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Mathematical models 
 
Simplicity versus accuracy  
 
Linear systems – principle of superposition  
 
Linear time invariant systems and time-varying systems 
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• Transfer Functions (Linear Time Invariant Systems) 
 
 
 
 
 
 
• Differential Equation  
 
 
 

Transfer Functions 
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• T.F.  
   1. A mathematical model 

   2. A property of a system itself independent of the magnitude and nature of the input 

   3. T. F. includes the units( input-output relations)  

   4. however, does not provide any information concerning the physical structure of the 

system, many different systems can have identical T. F. 

Transfer Functions 
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• Convolution integral  
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• Impulse response  
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• Transfer function and block diagram 

( ) ( )
( )

Y s G s
U s

=



 Copyright ©2010, ©2002, ©1997 by Pearson Education, Inc. 
All rights reserved. 

Modern Control Engineering, Fifth Edition 
Katsuhiko Ogata 

Figure 2-2   Summing point. 
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Figure 2-3   Block diagram of a closed-loop system. 
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Figure 2-4   Closed-loop system. 
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Figure 2-5   (a) Cascaded system; (b) parallel system; (c) feedback (closed-loop) system. 
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Figure 2-6   Block diagram of an industrial control system, which consists of an automatic controller, an actuator, a 
plant, and a sensor (measuring element). 
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Controller Block  
 

ON-Off Control 
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Figure 2-8   (a) Liquid-level control system; (b) electromagnetic valve. 
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Figure 2-7   (a) Block diagram of an on–off controller; (b) block diagram of an on–off controller with differential gap. 
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Figure 2-9   Level h(t)-versus-t curve for the system shown in Figure 2–8(a). 
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PID Control 
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Figure 2-10   Block diagram of a proportional-plus-integral-plus-derivative controller. 
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Figure 2-11   Closed-loop system subjected to a disturbance. 
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Figure 2-12   (a) RC circuit; (b) block diagram representing Equation (2–6); (c) block diagram representing Equation 
(2–7); (d) block diagram of the RC circuit. 
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Feedback Control System 
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• Block Diagram 

A block diagram (of a system) : a pictorial representation of the function performed  
by each component and of the flow of signals. 
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• Open loop T.F. 
 
 
• Feed forward T.F. 
 
• Closed loop T.F. 
 

Transfer Functions 
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b 

Ex) 
 
 
 

Transfer Functions 

u (force) 
x ( displacement ) 

lubrication oil 
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Closed-loop system subjected to a disturbance 
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Closed-loop system subjected to a disturbance 
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Block diagram reduction 
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Figure 2-13   (a) Multiple-loop system; (b)–(e) successive reductions of the block diagram shown in (a). 
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Block Diagram Reduction 
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Block Diagram Reduction 
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Block Diagram Reduction 
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Mason’s Gain Formula 

The overall gain  
 
 
 = path gain of k-th forward path 
 
 = determinant 
 =  
 
  = sum of all individual loop gains 
 
  = sum of gain products of all possible combination of two non touching loops 
 
  = sum of gain products of all possible combination of three non touching loops 
 
 
 = cofactors of the k-th forward path determinant of the graph with the loops touching 
 the k-th forward path removed, that is, the cofactor    is obtained from    by removing 
 the loops that touch path  
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Mason’s Gain Formula 

2H

3G2G1G

1H

+ 

– 

+ 

+ 

R C 

11yH

1y 2y+ 

– 

① One Forward path :  
 

② Three Individual Loops :  
 
 
 
③ No Non-touching  Loops : 
 
 
④   :     touches all loops 
    
 
⑤  
 
 
 

1 1 2 3P G G G=

1 1 2 1

2 2 3 2

3 1 2 3

L G G H
L G G H
L G G G

=
= −

= −

1∆
1 2 1 2 3 2 1 2 31 G G H G G H G G G= − + +

1 1∆ =

( )1 2 31 L L L∆ = − + +

1P

( )
( ) ( )1 1

1C s
P

R s
= ∆
∆

1 2 3

1 2 1 2 3 2 1 2 31
G G G

G G H G G H G G G
=

− + +



33 

Controller 
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State Equation 
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• State 
 
 
 
• State Variables 
 
 
 
• State Vector 
 
 
 

x
The smallest set of variables such that knowledge of these variables at          , together 
with the knowledge of the input for         , completely determines the behavior of the 
system at any time  

0t t=
0t t≥

0t t≥

The variables making up the smallest set of variables that determine the state of the 
dynamic system 
 ex) x1 : displacement      x2 : velocity 

x1 , x2 , x3 … state variables 
 
 
 
 
 
A vector that determines uniquely the system state x(t) for any time         once the state 
at         is given and the input u(t) for          is specified 
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State Equation 
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• State Space 
 
 

The n-dimensional space, whose coordinate axes consist of the x1 axis, x2 axis, …, xn axis 
is called a state space. Any state can be represented by a point in the state space 
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Linear Systems 
• Linear Systems 
 
 
 
• Linearization (of nonlinear system) 
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Linear Systems 
• Nonlinear Systems                           Linear systems 
           Linearization 

 
 
 
 
 
• State :  mathematical concept, not physical meaning 
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Linear Systems 
• Model : 
     
 
 
 
 
•            State Eq.                              T.F. 
 

