System Control

4. Transient and

Steady-State Response Analysis

Professor Kyongsu Yi

© 2014 VDCL
Vehicle Dynamics and Control Laboratory Seoul National University

Systems

- Linear Time I nvariant System

$$
\begin{aligned}
& \dot{x}=A x+B u \quad \text { Where A,B,C and D are constant matrix } \\
& y=C x+D u
\end{aligned}
$$

- Linear Time Varying System

$$
\begin{aligned}
& \dot{x}=A(t) x+B(t) u \\
& y=C(t) x+D(t) u
\end{aligned}
$$

- Nonlinear System

$$
\begin{aligned}
\dot{x} & =f(x(t), y(t), u(t), t) \\
y & =h(x(t), u(t), y(t), t)
\end{aligned}
$$

Time Invariant System

- The Laplace Transform of Linear Time I nvariant System

$$
\begin{aligned}
& s X(s)-x(0)=A X(s)+B U(s) \\
& s X(s)-A X(s)=x(0)+B U(s) \\
& (s I-A) X(s)=x(0)+B U(s) \\
& \therefore X(s)=(s I-A)^{-1} x(0)+(s I-A)^{-1} x(0)+(s I-A)^{-1} B U(s)
\end{aligned}
$$

Transfer function is derived from zero-initial condition

$$
Y(s)=\left[C(s I-A)^{-1} B+D\right] U(s)
$$

, thus the Transfer function $\mathrm{G}(\mathrm{s})$ is

$$
\therefore G(s)=C(s I-A)^{-1} B+D
$$

In general the Transfer function is expressed as follows

$$
\begin{aligned}
\frac{Y(s)}{U(s)} & =G(s)=\frac{b_{1} s^{m}+\cdots+b_{m+1}}{s^{n}+a_{1} s^{n-1}+\cdots}(m \leq n) \\
& =\frac{k_{1}}{s+p_{1}}+\frac{k_{2}}{s+p_{2}}+\frac{c_{1} s+c_{2}}{s^{2}+a s+b}+\cdots
\end{aligned}
$$

System Response

- Transient response

- Response goes from the initial state to the final state

- Steady state response

-The manner in which the system output behaves as t approaches infinity
let $G(s)=\frac{Q(s)}{P(s)}$ then
$P(s)=0$: the characteristic equation
S_{i} : such that $P(s)=0$ is characteristic roots or poles $Q(s)=0$: such that s_{k} are called zeros
$Y(s)=G(s) U(s)$
\rightarrow Partial Fraction $=\{\mathrm{G}(\mathrm{s})$ terms $\}+\mathrm{U}(\mathrm{s})$
\rightarrow Poles $s_{1}, s_{2}, s_{3}($ real $), \sigma_{1} \pm j \omega_{1}, \sigma_{2} \pm j \omega_{2}$
\rightarrow Then the transient response becomes
$\rightarrow C_{1} e^{s_{1} t}+C_{2} e^{s_{2} t}+\cdots+D_{1} e^{\sigma_{1} t} \sin \omega_{1} t+\cdots$

Stability

- Stable

If $\lim _{t \rightarrow \infty} x(t)=0$ with no zero initial condition
A linear time invariant system is "stable" if the output eventually comes back to equilibrium state when the system is subject to an initial condition

- Equilibrium : $\dot{x}=0$

With no disturbance and input, the output stays in the same state, which is called equilibrium.

- Stable condition
$\operatorname{Re}\left(s_{i}\right)<0$ for all s_{i}, where s_{i} is poles
- Critically stable

Oscillations of the output continue forever some $\operatorname{Re}\left(s_{i}\right)=0$

- Unstable

The output diverges without bound from its equilibrium state (when the system subjected to an initial conditions)

Stability

- Absolute Stability

Whether the system is stable or unstable

- Relative Stability
- Transient response
- Damped Oscillation
- Steady-state Error

The output does not exactly agree with the input (Concerned with the Accuracy of the system)

First Order System

- First Order System $\quad G(s)=\frac{C(s)}{R(s)}=\frac{1}{T s+1}$

When $R(s)=\frac{1}{s} \quad$; step input $(r(t)=u(t))$

$$
\begin{aligned}
& c(s)=\frac{1}{T s+1} \cdot \frac{1}{s}=\frac{-T}{T s+1}+\frac{1}{s} \\
& c(t)=1-\exp \left(-\frac{1}{T} t\right) \quad \dot{c}(t)=\frac{1}{T} e^{-\frac{1}{T} t}
\end{aligned}
$$

