogata

Figure 2-12 (a) *RC* circuit; (b) block diagram representing Equation (2–6); (c) block diagram representing Equation (2–7); (d) block diagram of the *RC* circuit.

Modern Control Engineering, Fifth Edition Katsuhiko Ogata

Feedback Control System

A block diagram (of a system) : a pictorial representation of the function performed by each component and of the flow of signals.

or

 $G_1(S) = C(s) \cdot G(s)$ ²¹

Transfer Functions

- Open loop T.F. $=\frac{B(s)}{E(s)} = \frac{H(s) \cdot Y(S)}{E(s)} = \frac{H(s)G_1(s)E(s)}{E(S)}$ $= H(s) \cdot G_1(s)$
- Feed forward T.F. $=\frac{Y(s)}{E(s)}=G_1(s)$
- Closed loop T.F. = $\frac{Y(s)}{R(s)}$ $R(s) \longrightarrow \frac{G_1}{1+G_1H} \longrightarrow Y(s)$

 $Y(s) = G_1(s)E(s) = G_1(s)[R(s) - B(s)]$ = G_1(s)[R(s) - H(s) · Y(s)]

 $[1 + G_1(s)H(s)]Y(s) = G_1(s)R(s)$

 $\frac{Y(s)}{R(s)} = \frac{G_1(s)}{1 + G_1(s)H(s)}$

Transfer Functions

Ex)

 $m\ddot{x} = u - b\dot{x} \qquad m\ddot{x} + b\dot{x} = u$ x(0) = 0 $\dot{x}(0) = 0$ $ms^{2}X(s) + bsX(s) = U(s)$ $(ms^{2} + bs)X(s) = U(s)$

$$\frac{X(s)}{U(s)} = \frac{1}{s(ms+b)}$$
: Transfer Function

Closed-loop system subjected to a disturbance

Closed-loop system subjected to a disturbance

$$R=0: \quad \frac{Y_D(s)}{D(s)} = \frac{G_2}{1+G_1G_2H} = G_D(s)$$
$$D=0: \quad \frac{Y_R(s)}{R(s)} = \frac{G_1G_2}{1+G_1G_2H} = G_R(s)$$
$$Y(s) = \frac{G_1G_2}{1+G_1G_2H}R + \frac{G_2}{1+G_1G_2H}D$$
$$= \frac{G_2}{1+G_1G_2H}[G_1R + D]$$

•
$$G_1 G_2 H >> 1$$

$$G_D(s) \cong \frac{G_2}{G_1 G_2 H} = \frac{1}{G_1 H}$$
$$G_1 H \gg 1 \qquad G_D = \varepsilon \ll 1$$

The effect of the disturbance is reduced \rightarrow Advantage of the closed-loop system

$$G_R(s) \approx \frac{G_1 G_2}{G_1 G_2 H} = \frac{1}{H}$$

Block diagram reduction

Figure 2-13 (a) Multiple-loop system; (b)–(e) successive reductions of the block diagram shown in (a)

Block Diagram Reduction

ex1)

$$\underbrace{U(s)}_{G_1(s)} \xrightarrow{Y_1(s)}_{Y_1(s)} \xrightarrow{Y_1(s)}_{G_2(s)} \xrightarrow{Y_2(s)}_{Y_2(s)}$$

 $Y_2(s) = G_2(s)Y_1(s) = G_2(s)G_1(s)U(s)$

Block Diagram Reduction

29

Block Diagram Reduction

30

Mason's Gain Formula

The overall gain

$$P = \frac{1}{\Delta} \sum_{k} P_{k} \Delta_{k}$$

 P_k = path gain of k-th forward path

$$\begin{split} &\Delta = \text{determinant} \\ &= 1 - \sum_{a} L_{a} - \sum_{b,c} L_{b} L_{c} - \sum_{d,e,f} L_{d} L_{e} L_{f} + \cdots \\ &\sum_{a} L_{a} = \text{sum of all individual loop gains} \\ &\sum_{b,c} L_{b} L_{c} = \text{sum of gain products of all possible combination of two non touching loops} \\ &\sum_{d,e,f} L_{d} L_{e} L_{f} = \text{sum of gain products of all possible combination of three non touching loops} \end{split}$$

