System Control

3. Transfer Function and State Equation

Professor Kyongsu Yi © 2014 VDCL

Vehicle Dynamics and Control Laboratory Seoul National University

Mathematical models

Simplicity versus accuracy

Linear systems - principle of superposition

Linear time invariant systems and time-varying systems

Transfer Functions

- Transfer Functions (Linear Time I nvariant Systems)

-The ratio of the Laplace Transform of the output (response function) to the Laplace Transform of the input (driving function) under the assumption that all initial conditions are zero.

$$
\frac{Y(s)}{U(s)}=G(s)
$$

- Differential Equation

$$
\begin{gathered}
a_{0} y^{(n)}+a_{1} y^{(n-1)}+\cdots+a_{n-1} y^{\prime}+a_{n} y=b_{0} x^{m}+b_{1} x^{m-1}+\cdots \cdots+b_{m-1} x^{\prime}+b_{m} x \\
\text { T. F. } \quad G(s)=\frac{Y(s)}{X(s)}=\frac{b_{0} s^{m}+b_{1} s^{m-1}+\cdots+b_{m-1} s+b_{m}}{a_{0} s^{n}+a_{1} s^{n-1}+\cdots+a_{n-1} s+a_{n}} \quad n \geq m
\end{gathered}
$$

Transfer Functions

- T.F.

1. A mathematical model
2. A property of a system itself independent of the magnitude and nature of the input
3. T. F. includes the units(input-output relations)
4. however, does not provide any information concerning the physical structure of the system, many different systems can have identical T. F.

- Convolution integral

$$
\begin{aligned}
& \frac{Y(s)}{U(s)}=G(s) \\
& Y(s)=G(s) U(s) \\
& y(t)=\int_{0}^{t} g(\tau) u(t-\tau) d \tau \\
& =\int_{0}^{t} g(t-\tau) u(\tau) d \tau
\end{aligned}
$$

- I mpulse response

$$
\begin{aligned}
& \frac{Y(s)}{U(s)}=G(s) \\
& Y(s)=G(s) \\
& y(t)=L^{-1}[G(s)]=g(t)
\end{aligned}
$$

- Transfer function and block diagram

$$
\frac{Y(s)}{U(s)}=G(s)
$$

Figure 2-2 Summing point.

Figure 2-3 Block diagram of a closed-loop system.

Summing point

Branch point

Figure 2-4 Closed-loop system.

Figure 2-5 (a) Cascaded system; (b) parallel system; (c) feedback (closed-loop) system.

Figure 2-6 Block diagram of an industrial control system, which consists of an automatic controller, an actuator, a plant, and a sensor (measuring element).

Controller Block

ON-Off Control

Figure 2-8 (a) Liquid-level control system; (b) electromagnetic valve.

Figure 2-7 (a) Block diagram of an on-off controller; (b) block diagram of an on-off controller with differential gap.

(a)

(b)

Figure 2-9 Level $h(t)$-versus- t curve for the system shown in Figure 2-8(a).

PID Control

Figure 2-10 Block diagram of a proportional-plus-integral-plus-derivative controller.

Figure 2-11 Closed-loop system subjected to a disturbance.

Figure 2-12 (a) RC circuit; (b) block diagram representing Equation (2-6); (c) block diagram representing Equation (2-7); (d) block diagram of the RC circuit.

(a)

(c)
(b)

(d)

Feedback Control System

- Block Diagram

A block diagram (of a system) : a pictorial representation of the function performed by each component and of the flow of signals.

or

$$
G_{1}(S)=C(s) \cdot G(s)
$$

Transfer Functions

- Open loop T.F. $=\frac{B(s)}{E(s)}=\frac{H(s) \cdot Y(S)}{E(s)}=\frac{H(s) G_{1}(s) E(s)}{E(S)}$

$$
=H(s) \cdot G_{1}(s)
$$

- Feed forward T.F. $=\frac{Y(s)}{E(s)}=G_{1}(s)$
- Closed loop T.F. $=\frac{Y(s)}{R(s)}$

$$
\begin{aligned}
& Y(s)=G_{1}(s) E(s)=G_{1}(s)[R(s)-B(s)] \\
& =G_{1}(s)[R(s)-H(s) \cdot Y(s)] \\
& {\left[1+G_{1}(s) H(s)\right] Y(s)=G_{1}(s) R(s)}
\end{aligned}
$$

$$
\frac{Y(s)}{R(s)}=\frac{G_{1}(s)}{1+G_{1}(s) H(s)}
$$

$$
\frac{G_{\text {feed foward }}}{1+G_{\text {open }}(s)}
$$

Transfer Functions

Ex)

