System Control

8. Control Systems Analysis and Design by the Frequency- Response Method

Professor Kyongsu Yi © 2014 VDCL Vehicle Dynamics and Control Laboratory Seoul National University

1. Frequency response Bode plots, polar plots

- 2. Nyquist stability criterion
- 3. Control systems design by frequencyresponse approach

Lead-lag compensation

$$\frac{R(s)}{r(t) = \sin \omega t} \begin{bmatrix} G(s) \end{bmatrix} \underbrace{Y(s)}_{y(t)} Y(s) = G(s)R(s) = G(s)\frac{\omega}{s^2 + \omega^2} = \dots + \dots + \frac{as + b}{s^2 + \omega^2}$$
$$G(s) = \frac{p(s)}{q(s)} \qquad q(s) = 0; \text{ poles}$$

• Steady State

$$y(t) = A\sin(\omega t + \phi)$$

= | G(j\omega) | sin(\omega t + \phi) \quad \phi = \angle G(j\omega)

4

First Order System

$$G(s) = \frac{1}{Ts+1}$$
$$G(j\omega) = \frac{1}{Tj\omega+1}$$

Second Order System

$$\frac{dH^2}{d\omega} = 0 = -\frac{\left[2\left(1 - \frac{\omega^2}{\omega_n^2}\right)\left(-\frac{2\omega}{\omega_n^2}\right) + 8\zeta^2 \frac{\omega}{\omega_n^2}\right]}{\left[\left(1 - \frac{\omega^2}{\omega_n^2}\right)^2 + 4\zeta^2 \frac{\omega^2}{\omega_n^2}\right]^2}$$

$$\omega_m = \omega_n \sqrt{1 - 2\zeta^2} \qquad M_m = \frac{1}{2\zeta\sqrt{1 - \zeta^2}} \qquad \omega_d = \omega_n \sqrt{1 - \zeta^2}$$
$$e^{-\zeta\omega_n t} \sin(\omega_d t + \cdots)$$

Zero order system

$$G(s) = \frac{\omega_n^2}{(Ts+1)(s^2+2\zeta\omega_n s+\omega_n^2)}$$

Combination of First and Second order system

Log magnitude : $LmG(j\omega) = 20\log |G(j\omega)| [dB]$

First Order System

$$G(s) = \frac{1}{Ts+1}$$

$$Lm |G(j\omega)| = 20 \log \left| \frac{1}{Tj\omega+1} \right| = -20 \log \sqrt{T^2 \omega^2 + 1}$$
if $\omega \langle \langle \frac{1}{T} \cong -20 \log 1 = 0$
if $\omega \rangle \rangle \frac{1}{T} \cong -20 \log T \omega = -20 \log T - 20 \log \omega$

Second Order System

$$G(j\omega) = \frac{1}{Ts+1} \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$
$$Lm \left| G(j\omega) \right| = -20 \log \left| 1 + jT\omega \right| - 20 \log \left| \left(1 - \frac{\omega^2}{\omega_n^2} \right) + j2\zeta \frac{\omega}{\omega_n} \right|$$

$$G(s) = \frac{K(1+sT_1)(1+sT_2)}{s^2(1+sT_3)(1+2as+bs^2)}$$

$$Lm[G(j\omega)] = 20\log k + 20\log|1+jT_1\omega| + 20\log|1+jT_2\omega|$$

$$-20\log(j\omega)^2 - 20\log|1+jT_3\omega| - 20\log|1-b^2\omega^2 + j2a\omega|$$

Plotting Bode Diagrams with MATLAB

w=logspace(-1,2) w=logspace(0,3,100)

% 0.1rad/sec~100 rad/sec 50points

% 1rad/sec~1000 rad/sec 100points

```
[mag, phase, w]=bode(num, den)
[mag, phase, w]=bode(A,B,C,D)
[mag, phase, w]=bode(A,B,C,D,iu)
```

[mag, phase, w]=bode(sys)

Polar Plot (Nyquist plots)

- a plot of the magnitude of $G(j\omega)$ versus the phase angle of $G(j\omega)$ on polar coordinates as ω is varied from zero to infinity.