T : time constant of First order system For large T: 응답이 느리다 For small T : 응답이 빠르다
$G(s)=\frac{b}{s+a}=\frac{b}{a}\left(\frac{1}{\frac{1}{a} s+1}\right)$
for First Order system, the time constant is

First Order System

When $R(s)=\frac{1}{s^{2}} \quad$; unit ramp input, that is, $r(t)=t$

$$
\begin{aligned}
c(s) & =\frac{1}{T s+1} \cdot \frac{1}{s^{2}}=\frac{T^{2}}{T s+1}+\frac{1}{s^{2}}-\frac{T}{s} \\
\therefore c(t) & =T e^{-t / T}+t-T
\end{aligned}
$$

Second Order System

- Second Order System

$$
\begin{aligned}
\frac{C(s)}{R(s)}=G(s) & =\frac{b}{s^{2}+a s+b} \\
& =\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}
\end{aligned}
$$

$$
\text { where } \quad a=2 \zeta \omega_{n} \quad b=\omega_{n}^{2}
$$

Note that poles : $-\zeta \omega_{n} \pm \omega_{n} \sqrt{1-\zeta^{2}} j$
Unit step response

$$
\begin{aligned}
& \text { for } R(s)=\frac{1}{s} \quad ; \text { step input } \\
& C(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}} \cdot \frac{1}{s}=\frac{1}{s}-\frac{s+2 \zeta \omega_{n}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}} \\
& \therefore c(t)=1-\frac{e^{-\zeta \omega_{n} t}}{\sqrt{1-\zeta^{2}}} \sin \left(\omega_{d} t+\tan ^{-1} \frac{\sqrt{1-\zeta^{2}}}{\zeta}\right)
\end{aligned}
$$

where $\omega_{d}=\omega_{n} \sqrt{1-\zeta^{2}}$: Damped natural frequency
ω_{n} : Natural frequency
ζ : Damping ration

Second Order System

Figure 4-13
Definition of the angle β.

1. Rise time $t_{r}: 10 \% \rightarrow 90 \%$

$$
5 \% \rightarrow 95 \%
$$

2. Max. Overshoot, M_{p}
3. Settling time, t_{s} : 2% criterion $t_{s}=4 / \omega_{n} \zeta$ 5% criterion $t_{s}=3 / \omega_{n} \zeta$
4. Delay time, $\mathrm{t}_{\mathrm{d}}=50 \%$
5. Peak time, t_{p}

Second Order System

- Step Response of Second Order System

$$
\frac{C(s)}{R(s)}=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}
$$

(1) Under damped : $0<\zeta<1$

$$
\frac{C(s)}{R(s)}=\frac{\omega_{n}^{2}}{\left(s+\zeta \omega_{n}+j \omega_{d}\right)\left(s+\zeta \omega_{n}-j \omega_{d}\right)} \quad \omega_{d}=\omega_{n} \sqrt{1-\zeta^{2}}
$$

Step response $R(s)=\frac{1}{s}$

$$
\begin{aligned}
c(t)=L^{-1}[C(s)] & =1-e^{-\zeta \omega_{n} t}\left(\cos \omega_{d} t+\frac{\zeta}{\sqrt{1-\zeta^{2}}} \sin \omega_{d} t\right) \\
& =1-\frac{e^{-\zeta \omega_{n} t}}{\sqrt{1-\zeta^{2}}}\left(\cos \left(\omega_{d} t+\tan ^{-1} \frac{\sqrt{1-\zeta^{2}}}{\zeta}\right)\right)
\end{aligned}
$$

Second Order System

- Step Response of Second Order System

(2) Critically damped : $\zeta=1$

$$
\begin{aligned}
& C(s)=\frac{\omega_{n}^{2}}{\left(s+\omega_{n}\right)^{2} s} \\
& C(t)=1-e^{-\omega_{n} t}\left(1+\omega_{n} t\right)
\end{aligned}
$$