Closed-loop system subjected to a disturbance

$$
\begin{aligned}
Y_{D}(s) & =G_{2}(s)[D(s)+U(s) \\
& =G_{2}(s) D(s)+G_{2}(s) G_{1}(s) E(s) \\
& =G_{2}(s) D(s)+G_{2}(s) G_{1}(s)\left[-H(s) Y_{D}(s)\right]
\end{aligned}
$$

Closed-loop system subjected to a disturbance

$$
\begin{aligned}
& \mathrm{R}=0: \quad \frac{Y_{D}(s)}{D(s)}=\frac{G_{2}}{1+G_{1} G_{2} H}=G_{D}(s) \\
& \mathrm{D}=0: \quad \frac{Y_{R}(s)}{R(s)}=\frac{G_{1} G_{2}}{1+G_{1} G_{2} H}=G_{R}(s) \\
& Y(s)=\frac{G_{1} G_{2}}{1+G_{1} G_{2} H} R+\frac{G_{2}}{1+G_{1} G_{2} H} D \\
&=\frac{G_{2}}{1+G_{1} G_{2} H}\left[G_{1} R+D\right]
\end{aligned}
$$

- $G_{1} G_{2} H \gg 1$

$$
\begin{aligned}
& G_{D}(s) \cong \frac{G_{2}}{G_{1} G_{2} H}=\frac{1}{G_{1} H} \\
& G_{1} H \gg 1 \quad G_{D}=\varepsilon \ll 1
\end{aligned}
$$

The effect of the disturbance is reduced \rightarrow Advantage of the closed-loop system

$$
G_{R}(s) \approx \frac{G_{1} G_{2}}{G_{1} G_{2} H}=\frac{1}{H}
$$

Block diagram reduction

Figure 2-13 (a) Multiple-loop system; (b)-(e) successive reductions of the block diagram shown in (a)

(e)

Block Diagram Reduction

ex1)

$$
\begin{aligned}
& \xrightarrow{U(s)} \xrightarrow{G_{1}(s)} \xrightarrow{Y_{1}(s)} \xrightarrow{Y_{1}(s)} \xrightarrow{G_{2}(s)} \xrightarrow{Y_{2}(s)} \\
& Y_{2}(s)=G_{2}(s) Y_{1}(s)=G_{2}(s) G_{1}(s) U(s)
\end{aligned}
$$

ex2)

Block Diagram Reduction

Block Diagram Reduction

$$
\frac{\frac{G_{1} G_{2} G_{3}}{1-G_{2} G_{3} H_{2}}}{1+\frac{G_{1} G_{2} G_{3}}{1-G_{2} G_{3} H_{2}} \frac{H_{1}}{G_{3}}}=\frac{G_{1} G_{2} G_{3}}{1-G_{2} G_{3} H_{2}+G_{1} G_{2} H_{1}}
$$

$$
\frac{\frac{G_{1} G_{2} G_{3}}{1-G_{2} G_{3} H_{2}+G_{1} G_{2} H_{1}}}{1+\frac{G_{1} G_{2} G_{3}}{1-G_{2} G_{3} H_{2}+G_{1} G_{2} H_{1}}}=\frac{G_{1} G_{2} G_{3}}{1-G_{2} G_{3} H_{2}+G_{1} G_{2} H_{1}+G_{1} G_{2} G_{3}}
$$

Mason's Gain Formula

The overall gain

$$
P=\frac{1}{\Delta} \sum_{k} P_{k} \Delta_{k}
$$

$P_{k}=$ path gain of k-th forward path
$\Delta=$ determinant
$=1-\sum_{a} L_{a}-\sum_{b, c} L_{b} L_{c}-\sum_{d, e, f} L_{d} L_{e} L_{f}+\cdots$
$\sum_{a} L_{a}=$ sum of all individual loop gains
$\sum_{b, c} L_{b} L_{c}=$ sum of gain products of all possible combination of two non touching loops
$\sum_{d, e, f} L_{d} L_{e} L_{f}=$ sum of gain products of all possible combination of three non touching loops
$\Delta_{k}=$ cofactors of the k-th forward path determinant of the graph with the loops touching the k-th forward path removed, that is, the cofactor Δ_{k} is obtained from Δ by removing the loops that touch path P_{k}

Mason's Gain Formula

(1) One Forward path: $P_{1}=G_{1} G_{2} G_{3}$
(2) Three Individual Loops: $L_{1}=G_{1} G_{2} H_{1}$

$$
\begin{aligned}
& L_{2}=-G_{2} G_{3} H_{2} \\
& L_{3}=-G_{1} G_{2} G_{3}
\end{aligned}
$$