 Δ_k = cofactors of the k-th forward path determinant of the graph with the loops touching the k-th forward path removed, that is, the cofactor Δ_k is obtained from Δ by removing the loops that touch path P_k

Mason's Gain Formula

(1) One Forward path : $P_1 = G_1 G_2 G_3$

(2) Three Individual Loops :
$$L_1 = G_1G_2H_1$$

 $L_2 = -G_2G_3H_2$
 $L_3 = -G_1G_2G_3$

③ No Non-touching Loops : $\Delta = 1 - (L_1 + L_2 + L_3)$

 $= 1 - G_1 G_2 H_1 + G_2 G_3 H_2 + G_1 G_2 G_3$

(4) $\Delta_1 : P_1$ touches all loops

$$\Delta_1 = 1$$

(5)
$$\frac{C(s)}{R(s)} = \frac{1}{\Delta} (P_1 \Delta_1)$$
$$= \frac{G_1 G_2 G_3}{1 - G_1 G_2 H_1 + G_2 G_3 H_2 + G_1 G_2 G_3}$$

32

$$m\ddot{x} = u - b\dot{x}$$
$$(ms^{2} + bs)X(s) = U(s)$$

• $m\ddot{x} + b\dot{x} = u$

$$\begin{aligned} x_1 &= x & \dot{x}_1 &= \dot{x} = x_2 \\ x_2 &= \dot{x} & \dot{x}_2 &= \ddot{x} = -\frac{b}{m}\dot{x} + \frac{u}{m} = -\frac{b}{m}x_2 + \frac{1}{m}u \end{aligned}$$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & -\frac{b}{m} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix} u$$
$$y = x_1 = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \end{bmatrix}$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \qquad \begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases}$$

First order matrix differential Eq. → State Equation

• State x

The smallest set of variables such that knowledge of these variables at $t = t_0$, together with the knowledge of the input for $t \ge t_0$, completely determines the behavior of the system at any time $t \ge t_0$

State Variables

The variables making up the smallest set of variables that determine the state of the dynamic system

ex) x_1 : displacement x_2 : velocity

State Vector

A vector that determines uniquely the system state x(t) for any time once the state at $t = t_0$ is given and the input u(t) for $t \ge t_0$ is specified

State Space

The n-dimensional space, whose coordinate axes consist of the x_1 axis, x_2 axis, ..., x_n axis is called a state space. Any state can be represented by a point in the state space

Linear Systems

• Linear Systems

 $\dot{x} = Ax + Bu$ y = Cx + Du

Linearization (of nonlinear system)

$$\dot{x} = f(x, u, t) = f(x, u)$$

$$x = x_0, u = u_0, \dot{x} = \dot{x}_0 = f_0 = 0$$

$$x = x_0 + \Delta x, u = u_0 + \Delta u$$

$$\dot{x} = f(x_0, u_0) + \frac{\partial f}{\partial x}\Big|_{x_0 u_0} \Delta x + \frac{\partial f}{\partial u}\Big|_{x_0 u_0} \Delta u + \frac{\partial^2 f}{\partial x^2}\Big|_{x_0 u_0} \Delta x^2 + \frac{\partial^2 f}{\partial u^2}\Big|_{x_0 u_0} \Delta u^2 + \cdots$$