(3) Critically damped : $\zeta>1$

$$
\begin{aligned}
& C(s)=\frac{\omega_{n}^{2}}{\left(s+\zeta \omega_{n}+\omega_{n} \sqrt{\zeta^{2}-1}\right)\left(s+\zeta \omega_{n}-\omega_{n} \sqrt{\zeta^{2}-1}\right) s} \\
& c(t)=1+\frac{1}{2 \sqrt{\zeta^{2}-1}\left(\zeta+\sqrt{\zeta^{2}-1}\right)} e^{-\left(\zeta+\sqrt{\zeta^{2}-1}\right) \omega_{n} t}-\frac{1}{2 \sqrt{\zeta^{2}-1}\left(\zeta-\sqrt{\zeta^{2}-1}\right)} e^{-\left(\zeta-\sqrt{\zeta^{2}-1}\right) \omega_{n} t} \\
& =1+\frac{1}{2 \sqrt{\zeta^{2}-1}}\left(\frac{e^{-s_{1} t}}{s_{1}}-\frac{e^{-s_{2} t}}{s_{2}}\right) \quad \begin{array}{l}
s_{1}=\left(\zeta+\sqrt{\zeta^{2}-1}\right) \omega_{n} \\
s_{2}=\left(\zeta-\sqrt{\zeta^{2}-1}\right) \omega_{n}
\end{array} \\
& \quad\left|s_{1}\right| \ll\left|s_{2}\right|
\end{aligned}
$$

The effect of $-s_{1}$ on the response is much smaller than that of $-s_{2}$

Higher Order Systems

$$
\frac{C(s)}{R(s)}=\frac{G(s)}{1+G(s) H(s)}=\frac{b_{0} s^{m}+b_{1} s^{m-1}+\cdots+b_{m-1} s+b_{m}}{a_{0} s^{n}+a_{1} s^{n-1}+\cdots+a_{n-1} s+a_{n}}
$$

characteristic equation

$$
\begin{aligned}
& a_{0} s^{n}+a_{1} s^{n-1}+\cdots+a_{n-1} s+a_{n}=0 \\
& s=p_{i} \quad i=1, \cdots q \\
& s=-\zeta_{k} \omega_{k} \pm \sqrt{1-\zeta_{k}^{2}} \omega_{k} j \quad k=1, \cdots r \\
& \text { zero ; } s=Z_{i} \quad i=1, \cdots m
\end{aligned}
$$

Higher Order Systems

- unit step response

$$
\begin{gathered}
R(s)=\frac{1}{s} \\
C(s)=\frac{b_{0} s^{m}+\cdots+b_{m}}{a_{0} s^{n}+\cdots+a_{0}} \cdot \frac{1}{s}
\end{gathered}
$$

characteristic equation

$$
\begin{aligned}
& a_{0} s^{n}+a_{1} s^{n-1}+\cdots+a_{n-1} s+a_{n}=0 \\
& s=p_{i} \quad i=1, \cdots q \\
& s=-\zeta_{k} \omega_{k} \pm \sqrt{1-\zeta_{k}^{2}} \omega_{k} j \quad k=1, \cdots r
\end{aligned}
$$

Higher Order Systems

$$
\begin{aligned}
& C(s)=\frac{k \prod_{i=1}^{m}\left(s-z_{i}\right)}{s \prod_{j=1}^{q}\left(s-p_{i}\right) \prod_{k=1}^{r}\left(s^{2}+2 \zeta_{k} \omega_{k}+\omega_{k}^{2}\right)}=\frac{a}{s}+\sum_{j=1}^{q} \frac{a_{j}}{s-p_{i}}+\sum_{r=1}^{r} \frac{b_{k}\left(s+\zeta_{k} \omega_{k}\right)+C_{k} \omega_{k} \sqrt{1-\zeta_{k}^{2}}}{s^{2}+2 \zeta_{k} \omega_{k} s+\omega_{k}^{2}} \\
& C(t)=a+\sum_{j=1}^{q} a_{j} e^{p_{i} t}+\sum_{k=1}^{r} b_{k} e^{-\zeta_{k} \omega_{k} t} \cos \omega_{k} \sqrt{1-\zeta_{k}^{2}} t+\sum_{k=1}^{r} C_{k} e^{-\zeta_{k} \omega_{k} t} \sin \omega_{k} \sqrt{1-\zeta_{k}^{2}} t \\
& \omega_{d k}=\sqrt{1-\zeta_{k}^{2}} \omega_{k}
\end{aligned}
$$