(3) No Non-touching Loops : $\Delta=1-\left(L_{1}+L_{2}+L_{3}\right)$

$$
=1-G_{1} G_{2} H_{1}+G_{2} G_{3} H_{2}+G_{1} G_{2} G_{3}
$$

(4) $\Delta_{1}: P_{1}$ touches all loops

$$
\Delta_{1}=1
$$

(5) $\frac{C(s)}{R(s)}=\frac{1}{\Delta}\left(P_{1} \Delta_{1}\right)$

$$
=\frac{G_{1} G_{2} G_{3}}{1-G_{1} G_{2} H_{1}+G_{2} G_{3} H_{2}+G_{1} G_{2} G_{3}}
$$

State Equation

$$
\begin{aligned}
& m \ddot{x}=u-b \dot{x} \\
& \left(m s^{2}+b s\right) X(s)=U(s)
\end{aligned}
$$

State Equation

- $m \ddot{x}+b \dot{x}=u$

$$
\begin{array}{ll}
x_{1}=x & \dot{x}_{1}=\dot{x}=x_{2} \\
x_{2}=\dot{x} & \dot{x}_{2}=\ddot{x}=-\frac{b}{m} \dot{x}+\frac{u}{m}=-\frac{b}{m} x_{2}+\frac{1}{m} u \\
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
0 & -\frac{b}{m}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
\frac{1}{m}
\end{array}\right] u} \\
y=x_{1}=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
x=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \quad\left\{\begin{array}{l}
\dot{x}=A x+B u \\
y=C x+D u
\end{array}\right.
\end{array}
$$

First order matrix differential Eq.
\rightarrow State Equation

State Equation

- State x

The smallest set of variables such that knowledge of these variables at $t=t_{0}$, together with the knowledge of the input for $t \geq t_{0}$, completely determines the behavior of the system at any time $t \geq t_{0}$

- State Variables

The variables making up the smallest set of variables that determine the state of the dynamic system

$$
\text { ex) } x_{1} \text { : displacement } \quad x_{2} \text { : velocity }
$$

- State Vector
$\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \ldots$ state variables

$$
x=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

A vector that determines uniquely the system state $x(t)$ for any time once the state at $t=t_{0}$ is given and the input $\mathrm{u}(\mathrm{t})$ for $t \geq t_{0}$ is specified

State Equation

- State Space

The n-dimensional space, whose coordinate axes consist of the x_{1} axis, x_{2} axis, ..., x_{n} axis is called a state space. Any state can be represented by a point in the state space

Linear Systems

- Linear Systems

$$
\begin{aligned}
& \dot{x}=A x+B u \\
& y=C x+D u
\end{aligned}
$$

- Linearization (of nonlinear system)

$$
\begin{aligned}
& \dot{x}=f(x, u, t)=f(x, u) \\
& x=x_{0}, u=u_{0}, \dot{x}=\dot{x}_{0}=f_{0}=0 \\
& x=x_{0}+\Delta x, u=u_{0}+\Delta u \\
& \dot{x}=f\left(x_{0}, u_{0}\right)+\left.\frac{\partial f}{\partial x}\right|_{x_{0} u_{0}} \Delta x+\left.\frac{\partial f}{\partial u}\right|_{x_{0} u_{0}} \Delta u+\left.\frac{\partial^{2} f}{\partial x^{2}}\right|_{x_{0} u_{0}} \Delta x^{2}+\left.\frac{\partial^{2} f}{\partial u^{2}}\right|_{x_{0} u_{0}} \Delta u^{2}+\cdots \\
& \cong f_{0}+K_{1} \Delta x+K_{2} \Delta u \\
& \dot{x}-\dot{x}_{0}=K_{1} \Delta x+K_{2} \Delta u \quad \Delta x, \Delta u: \text { small } \\
& \Delta x=K_{1} \Delta x+K_{2} \Delta u \quad \text { Approximation }
\end{aligned}
$$

Linear Systems

- Nonlinear Systems \longrightarrow Linear systems

- State : mathematical concept, not physical meaning

$$
\left.\left.\left.\begin{array}{l}
\quad \begin{array}{l}
x_{1}=x \\
x_{2}=\dot{x}
\end{array} \quad \dot{x}=\left[\begin{array}{cc}
0 & 1 \\
0 & -\frac{b}{m}
\end{array}\right] x+\left[\begin{array}{l}
0 \\
\frac{1}{m}
\end{array}\right] u \\
y=\left[\begin{array}{ll}
1 & 0
\end{array}\right] x
\end{array}\right\} \begin{array}{l}
\hat{x}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] x=\left[\begin{array}{c}
x_{1}+x_{2} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
x+\dot{x} \\
\dot{x}
\end{array}\right]=T x \quad\left\{\begin{array}{l}
\dot{\hat{x}}=T A T^{-1} \hat{x}+T B U \\
y=C T^{-1} \hat{x}
\end{array}\right. \\
x=T^{-1} \hat{x}
\end{array}\right\} \begin{array}{l}
\dot{\hat{x}}=\hat{A} \hat{x}+\hat{B} U \\
y=\hat{C} \hat{x}
\end{array}\right]
$$

Linear Systems

- Model :

Differential eq.
Transfer Functions
State eq.