$$\approx f_0 + K_1 \Delta x + K_2 \Delta u$$

$$\dot{x} - \dot{x}_0 = K_1 \Delta x + K_2 \Delta u$$

$$\Delta x, \Delta u : small$$

$$\Delta x = K_1 \Delta x + K_2 \Delta u$$
Approximation

Linear Systems

• Nonlinear Systems

• State : mathematical concept, not physical meaning

$$\begin{pmatrix} x_1 = x \\ x_2 = \dot{x} \end{pmatrix} \dot{x} = \begin{bmatrix} 0 & 1 \\ 0 & -\frac{b}{m} \end{bmatrix} x + \begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$$
$$\hat{x} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} x = \begin{bmatrix} x_1 + x_2 \\ x_2 \end{bmatrix} = \begin{bmatrix} x + \dot{x} \\ \dot{x} \end{bmatrix} = Tx$$
$$\begin{cases} \dot{x} = TAT^{-1}\hat{x} + TBU \\ y = CT^{-1}\hat{x} \end{cases}$$
$$x = T^{-1}\hat{x}$$
$$\begin{cases} \dot{x} = AT^{-1}\hat{x} + BU \end{cases}$$
$$\begin{cases} \dot{x} = \hat{A}\hat{x} + \hat{B}U \\ y = \hat{C}\hat{x} \end{cases}$$

Linear Systems

• Model :

Differential eq. Transfer Functions State eq.

State Eq. Unique x = Ax + Buy = Cx + Du x = Ax + Bu y = Cx + Du x(s) = AX(s) + BU(s) $X(s) = (sI - A)^{-1} BU(s)$ Y(s) = CX(s) + DU(s) $= \left[C(sI - A)^{-1} B + D\right]U(s)$ = G(s)U(S)

Ex 1) Simplified Quarter Car Model

 $\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 & 0 \\ -\frac{k}{m} & -\frac{b}{m} & \frac{k}{m} \\ 0 & 0 & 0 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ \frac{b}{m} \\ 1 \end{bmatrix} u$

$$m\ddot{x} = -b(\dot{x} - \dot{x}_r) - k(x - x_r)$$

$$m\ddot{x} + b(\dot{x} - \dot{x}_r) + k(x - x_r) = 0$$

$$m\ddot{x} + b\dot{x} + kx = b\dot{x}_r + kx_r$$

Laplace Transform

$$(ms^2 + bs + k)X(s) = (bs + k)X_r(s)$$

The transfer function

$$\frac{X(s)}{X_r(s)} = \frac{bs+k}{ms^2+bs+k}$$

State Eq : $\ddot{x} = -\frac{b}{m}\dot{x} - \frac{k}{m}x + \frac{b}{m}\dot{x}_r + \frac{k}{m}x_r$
let $x_1 = x$ $u = \dot{x}_r$
 $x_2 = \dot{x}$
 $x_3 = x_r$

then
$$\dot{x}_1 = \dot{x} = x_2$$

 $\dot{x}_2 = \ddot{x} = -\frac{b}{m}x_2 - \frac{k}{m}x_1 + \frac{k}{m}x_3 + \frac{b}{m}u$
 $\dot{x}_3 = \dot{x}_r = u$
41

Ex 2) Another Quarter Car Model (2 DOF 1/4 Car model)

42

•

State Equation :

$$x_{1} = y - x = x_{2} - x_{4}$$

$$x_{1} = y - x$$

$$x_{2} = \dot{y}$$

$$x_{2} = \ddot{y}$$

$$x_{3} = x - x_{r}$$

$$x_{4} = \dot{x}$$

$$\dot{x}_{4} = \ddot{x}$$

$$\dot{x}_{4} = \ddot{x} = \frac{k_{2}}{m_{1}}x_{1} + \frac{b}{m_{1}}(x_{2} - x_{4}) - \frac{k_{1}}{m_{1}}x_{3}$$

٠

•

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 & 0 & -1 \\ -\frac{k_2}{m_2} & -\frac{b}{m_2} & 0 & -\frac{b}{m_2} \\ 0 & 0 & 0 & 1 \\ \frac{k_2}{m_1} & \frac{b}{m_1} & -\frac{k_1}{m_1} & -\frac{b}{m_1} \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 0 \\ -1 \\ 0 \end{bmatrix} u \qquad u = \dot{x}_r$$