Effect of Pole Locations

(1) First Order System

$$
\frac{Y}{R}=G(s)=\frac{\sigma}{s+\sigma} ;=\frac{1}{T s+1}
$$

Step response : $R(s)=\frac{1}{s}$

$$
\begin{aligned}
Y(s) & =\frac{1}{T s+1} \cdot \frac{1}{s} \\
& =\frac{1}{s}-\frac{T}{T s+1} \\
& =\frac{1}{s}-\frac{1}{s+(1 / T)} \\
y(t) & =1-e^{-\frac{1}{T} t} \quad \text { for } t \geq 0
\end{aligned}
$$

$$
\text { Pole : } s=-\sigma=-1 / T
$$

Effect of Pole Locations

(2) Second Order System

$$
\begin{aligned}
\frac{Y}{R} & =\frac{b}{s^{2}+a s+b} \quad \text { where } \quad a=2 \zeta \omega_{n} \quad b=\omega_{n}^{2} \\
& =\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}} \\
& =\frac{\omega_{n}^{2}}{\left(s+\zeta \omega_{n}\right)^{2}+\omega_{n}^{2}\left(1-\zeta^{2}\right)} \quad \text { Poles : }-\zeta \omega_{n} \pm \omega_{n} \sqrt{1-\zeta^{2}} j
\end{aligned}
$$

Step response : $R(s)=\frac{1}{s}$

$$
\begin{aligned}
Y(s) & =\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}} \cdot \frac{1}{s} \\
& =\frac{1}{s}-\frac{s+2 \zeta \omega_{n}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}} \\
y(t) & =1-\frac{e^{-\zeta \omega_{n} t}}{\sqrt{1-\zeta^{2}}} \sin \left(\omega_{d} t+\tan ^{-1} \frac{\sqrt{1-\zeta^{2}}}{\zeta}\right)
\end{aligned}
$$

ζ : damping ratio
ω_{n} : natural freq.

ω_{d} : damped freq.

$$
\begin{aligned}
& \omega_{n} \cos \eta=\zeta \omega_{n} \\
& \zeta=\cos \eta
\end{aligned}
$$

Pole Locations and Transient Response (Impulse)

Figure 3.13
Time functions associated with points in the s-plane (LHP, left half-plane; RHP, right half-plane)

Effects of Zeros

1. The effect of zero near poles (cancel the pole response)

$$
\begin{aligned}
& H_{1}(s)=\frac{2}{(s+1)(s+2)}=\frac{2}{s+1}-\frac{2}{s+2} \\
& H_{2}(s)=\frac{2(s+1.1)}{1.1(s+1)(s+2)}=\frac{2}{1.1}\left(\frac{0.1}{s+1}+\frac{0.9}{s+2}\right)=\frac{0.18}{s+1}+\frac{1.64}{s+2}
\end{aligned}
$$

- If we put the zero exactly at $s=-1$, this term will vanish completely
- The coefficient of the term ($\mathrm{s}+1$) has been modified from 2 in $\mathrm{H}_{1}(\mathrm{~s})$ to 0.18 in $\mathrm{H}_{2}(\mathrm{~s})$

In general, a zero near a pole reduces the amount of that term in the total response

$$
\text { coefficient } \quad c_{1}(s)=\left.\left(s-p_{1}\right) F(s)\right|_{s=p_{1}}
$$

zero near the pole $P_{1}, F(s)$ will be small

Effects of Zeros

2. Effect of zeros on the transient response

Two complex poles and one zero

$$
H(s)=\frac{\left(s / \alpha \zeta \omega_{n}\right)+1}{\left(s / \omega_{n}\right)^{2}+2 \zeta\left(s / \omega_{n}\right)+1}=\frac{\frac{\omega_{n}}{\alpha \zeta} s+\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}} \quad \begin{array}{ll}
\text { poles : } s=-\zeta \omega_{n} \pm \omega_{n} \sqrt{1-\zeta^{2}} j \\
\text { zero : } \quad s=-\alpha \zeta \omega_{n}
\end{array}
$$

$\alpha \cong 1$: the value of the zero will be close to that of the real part of the poles
$\alpha \geq 3$: very little effect on Mp
$\alpha \leq 3$: increasing effect as α decreases below 3