Unique

$$
\begin{aligned}
& \dot{x}=A x+B u \\
& y=C x+D u
\end{aligned}
$$

$$
\begin{aligned}
s X(s) & =A X(s)+B U(s) \\
X(s) & =(s I-A)^{-1} B U(s) \\
Y(s) & =C X(s)+D U(s) \\
& =\left[C(s I-A)^{-1} B+D\right] U(s) \\
& =G(s) U(S)
\end{aligned}
$$

Vehicle Suspension

Vehicle Suspension

Ex 1) Simplified Quarter Car Model

$$
\begin{aligned}
& m \ddot{x}=-b\left(\dot{x}-\dot{x}_{r}\right)-k\left(x-x_{r}\right) \\
& m \ddot{x}+b\left(\dot{x}-\dot{x}_{r}\right)+k\left(x-x_{r}\right)=0 \\
& m \ddot{x}+b \dot{x}+k x=b \dot{x}_{r}+k x_{r}
\end{aligned}
$$

Laplace Transform

$$
\left(m s^{2}+b s+k\right) X(s)=(b s+k) X_{r}(s)
$$

The transfer function

$$
\frac{X(s)}{X_{r}(s)}=\frac{b s+k}{m s^{2}+b s+k}
$$

State Eq: $\ddot{\chi}=-\frac{b}{m} \dot{x}-\frac{k}{m} x+\frac{b}{m} \dot{x}_{r}+\frac{k}{m} x_{r}$

$$
\text { let } \begin{array}{ll}
x_{1}=x \\
& x_{2}=\dot{x} \\
& x_{3}=x_{r}
\end{array}
$$

then $\quad \dot{x}_{1}=\dot{x}=x_{2}$

$$
\begin{aligned}
& \dot{x}_{2}=\ddot{x}=-\frac{b}{m} x_{2}-\frac{k}{m} x_{1}+\frac{k}{m} x_{3}+\frac{b}{m} u \\
& \dot{x}_{3}=\dot{x}_{r}=u
\end{aligned}
$$

Vehicle Suspension

Ex 2) Another Quarter Car Model (2 DOF ¼ Car model)

Applying the Newton's second law to the system, we obtain

$$
\begin{aligned}
& m_{1} \ddot{x}=-k_{2}(x-y)-b(\dot{x}-\dot{y})-k_{1}\left(x-x_{r}\right) \\
& m_{2} \ddot{y}=k_{2}(x-y)+b(\dot{x}-\dot{y})
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
& m_{1} \ddot{x}+b \dot{x}+\left(k_{1}+k_{2}\right) x=b \dot{y}+k_{2} y+k_{1} x_{r} \\
& m_{2} \ddot{y}+b \dot{y}+k_{2} y=b \dot{x}+k_{2} x
\end{aligned}
$$

Taking Laplace Transform

$$
\begin{aligned}
& \left(m_{1} s^{2}+b s+k_{1}+k_{2}\right) X(s)=\left(b s+k_{2}\right) Y(s)+k_{1} X_{r}(s) \\
& \left(m_{2} s^{2}+b s+k_{2}\right) Y(s)=\left(b s+k_{2}\right) X(s)
\end{aligned}
$$

Eliminating $X(s)$ from the last two equations, we have

$$
\frac{Y(s)}{X_{r}(s)}=\frac{k_{1}\left(b s+k_{2}\right)}{m_{1} m_{2} s^{4}+\left(m_{1}+m_{2}\right) b s^{3}+\left[k_{1} m_{2}+\left(m_{1}+m_{2}\right) k_{2}\right] s^{2}+k_{1} b s+k_{1} k_{2}}
$$