43

Block Diagram and Signal flow graph

Transfer function and state equation

State space representation of Linear Differential Equations

Signal Flow

 $\dot{x}(t) = Ax + Bu$ y = Cx + Du

----- : Signals on Line

ex1. First order $\dot{y} + ay = u$ $\frac{Y}{U} = \frac{1}{s+a}$

ex2. Second order

Thus, $\dot{x}_1 = x_2$ $\dot{x}_2 = x_3 + (u - x_1)$ $\dot{x}_3 = (z - p) \cdot (u - x_1) - px_3$

The state representation is as follows

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 1 \\ p - z & 0 & -p \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ z - p \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x_1$$

State-Space Representation of *nth-Order Systems of Linear Differential Equations*

$$y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} \dot{y} + a_n y = u$$

$$\begin{array}{ll} \dot{x}_{1} = \dot{y} = x_{2} \\ \dot{x}_{1} = \dot{y} = x_{2} \\ \dot{x}_{2} = \dot{y} \\ \vdots \\ \dot{x}_{2} = \ddot{y} = x_{3} \\ \vdots \\ \vdots \\ \dot{x}_{n-1} = y^{(n-1)} = x_{n} \\ \dot{x}_{n-1} = -a_{n}x_{1} - \dots - a_{1}x_{n} + u \end{array}$$

$$\dot{x} = Ax + Bu$$
$$y = Cx + Du$$

 $C = \begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix}$

Canonical Forms (T.F. → State Eq.)

Controllable Canonical Form Observable Canonical Form Diagonal (Jordan) Canonical Form

- ← Direct Programming Method
- ← Nested Programming Method
- ← Partial Fraction Expansion
- Controllable Canonical Form

$$G(s) = \frac{b_0 s^n + b_1 s^{n-1} + \dots + b_n}{s^n + a_1 s^{n-1} + \dots + a_n}$$

Ex) n=3 $G(s) = \frac{b_0 s^3 + b_1 s^2 + b_2 s + b_3}{s^3 + a_1 s^2 + a_2 s + a_3}$ $= b_0 + \frac{(b_1 - b_0 a_1) s^2 + (b_2 - b_0 a_2) s + (b_3 - b_0 a_3)}{s^3 + a_1 s^2 + a_2 s + a_3}$ $\int_{a_2}^{b_1' = b_1 - b_0 a_1} b_2' = b_2 - b_0 a_2$ $b_3' = b_3 - b_0 a_3$

53

Controllable Canonical Form

$$\frac{dx_1}{dt} = x_2$$

$$\frac{dx_2}{dt} = x_3$$

$$\frac{dx_3}{dt} = -a_3 x_1 - a_2 x_2 - a_1 x_3 + u$$

$$y = b_3 ' x_1 + b_2 ' x_2 + b_1 ' x_3 + b_0 u$$

$$\begin{bmatrix} \dot{x}_{1} \\ \dot{x}_{2} \\ \dot{x}_{3} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -a_{3} & -a_{2} & -a_{1} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} b_{3}' & b_{2}' & b_{1}' \end{bmatrix} x + \begin{bmatrix} b_{0} \end{bmatrix} u$$

Observable Canonical Form (Nested Programming)

$$\frac{dx_1}{dt} = x_2$$

$$\frac{dx_2}{dt} = x_3$$

$$\frac{dx_3}{dt} = -a_3x_1 - a_2x_2 - a_1x_3 + u$$

$$y = b_3'x_1 + b_2'x_2 + b_1'x_3 + b_0u$$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} -a_1 & 1 & 0 \\ -a_2 & 0 & 1 \\ -a_3 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x + \begin{bmatrix} b_0 \end{bmatrix} u$$

(Note : x in the controllable canonical form \neq x in the observable canonical form)