Unique 

Not unique 

Differential eq. 
Transfer Functions 
State eq. 
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Vehicle Suspension 
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Ex 1) Simplified Quarter Car Model 
Vehicle Suspension 
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Laplace Transform 
 
 
The transfer function 
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Ex 2) Another Quarter Car Model ( 2 DOF ¼ Car model) 
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Applying the Newton’s second law to the system, we obtain 
 
 
 
 
Hence we have 
 
 
 
 
Taking Laplace Transform 
 
 
 
 
Eliminating X(s) from the last two equations, we have 
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State Equation : 
            let  
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Block Diagram and Signal flow graph 
 
Transfer function and state equation 
 
State space representation of Linear Differential 
Equations 
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Block Diagram 
: Signals on Line 

: Transfer function inside the box (block) 
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let 
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State-Space Representation of nth-Order Systems of Linear 
Differential Equations 
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Canonical Forms 
• Canonical Forms (T.F.  State Eq.) 
 
  Controllable Canonical Form    Direct Programming Method 
  Observable Canonical Form    Nested Programming Method 
  Diagonal (Jordan) Canonical Form   Partial Fraction Expansion 

 
• Controllable Canonical Form 
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Canonical Forms 
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Canonical Forms 
• Controllable Canonical Form 
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Canonical Forms 
• Observable Canonical Form (Nested Programming) 
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dt
y b x b x b x b u

=

=

= − − − +

= + + +

1 1 11

2 2 2 2

33 3 3

'1 0
0 1 '
0 0 '

x x ba
x a x b u

ax x b

−      
      = − +      
      −      







[ ] [ ]01 0 0y x b u= +

(Note : x in the controllable canonical form          x in the observable canonical form) ≠
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1/ s

1λ

1y
1sy

2λ

2sy
2y

1/ s

1/ s

3λ

3sy 3y

yu

Canonical Forms 
• Diagonal (or Jordan) Canonical Form (Partial Fraction Expansion) 
 

 
 
  
 
 

 
 

Case 1. Distinct Roots  ( )1 2 3λ λ λ≠ ≠

31 2

1 2 3

( )( )
( )

KK KB sG s
A s s s sλ λ λ

= = + +
− − −

3

1 2 3
1

( ) ( )i

i i

KY s u s y y y
s λ=

= = + +
−∑

i
i

i

Ky u
s λ

=
−

i i i isy y K uλ= +

1/ s

iλ

iyu

ik

isy

let  1 1 2 2 3 3, ,x y x y x y= = =

1 1 11

2 2 2 2

33 3 3

0 0
0 0
0 0

x x K
x x K u
x x K

λ
λ

λ

      
      = +      
            







[ ]1 1 1y x=
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Canonical Forms 
• Diagonal (or Jordan) Canonical Form (Partial Fraction Expansion) 
 

 
 
  
 
 

 
 

Case 2. Multiple Roots  

( )3
( )( )

m

B sG s
s λ

=
− ( ) ( )

31 2
2 3

m m m

KK K
s s sλ λ λ

= + +
− − −

1
1

m

y u
s λ

=
−

1 1msy y uλ= +
1/ s

mλ

1y
u

1

1sy

1 2 3 mλ λ λ λ= = =

( )2 2
1

m

y u
s λ

=
−

1/ s

mλ

u

1

2y
1

1/ s

mλ

3x

1/ s

mλ

u

1
1/ s

mλ

1

2x

1

mλ

1x
3K

Y

2K

1K
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Canonical Forms 

Case 2. Multiple Roots  

1 1 2

2 2 3

3 3

3 1 2 2 1 3

m

m

m

x x x
x x x
x x u
y K x K x K x

λ
λ
λ

= +

= +

= +

= + +







1 11

2 2 2

33 3

1 0 0
0 1 0
0 0 1

x x
x x u
x x

λ
λ

λ

      
      = +      
            







[ ]
1

3 2 1 2

3

x
y K K K x

x

 
 =  
  

• Diagonal (or Jordan) Canonical Form (Partial Fraction Expansion) 
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Canonical Forms 

Case 3. Complex Roots 

• Diagonal (or Jordan) Canonical Form (Partial Fraction Expansion) 
 

 
 
  
 
 

 
 

( ) ( )2 2 2

1 1( )
2

G s
s s s j s jσ σ ω σ ω σ ω

= =
− + + − + − −      

2 2 2

1( )
2

Y G s
u s sσ σ ω
= =

− + +

( )
2

1 2 2 21 2
s

s sσ σ ω

−

− −
=

− + +

( )2 1 2 2 2
( )

1 2
Y u Q s
s s sσ σ ω− − −

= =
− + +

( )( )
2

1 2 2 2

( )