Vehicle Suspension

State Equation :

$$
\dot{x}_{1}=\dot{y}-\dot{x}=x_{2}-x_{4}
$$

$$
\begin{aligned}
& \text { let } x_{1}=y-x \\
& x_{2}=\dot{y} \\
& x_{3}=x-x_{r} \\
& x_{4}=\dot{X} \\
& x_{2}=\ddot{y}=-\frac{k_{2}}{m_{2}} x_{1}-\frac{b}{m_{2}}\left(x_{2}-x_{4}\right) \\
& \dot{x}_{3}=\dot{x}-\dot{x}_{r}=x_{4}-\dot{x}_{r} \\
& \dot{x}_{4}=\ddot{x}=\frac{k_{2}}{m_{1}} x_{1}+\frac{b}{m_{1}}\left(x_{2}-x_{4}\right)-\frac{k_{1}}{m_{1}} x_{3} \\
& \dot{\mathbf{x}}=\left[\begin{array}{cccc}
0 & 1 & 0 & -1 \\
-\frac{k_{2}}{m_{2}} & -\frac{b}{m_{2}} & 0 & -\frac{b}{m_{2}} \\
0 & 0 & 0 & 1 \\
\frac{k_{2}}{m_{1}} & \frac{b}{m_{1}} & -\frac{k_{1}}{m_{1}} & -\frac{b}{m_{1}}
\end{array}\right] \mathbf{x}+\left[\begin{array}{c}
0 \\
0 \\
-1 \\
0
\end{array}\right] u \quad u=\dot{x}_{r}
\end{aligned}
$$

Block Diagram and Signal flow graph

Transfer function and state equation
State space representation of Linear Differential Equations

Signal Flow

$$
\begin{aligned}
& \dot{x}(t)=A x+B u \\
& y=C x+D u
\end{aligned}
$$

: signal

: static relation

Block Diagram

$\longrightarrow \quad:$ Signals on Line

Block Diagram

ex1. First order

$$
\begin{aligned}
& \dot{y}+a y=u \\
& \frac{Y}{U}=\frac{1}{s+a}
\end{aligned}
$$

ex2. Second order

$$
\begin{aligned}
& \ddot{y}+a \dot{y}+b y=u \\
& \frac{Y}{U}=\frac{1}{s^{2}+a s+b}=\frac{1}{s(s+a)+b}
\end{aligned}
$$

Block Diagram

ex3.

$$
\frac{s+z}{s+p}=\frac{s+p+z-p}{s+p}=1+\frac{z-p}{s+p}
$$

let $\frac{y}{u}=\frac{z-p}{s+p}$
then

$$
s y+p y=(z-p) u
$$

Block Diagram

Thus, $\quad \dot{x}_{1}=x_{2}$

$$
\begin{aligned}
& \dot{x}_{2}=x_{3}+\left(u-x_{1}\right) \\
& \dot{x}_{3}=(z-p) \cdot\left(u-x_{1}\right)-p x_{3}
\end{aligned}
$$

The state representation is as follows

$$
\begin{gathered}
\dot{\mathbf{x}}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 1 \\
p-z & 0 & -p
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{c}
0 \\
1 \\
z-p
\end{array}\right] u \\
y=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] x_{1}
\end{gathered}
$$

State-Space Representation of $\boldsymbol{n t h}$-Order Systems of Linear Differential Equations

$$
\begin{array}{ll}
y^{(n)}+a_{1} y^{(n-1)}+\cdots+a_{n-1} \dot{y}+a_{n} y=u \\
& \\
x_{1}=y & \dot{x}_{1}=\dot{y}=x_{2} \\
x_{2}=\dot{y} & \dot{x}_{2}=\ddot{y}=x_{3} \\
\vdots & \vdots \\
x_{n}=y^{(n-1)} & \dot{x}_{n-1}=y^{(n-1)}=x_{n} \\
& \dot{x}_{n}=-a_{n} x_{1}-\cdots-a_{1} x_{n}+u
\end{array}
$$

$$
\begin{aligned}
& \dot{x}=A x+B u \\
& y=C x+D u
\end{aligned}
$$

$$
\begin{aligned}
& x=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\bullet \\
\bullet \\
\bullet \\
x_{n}
\end{array}\right] A=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 1 \\
-a_{n} & -a_{n-1} & -a_{n-2} & \cdots & -a_{1}
\end{array}\right] B=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right] \\
& C=\left[\begin{array}{llll}
1 & 0 & \cdots & 0
\end{array}\right]
\end{aligned}
$$

Canonical Forms

- Canonical Forms (T.F. \rightarrow State Eq.)