Diagonal (or Jordan) Canonical Form (Partial Fraction Expansion)

let $x_1 = y_1, x_2 = y_2, x_3 = y_3$ $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} K_1 \\ K_2 \\ K_3 \end{bmatrix} u$ $y = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} x$ ν

• Diagonal (or Jordan) Canonical Form (Partial Fraction Expansion)

Case 2. Multiple Roots

$$G(s) = \frac{B(s)}{(s - \lambda_m)^3} = \frac{K_1}{s - \lambda_m} + \frac{K_2}{(s - \lambda_m)^2} + \frac{K_3}{(s - \lambda_m)^3} \qquad \lambda_1 = \lambda_2 = \lambda_3 = \lambda_m$$

$$y_1 = \frac{1}{s - \lambda_m} u \qquad u \qquad 1 \qquad u \qquad y_1 = \frac{1}{s - \lambda_m} u \qquad y_1 = \frac{1}{s - \lambda_m}$$

• Diagonal (or Jordan) Canonical Form (Partial Fraction Expansion)

Case 2. Multiple Roots

$$\dot{x}_1 = \lambda_m x_1 + x_2$$

$$\dot{x}_2 = \lambda_m x_2 + x_3$$

$$\dot{x}_3 = \lambda_m x_3 + u$$

$$y = K_3 x_1 + K_2 x_2 + K_1 x_3$$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} \lambda_1 & 1 & 0 \\ 0 & \lambda_2 & 1 \\ 0 & 0 & \lambda_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} K_3 & K_2 & K_1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

• Diagonal (or Jordan) Canonical Form (Partial Fraction Expansion)

Case 3. Complex Roots

$$G(s) = \frac{1}{s^2 - 2\sigma s + \sigma^2 + \omega^2} = \frac{1}{[s - (\sigma + j\omega)][s - (\sigma - j\omega)]}$$
$$\frac{Y}{u} = G(s) = \frac{1}{s^2 - 2\sigma s + \sigma^2 + \omega^2}$$
$$= \frac{s^{-2}}{1 - 2\sigma s^{-1} + (\sigma^2 + \omega^2)s^{-2}}$$
$$\frac{Y}{s^{-2}} = \frac{u}{1 - 2\sigma s^{-1} + (\sigma^2 + \omega^2)s^{-2}} = Q(s)$$

$$\begin{cases} Y = s^{-2}Q(s) \\ Q(s)(1 - 2\sigma s^{-1} + (\sigma^{2} + \omega^{2})s^{-2}) = u \\ Q(s) = u + 2\sigma s^{-1}Q(s) - (\sigma^{2} + \omega^{2})s^{-2}Q(s) \\ \downarrow & \downarrow & \downarrow & \downarrow \\ u(s) & \downarrow & \downarrow & \downarrow \\ u(s) & \downarrow & \downarrow & \downarrow \\ 2\sigma & -(\sigma^{2} + \omega^{2}) & \downarrow \\ (\sigma^{2} + \omega^{2}) & \downarrow & \downarrow \\ (\sigma^{2} + \omega^{2}) & \downarrow \\ (\sigma^{2} +$$

59

• Diagonal (or Jordan) Canonical Form (Partial Fraction Expansion)

Case 3. Complex Roots

 $AP = P\Lambda$

Note : Complex Roots, Complex State x $\dot{x} = \Lambda x + bu$ y = Cx

→ Complex case의 diagonalization 방법 이용

$$\Lambda K = KJ$$

$$\Lambda = \begin{bmatrix} \sigma + j\omega & 0 \\ 0 & \sigma - j\omega \end{bmatrix} \qquad K = \begin{bmatrix} \frac{1}{2} & -\frac{j}{2} \\ \frac{1}{2} & \frac{j}{2} \end{bmatrix} \qquad K^{-1} = \frac{2}{j} \begin{bmatrix} \frac{j}{2} & \frac{j}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

$$J = K^{-1}\Lambda K$$

= $K^{-1}P^{-1}APK$ $J = \begin{bmatrix} \sigma & \omega \\ -\omega & \sigma \end{bmatrix}$