Figure 3.24
Plots of the step response of a second-order system with a zero $(\zeta=0.5)$

Figure 3.25

Plot of overshoot M_{p} as a function of normalized zero location α. At $\alpha=1$, the real part of the zero equals the real part of the poles

Effects of Zeros

2. Effect of zeros (L.T. Analysis)

Replacing s / ω_{n} with s

$$
\begin{aligned}
H(s) & =\frac{s / \alpha \zeta+1}{s^{2}+2 \zeta s+1} \\
& =\frac{1}{s^{2}+2 \zeta s+1}+\frac{1}{\alpha \zeta} \frac{s}{s^{2}+2 \zeta s+1} \\
& =\underbrace{H_{0}(s)}_{h_{0}(t)}+\frac{1}{\alpha \zeta} \underbrace{H_{d}(s)}_{\frac{d}{d t} h_{0}(t)}
\end{aligned}
$$

: produce overshoot

Effects of Zeros

3. Nonminimum-phase zero

$\alpha<0$: the zero is in the RHP where $\mathrm{s}>0$

; RHP zero
nonminimum-phase zero

Figure 3.27
Step responses $y(t)$ of a second-order system with a zero in the RHP: a nonminimum-phase system

Figure 3.28
Response of an airplane's allitude to an impulsive elevator input

The Effect of an extra pole

- Effect on the Standard Second-order step response

$$
\begin{aligned}
H(s) & =\frac{1}{\left(s / \alpha \zeta \omega_{n}+1\right)\left[\left(s / \omega_{n}\right)^{2}+2 \zeta\left(s / \omega_{n}\right)+1\right]} \\
s & =-\alpha \zeta \omega_{n} \quad \alpha: \text { big, far left poles }
\end{aligned}
$$

- DC gain of a system
: the ratio of the output of a system to its input (presumed constant) after all transients have decayed

DC gain $=\lim _{s \rightarrow 0} s \cdot G(s) \frac{1}{s}=\lim _{s \rightarrow 0} G(s)$

Figure 3.29
Step responses for several third-order systems with $\zeta=0.5$

Figure 3.30
Normalized rise time for several locations of an additional pole

major effect : increase the rise time

Effect of Poles-Zeros on Dynamic System

1. $\mathbf{2}^{\text {nd }}$ order system with no finite zeros

Rise time : $\quad t_{r} \cong \frac{1.8}{\omega_{n}} \quad$ Overshoot : $M_{p} \cong \begin{cases}5 \%, & \zeta=0.7 \\ 16 \%, & \zeta=0.5 \\ 35 \%, & \zeta=0.3\end{cases}$
Settling time : $t_{s} \cong \frac{4.6}{\sigma} \quad \sigma=\zeta \omega_{n}$
2. A Zero in the LHP

Increase the overshoot
(if the zero is within a factor of 4 of the real part of the complex poles)

3. A Zero in the RHP (nonminimum-phase zero)

- Depress the overshoot
- May cause the step response to start out in the wrong direction

4. An additional pole in the LHP

- Increase the rise time significantly if the extra pole is within a factor of 4 of the real part of the complex poles

TRANSIENT-RESPONSE ANALYSIS WITH MATLAB

$$
\begin{aligned}
& \text { step(num,den), step(num,den,t) } \\
& \text { step(A,B,C,D), step(A,B,C,D,t) } \\
& \text { sys = tf(num,den) } \\
& \text { or } \\
& \text { sys = ss(A,B,C,D) } \\
& \text { step(sys) } \\
& {[y, x, t]=\text { step(num,den,t) }} \\
& {[y, x, t]=\text { step(A,B,C,D,iu) }} \\
& {[y, x, t]=\operatorname{step}(A, B, C, D, i u, t)}
\end{aligned}
$$

MATLAB Program 5-1

A $=[-1-1 ; 6.50]$;
B = [1 1; 10$]$;
C = [1 0;0 1];
D = [0 0;0 0]; step(A,B,C,D)

Step Response

Transient response analysis with MATLAB

TA Hours

End of section 4 Ch. 5: 5.1-5.5

5-6 routh stability criterion
5-7 Effects of Integral and derivative control $5-8$ steady state error in unity feedback control systems