$\left\{\begin{array}{l}\text { Controllable Canonical Form } \\ \text { Observable Canonical Form } \\ \text { Diagonal (J ordan) Canonical Form }\end{array}\right.$
\leftarrow Direct Programming Method
\leftarrow Nested Programming Method
\leftarrow Partial Fraction Expansion

- Controllable Canonical Form

$$
G(s)=\frac{b_{0} s^{n}+b_{1} s^{n-1}+\cdots+b_{n}}{s^{n}+a_{1} s^{n-1}+\cdots+a_{n}}
$$

Ex) $n=3$

$$
\begin{aligned}
G(s) & =\frac{b_{0} s^{3}+b_{1} s^{2}+b_{2} s+b_{3}}{s^{3}+a_{1} s^{2}+a_{2} s+a_{3}} \\
& =b_{0}+\frac{\left(b_{1}-b_{0} a_{1}\right) s^{2}+\left(b_{2}-b_{0} a_{2}\right) s+\left(b_{3}-b_{0} a_{30}\right)}{s^{3}+a_{1} s^{2}+a_{2} s+a_{3}} \\
& \left\{\begin{array}{l}
b_{1}{ }^{\prime}=b_{1}-b_{0} a_{1} \\
b_{2}=b_{2}-b_{0} a_{2} \\
b_{3}{ }^{\prime}=b_{3}-b_{0} a_{3}
\end{array}\right.
\end{aligned}
$$

Canonical Forms

Canonical Forms

- Controllable Canonical Form

$$
\begin{aligned}
& \frac{d x_{1}}{d t}=x_{2} \\
& \frac{d x_{2}}{d t}=x_{3} \\
& \frac{d x_{3}}{d t}=-a_{3} x_{1}-a_{2} x_{2}-a_{1} x_{3}+u \\
& y=b_{3}{ }^{\prime} x_{1}+b_{2}{ }^{\prime} x_{2}+b_{1}{ }^{\prime} x_{3}+b_{0} u
\end{aligned}
$$

$$
\begin{aligned}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right] } & =\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-a_{3} & -a_{2} & -a_{1}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] u \\
y & =\left[\begin{array}{lll}
b_{3}^{\prime} & b_{2}^{\prime} & b_{1}^{\prime}
\end{array}\right] x+\left[b_{0}\right] u
\end{aligned}
$$

Canonical Forms

- Observable Canonical Form (Nested Programming)

$$
\begin{aligned}
& \frac{d x_{1}}{d t}=x_{2} \\
& \frac{d x_{2}}{d t}=x_{3} \\
& \frac{d x_{3}}{d t}=-a_{3} x_{1}-a_{2} x_{2}-a_{1} x_{3}+u \\
& y=b_{3}{ }^{\prime} x_{1}+b_{2}{ }^{\prime} x_{2}+b_{1}{ }^{\prime} x_{3}+b_{0} u
\end{aligned}
$$

$$
\begin{aligned}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right] } & =\left[\begin{array}{lll}
-a_{1} & 1 & 0 \\
-a_{2} & 0 & 1 \\
-a_{3} & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{l}
b_{1}^{\prime} \\
b_{2}^{\prime} \\
b_{3}^{\prime}
\end{array}\right] u \\
y & =\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] x+\left[b_{0}\right] u
\end{aligned}
$$

(Note : x in the controllable canonical form $\neq \mathrm{x}$ in the observable canonical form)

Canonical Forms

- Diagonal (or J ordan) Canonical Form (Partial Fraction Expansion)

Case 1. Distinct Roots $\left(\lambda_{1} \neq \lambda_{2} \neq \lambda_{3}\right)$

$$
\begin{aligned}
& G(s)=\frac{B(s)}{A(s)}=\frac{K_{1}}{s-\lambda_{1}}+\frac{K_{2}}{s-\lambda_{2}}+\frac{K_{3}}{s-\lambda_{3}} \\
& Y(s)=\sum_{i=1}^{3} \frac{K_{i}}{s-\lambda_{i}} u(s)=y_{1}+y_{2}+y_{3}
\end{aligned}
$$

$$
\begin{aligned}
y_{i} & =\frac{K_{i}}{s-\lambda_{i}} u \\
s y_{i} & =\lambda_{i} y_{i}+K_{i} u
\end{aligned}
$$

let $x_{1}=y_{1}, x_{2}=y_{2}, x_{3}=y_{3}$

$$
\begin{aligned}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right] } & =\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{l}
K_{1} \\
K_{2} \\
K_{3}
\end{array}\right] u \\
y & =\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right] x
\end{aligned}
$$

Canonical Forms

- Diagonal (or J ordan) Canonical Form (Partial Fraction Expansion)

Case 2. Multiple Roots

$$
G(s)=\frac{B(s)}{\left(s-\lambda_{m}\right)^{3}}=\frac{K_{1}}{s-\lambda_{m}}+\frac{K_{2}}{\left(s-\lambda_{m}\right)^{2}}+\frac{K_{3}}{\left(s-\lambda_{m}\right)^{3}} \quad \lambda_{1}=\lambda_{2}=\lambda_{3}=\lambda_{m}
$$