( ) 1 2

Y s Q s

Q s s s uσ σ ω

−

− −

=

− + + =

( )1 2 2 2( ) 2 ( ) ( )Q s u s Q s s Q sσ σ ω− −= + − +

1 ( )s Q s−1/ s

2σ
( )u s

1
1/ s

2x ( )Y S
( )Q s 2 ( )s Q s−

1x

( )2 2σ ω− +

1 1
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Canonical Forms 

Case 3. Complex Roots 

• Diagonal (or Jordan) Canonical Form (Partial Fraction Expansion) 
 

 
 
  
 
 

 
  Complex case의 diagonalization 방법 이용 

x x bu
y Cx
= Λ +
=



0
0

j
j

σ ω
σ ω

+ 
Λ =  − 

1
2 2
1
2 2

j

K
j

 − 
=  
 
  

1 2 2 2
1 1
2 2

j j

K
j

−

 
 

=  
 −  

K KJΛ =

J
σ ω
ω σ

 
=  − 

Note : Complex Roots, Complex State x 

1J K K−= Λ
1 1K P APK− −=

AP P= Λ
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Canonical Forms 

Case 3. Complex Roots 

• Diagonal (or Jordan) Canonical Form (Partial Fraction Expansion) 
 

 
 
  
 
 

 
 

[ ]

1

2

1 0

b
z z u

b

y z

σ ω
ω σ

  
= +   −   
=



Ex) 

1

( )Y s
σ

1/ s

1/ s

1b

( )u s

2b

( )u s
σ

ω−

ω

0
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Canonical Forms 

Case 3. Complex Roots 

• Diagonal (or Jordan) Canonical Form (Partial Fraction Expansion) 
 

 
 
  
 
 

 
 

x Ax Bu= +

let 
    

   : diagonal 
1 1

x P
P AP P Bu
ξ

ξ ξ− −

Λ

=

= +



let 
    

   
1 1 1

J

Kz
z K K z K P Bu
ξ

− − −

=

= Λ +



1

2

b
z u

b
σ ω
ω σ

  
= +   −   

1 1 1

J

x P PKz
z K K z K P bu

y CPKz

ξ
− − −

 = =
 = Λ +

 =





Step 1 

Step 2 

Step 3 
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Transformation of 
mathematical models with 
MATLAB 
 
Sec. 2-6 pp.49-52 
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TRANSFORMATION OF MATHEMATICAL 
MODELS WITH MATLAB 

Y(s) numerator polynomial in s num
U(s) denominator polynomial in s den

= =

[A,B,C,D] = tf2ss(num,den) 
the MATLAB command 

There are many (infinitely many) state-space 
representations for the same system.The 
MATLAB command gives one possible such 
state-space representation. 
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Transformation from Transfer Function to State 
Space Representation 

2 3 2

Y(s) s s
U(s) (s+10)(s +4s+16) s +14s +56s+160

= =

[ ]

1 1

2 2

3 3

0 1 0 0
0 0 1 1
160 56 14 14

1 0 0 [0]

x x
x x u
x x

y u

       
       = +       
       − − − −       
= +







[ ]

1 1

2 2

3 3

14 56 160 1
1 0 0 0
0 1 0 0

0 1 0 [0]

x x
x x u
x x

y u

− − −       
       = +       
              
= +







possible state-space representations (among infinitely 
many alternatives) 
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MATLAB Program 2–2 
num = [1 0]; 
den = [1 14 56 160]; 
[A,B,C,D] = tf2ss(num,den) 
 
A = 
     -14  -56  -160 
        1     0       0 
        0     1       0 
B = 
     1 
     0 
     0 
C = 
       0 1 0 
D = 
       0 
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Transformation from State Space Representation to Transfer 
Function. 

[num,den] = ss2tf(A,B,C,D,iu) 

[num,den] = ss2tf(A,B,C,D) 

systems with more than one input 
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MATLAB Program 2–3 
A = [0 1 0; 0 0 1; -5 -25 -5]; 
B = [0; 25; -120]; 
C = [1 0 0]; 
D = [0]; 
[num,den] = ss2tf(A,B,C,D) 
num = 
         0   0.0000   25.0000   5.0000 
den= 
        1.0000   5.0000   25.0000   5.0000 
% ***** The same result can be obtained by 
entering the following command: ***** 
[num,den] = ss2tf(A,B,C,D,1) 
num = 
         0 0.0000 25.0000 5.0000 
den = 
        1.0000 5.0000 25.0000 5.0000 
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End of section 3 
(Ch. 2 of Ogata) 
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Loading Effect 
 
• No Loading Effect 
 
Block can be connected in series only if the output of one block is not affected by 
the next following block. 

If the input impedance of the second element is infinite, the output of the first 
element is not affected by connecting it to the second element. 

R1 R2

C2C1

Isolating
Amplifier
(Gain K)

( ) ( ) ( )V s I s Z s=

( )Z s : complex impedance 
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ex1) 1R
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No Loading Effect 
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ex1) 
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1 1 2 2 1 1 2 2 1 2
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o

i

E s
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No Loading Effect 
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