• Diagonal (or Jordan) Canonical Form (Partial Fraction Expansion)

Case 3. Complex Roots

• Diagonal (or Jordan) Canonical Form (Partial Fraction Expansion)

Case 3. Complex Roots

Step 1
$$\dot{x} = Ax + Bu$$

Step 2 let $x = P\xi$
 $\dot{\xi} = \underbrace{P^{-1}AP}_{\Lambda}\xi + P^{-1}Bu$: diagonal
Step 3 let $\xi = Kz$
 $\dot{z} = \underbrace{K^{-1}\Lambda K}_{J}z + K^{-1}P^{-1}Bu$
 $= \begin{bmatrix} \sigma & \omega \\ -\omega & \sigma \end{bmatrix} z + \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} u$
 $\begin{cases} x = P\xi = PKz \\ \dot{z} = \underbrace{K^{-1}\Lambda K}_{J}z + K^{-1}P^{-1}bu \\ y = CPKz \end{cases}$

Transformation of mathematical models with MATLAB

Sec. 2-6 pp.49-52

TRANSFORMATION OF MATHEMATICAL MODELS WITH MATLAB

 $\frac{Y(s)}{U(s)} = \frac{numerator \text{ polynomial in } s}{denominator \text{ polynomial in } s} = \frac{num}{den}$

the MATLAB command [A,B,C,D] = tf2ss(num,den)

There are many (infinitely many) state-space representations for the same system. The MATLAB command gives one possible such state-space representation.

Transformation from Transfer Function to State Space Representation

$$\frac{Y(s)}{U(s)} = \frac{s}{(s+10)(s^2+4s+16)} = \frac{s}{s^3+14s^2+56s+160}$$

possible state-space representations (among infinitely many alternatives)

$$\begin{bmatrix} \dot{x}_{1} \\ \dot{x}_{2} \\ \dot{x}_{3} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -160 & -56 & -14 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ -14 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 \end{bmatrix} u$$
$$\begin{bmatrix} \dot{x}_{1} \\ \dot{x}_{2} \\ \dot{x}_{3} \end{bmatrix} = \begin{bmatrix} -14 & -56 & -160 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} u$$
$$y = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} + \begin{bmatrix} 0 \end{bmatrix} u$$

```
MATLAB Program 2–2
num = [1 0];
den = [1 14 56 160];
[A,B,C,D] = tf2ss(num,den)
```

Transformation from State Space Representation to Transfer Function.

[num,den] = ss2tf(A,B,C,D,iu)

systems with more than one input

[num,den] = ss2tf(A,B,C,D)

MATLAB Program 2–3 $A = [0 \ 1 \ 0; \ 0 \ 0 \ 1; \ -5 \ -25 \ -5];$ $B = [0; \ 25; \ -120];$ $C = [1 \ 0 \ 0];$ D = [0]; [num,den] = ss2tf(A,B,C,D) num = $0 \ 0.0000 \ 25.0000 \ 5.0000$

den=

1.0000 5.0000 25.0000 5.0000 % ***** The same result can be obtained by entering the following command: ***** [num,den] = ss2tf(A,B,C,D,1) num = 0 0.0000 25.0000 5.0000

den =

1.0000 5.0000 25.0000 5.0000

End of section 3 (Ch. 2 of Ogata)

Loading Effect

No Loading Effect

Block can be connected in series only if the output of one block is not affected by the next following block.

Z(s) : complex impedance

If the input impedance of the second element is infinite, the output of the first element is not affected by connecting it to the second element.

No Loading Effect

No Loading Effect

ex1)

P.90.Ogata

$$\frac{E_o(s)}{E_i(s)} = \frac{1}{R_1 C_1 R_2 C_2 s^2 + (R_1 C_1 + R_2 C_2 + R_1 C_2) s + 1}$$