Canonical Forms

- Diagonal (or J ordan) Canonical Form (Partial Fraction Expansion)

Case 2. Multiple Roots

$$
\begin{aligned}
& \dot{x}_{1}=\lambda_{m} x_{1}+x_{2} \\
& \dot{x}_{2}=\lambda_{m} x_{2}+x_{3} \\
& \dot{x}_{3}=\lambda_{m} x_{3}+u \\
& y=K_{3} x_{1}+K_{2} x_{2}+K_{1} x_{3}
\end{aligned}
$$

$$
\begin{aligned}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right] } & =\left[\begin{array}{lll}
\lambda_{1} & 1 & 0 \\
0 & \lambda_{2} & 1 \\
0 & 0 & \lambda_{3}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] u \\
y & =\left[\begin{array}{lll}
K_{3} & K_{2} & K_{1}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
\end{aligned}
$$

Canonical Forms

- Diagonal (or J ordan) Canonical Form (Partial Fraction Expansion)

Case 3. Complex Roots

$$
\begin{aligned}
& G(s)=\frac{1}{s^{2}-2 \sigma s+\sigma^{2}+\omega^{2}}=\frac{1}{[s-(\sigma+j \omega)][s-(\sigma-j \omega)]} \\
& \frac{Y}{u}=G(s)=\frac{1}{s^{2}-2 \sigma s+\sigma^{2}+\omega^{2}} \\
& =\frac{\mathrm{s}^{-2}}{1-2 \sigma \mathrm{~s}^{-1}+\left(\sigma^{2}+\omega^{2}\right) \mathrm{s}^{-2}} \\
& \frac{Y}{s^{-2}}=\frac{u}{1-2 \sigma s^{-1}+\left(\sigma^{2}+\omega^{2}\right) s^{-2}}=Q(s) \\
& \left\{\begin{array}{l}
Y=s^{-2} Q(s) \\
Q(s)\left(1-2 \sigma s^{-1}+\left(\sigma^{2}+\omega^{2}\right) s^{-2}\right)=u
\end{array}\right. \\
& Q(s)=u+2 \sigma s^{-1} Q(s)-\left(\sigma^{2}+\omega^{2}\right) s^{-2} Q(s)
\end{aligned}
$$

Canonical Forms

- Diagonal (or J ordan) Canonical Form (Partial Fraction Expansion)

Case 3. Complex Roots

$$
A P=P \Lambda
$$

Note : Complex Roots, Complex State x

$$
\begin{aligned}
& \dot{x}=\Lambda x+b u \\
& y=C x
\end{aligned}
$$

\rightarrow Complex case의 diagonalization 방법 이용

$$
\begin{aligned}
& \Lambda K=K J \\
& \\
& \quad \Lambda=\left[\begin{array}{cc}
\sigma+j \omega & 0 \\
0 & \sigma-j \omega
\end{array}\right] \quad K=\left[\begin{array}{cc}
\frac{1}{2} & -\frac{j}{2} \\
\frac{1}{2} & \frac{j}{2}
\end{array}\right] \quad K^{-1}=\frac{2}{j}\left[\begin{array}{cc}
\frac{j}{2} & \frac{j}{2} \\
-\frac{1}{2} & \frac{1}{2}
\end{array}\right] \\
& =K^{-1} \Lambda K \\
& =
\end{aligned}
$$

Canonical Forms

- Diagonal (or J ordan) Canonical Form (Partial Fraction Expansion)

Case 3. Complex Roots

$$
\text { Ex) } \begin{aligned}
\dot{z} & =\left[\begin{array}{cc}
\sigma & \omega \\
-\omega & \sigma
\end{array}\right] z+\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right] u \\
y & =\left[\begin{array}{ll}
1 & 0
\end{array}\right] z
\end{aligned}
$$

Canonical Forms

- Diagonal (or J ordan) Canonical Form (Partial Fraction Expansion)

Case 3. Complex Roots

```
Step \(1 \quad \dot{x}=A x+B u\)
Step 2 let \(x=P \xi\)
    \(\dot{\xi}=\underbrace{P^{-1} A P}_{\Lambda} \xi+P^{-1} B u \quad\) : diagonal
Step 3 let \(\xi=K z\)
    \(\dot{z}=\underbrace{K^{-1} \Lambda K}_{J} z+K^{-1} P^{-1} B u\)
    \(=\left[\begin{array}{cc}\sigma & \omega \\ -\omega & \sigma\end{array}\right] z+\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right] u\)
    \(\left\{\begin{array}{l}x=P \xi=P K z \\ \dot{z}=\underbrace{K^{-1} \Lambda K}_{J} z+K^{-1} P^{-1} b u \\ y=C P K z\end{array}\right.\)
```


Transformation of mathematical models with MATLAB

Sec. 2-6 pp.49-52

TRANSFORMATION OF MATHEMATICAL MODELS WITH MATLAB

$$
\frac{\mathrm{Y}(\mathrm{~s})}{\mathrm{U}(\mathrm{~s})}=\frac{\text { numerator polynomial in } \mathrm{s}}{\text { denominator polynomial in } \mathrm{s}}=\frac{\text { num }}{\text { den }}
$$

the MATLAB command
[A,B,C,D] = tf2ss(num,den)

There are many (infinitely many) state-space representations for the same system. The MATLAB command gives one possible such state-space representation.

Transformation from Transfer Function to State Space Representation

$$
\frac{Y(s)}{U(s)}=\frac{s}{(s+10)\left(s^{2}+4 s+16\right)}=\frac{s}{s^{3}+14 s^{2}+56 s+160}
$$

possible state-space representations (among infinitely many alternatives)

$$
\begin{aligned}
& {\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-160 & -56 & -14
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{c}
0 \\
1 \\
-14
\end{array}\right] u} \\
& y=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]+[0] u \\
& {\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{ccc}
-14 & -56 & -160 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] u} \\
& y=\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right]+[0] u
\end{aligned}
$$

$$
\begin{aligned}
& \text { MATLAB Program 2-2 } \\
& \text { num = [1 0]; } \\
& \text { den = [1 } 1456 \text { 160]; } \\
& \text { [A,B,C,D] = tf2ss(num,den) } \\
& \text { A = } \\
& \text {-14 -56-160 } \\
& 100 \\
& 0 \quad 1 \quad 0 \\
& B= \\
& 1 \\
& 0 \\
& 0 \\
& \mathrm{C}= \\
& 010 \\
& \mathrm{D}= \\
& 0
\end{aligned}
$$

Transformation from State Space Representation to Transfer Function.

[num,den] = ss2tf(A,B,C,D,iu)
systems with more than one input
[num,den] = ss2tf(A,B,C,D)

```
MATLAB Program 2-3
A = [0 1 0; 0 0 1; -5 -25 -5];
B = [0; 25;-120];
C = [1 00 0];
D = [0];
[num,den] = ss2tf(A,B,C,D)
num =
    0
den=
    1.0000 5.0000 25.0000 5.0000
%*****}\mathrm{ The same result can be obtained by
entering the following command: *****
[num,den] = ss2tf(A,B,C,D,1)
num =
    0.000025.0000 5.0000
den =
    1.0000 5.0000 25.0000 5.0000
```

End of section 3
(Ch. 2 of Ogata)

Loading Effect

- No Loading Effect

Block can be connected in series only if the output of one block is not affected by the next following block.

$Z(s):$ complex impedance
If the input impedance of the second element is infinite, the output of the first element is not affected by connecting it to the second element.

No Loading Effect

ex1)

$$
\begin{aligned}
& e_{i 1}=R_{1} i_{1}+e_{o 1} \\
& \frac{d v_{C 1}}{d t}=\frac{1}{C_{1}} i_{1}, \quad v_{C 1}=e_{o 1} \\
& \Rightarrow \frac{d e_{o 1}}{d t}=\frac{1}{C_{1}}\left[\frac{1}{R_{1}}\left(e_{i 1}-e_{o 1}\right)\right]=-\frac{1}{C_{1} R_{1}} e_{o 1}+\frac{1}{C_{1} R_{1}} e_{i 1} \\
& \frac{E_{o 1}(s)}{E_{i 1}(s)}=\frac{\frac{1}{C_{1} R_{1}}}{S+\frac{1}{C_{1} R_{1}}} a_{1} \quad \frac{E_{o 2}(s)}{E_{i 2}(s)}=\frac{\frac{1}{C_{2} R_{2}}}{S+\frac{1}{C_{2} R_{2}}} \rightarrow a_{2}
\end{aligned}
$$

No Loading Effect

ex1)

$$
\frac{E_{o 2}(s)}{E_{i 2}(s)}=\frac{\frac{1}{C_{2} R_{2}}}{S+\frac{1}{C_{2} R_{2}}} \rightarrow a_{2}
$$

No !!
I ncorrect
P.90.Ogata

$$
\frac{E_{o}(s)}{E_{i}(s)}=\frac{1}{R_{1} C_{1} R_{2} C_{2} s^{2}+\left(R_{1} C_{1}+R_{2} C_{2}+R_{1} C_{2}\right) s+1}
$$