1)
$$G(s) = \frac{1}{s} \quad G(j\omega) = \frac{1}{j\omega} = -j\frac{1}{\omega} = \frac{1}{\omega}(\omega - 90^{\circ})$$
2)
$$G(s) = \frac{1}{1+Ts} \quad G(j\omega) = \frac{1}{1+j\omega T} = \frac{1}{\sqrt{1+\omega^2 T^2}} \omega - \tan^{-1}\omega T^{\circ}$$
Im
$$w = \infty \qquad w = 0$$
Im
$$w = \infty \qquad w = 0$$
Im
$$w = \infty \qquad \omega = 0$$
Im
$$w = \infty \qquad \omega = 0$$
Im
$$1 \qquad w = 0 \qquad \omega = 0$$
Im
$$1 \qquad w = 0 \qquad \omega = 0$$
Im
$$1 \qquad w = 0 \qquad \omega = 0$$
Im
$$1 \qquad \omega = \infty \qquad \omega = 0$$
Im
$$1 \qquad \omega = \infty \qquad \omega = 0$$
Im
$$1 \qquad \omega = \infty \qquad \omega = 0$$
Im
$$1 \qquad \omega = \infty \qquad \omega = 0$$
Im
$$1 \qquad \omega = \infty \qquad \omega = 0$$
Im
$$1 \qquad \omega = \infty \qquad \omega = 0$$
Im
$$1 \qquad \omega = \infty \qquad \omega = 0$$
Im
$$1 \qquad \omega = \infty \qquad \omega = 0$$
Im
$$1 \qquad \omega = \infty \qquad \omega = 0$$
Im
$$1 \qquad \omega = \infty \qquad \omega = 0$$
Im
$$1 \qquad \omega = \infty \qquad \omega = 0$$
Im
$$1 \qquad \omega = \infty \qquad \omega = 0$$
Im
$$1 \qquad \omega = \infty \qquad \omega = 0$$
Im
$$1 \qquad \omega = \infty \qquad \omega = 0$$
Im
$$1 \qquad \omega = \infty \qquad \omega = 0$$
Im
$$1 \qquad \omega = \infty \qquad \omega = 0$$
Im
$$1 \qquad \omega = \infty \qquad \omega = 0$$
Im
$$1 \qquad \omega = \infty \qquad \omega = 0$$
Im
$$1 \qquad \omega = \infty \qquad \omega = 0$$
Im
$$1 \qquad \omega = \infty \qquad \omega = 0$$
Im
$$1 \qquad \omega = \infty \qquad \omega = 0$$
Im
$$1 \qquad \omega = \infty \qquad \omega = 0$$
Im
$$1 \qquad \omega = \infty \qquad \omega = 0$$
Im
$$1 \qquad \omega = \infty \qquad \omega = 0$$
Im
$$1 \qquad \omega = \infty \qquad \omega = 0$$
Im
$$1 \qquad \omega = \infty \qquad \omega = 0$$
Im
$$1 \qquad \omega = \infty \qquad \omega = 0$$
Im
$$1 \qquad \omega = \infty \qquad \omega = 0$$
Im
$$1 \qquad \omega = \infty \qquad \omega = 0$$
Im
$$1 \qquad \omega = \infty \qquad \omega = 0$$
Im
$$1 \qquad \omega = \infty \qquad \omega = 0$$
Im
$$1 \qquad \omega = \infty \qquad \omega = 0$$
Im
$$1 \qquad \omega = \infty \qquad \omega = 0$$
Im
$$1 \qquad \omega = \infty \qquad \omega = 0$$
Im
$$1 \qquad \omega = \infty \qquad \omega = 0$$
Im
$$1 \qquad \omega = \infty \qquad \omega = 0$$
Im
$$1 \qquad \omega = \infty \qquad \omega = 0$$
Im
$$1 \qquad \omega = \infty \qquad \omega = 0$$
Im
$$1 \qquad \omega = \infty \qquad \omega = 0$$
Im
$$1 \qquad \omega = \infty \qquad \omega = 0$$
Im
$$1 \qquad \omega = \infty \qquad \omega = 0$$
Im
$$1 \qquad \omega = \infty \qquad \omega = 0$$
Im
$$1 \qquad \omega = \infty \qquad \omega = 0$$
Im
$$1 \qquad \omega = \infty \qquad \omega = 0$$
Im
$$1 \qquad \omega = \infty \qquad \omega = 0$$
Im
$$1 \qquad \omega = \infty \qquad \omega = 0$$
Im
$$1 \qquad \omega = \infty \qquad \omega = 0$$
Im
$$1 \qquad \omega = \infty \qquad \omega = 0$$
Im
$$1 \qquad \omega = \infty \qquad \omega = 0$$
Im
$$1 \qquad \omega = \infty \qquad \omega = 0$$
Im
$$1 \qquad \omega = \infty \qquad \omega = 0$$
Im
$$1 \qquad \omega = 0$$

Plotting Nyquist plots with MATLAB

```
w=logspace(-1,2)
w=logspace(0,3,100)
```

% 0.1rad/sec~100 rad/sec 50points

% 1rad/sec~1000 rad/sec 100points

```
[re, im, w]=nyquist(num, den)
[re, im, w]=nyquist(A,B,C,D)
[re, im, w]=nyquist(A,B,C,D,iu)
```

[re, im, w]=nyquist(sys)

Stability : time domain: state eigenvaluesFrequency domain: Nyquist stability criterion

Consider a clockwise contour in the s-plane called C about the point s 0

Cauchy Theorem :

If inside C, there are Z values of S which makes $G(s) = G(s_0)$ and P values which $G(s) = \infty$, then CW encirclement along C will map into Z-P CW encirclement of $G(s_0)$

 $G(s_0) = 0$: Z = 2 $G(s) = \infty$: P = 3Z - P = -1 : 1 CCW encirclement of the origin in G(s) – plane

characteristic equation : open loop : $\phi_{OL}(s) = A(s) = 0$

: closed loop: $\phi_{CL}(s) = A(s) + B(s) = 1 + G(s) = 0$

$$\phi_{CL}(s) = A(s) \left(1 + \frac{B(s)}{A(s)} \right)$$
$$= \phi_{OL}(1 + G(s))$$

$$\frac{\phi_{CL}(s)}{\phi_{OL}(s)} = 1 + G(s) \qquad 1 + G(s) = 0: closed \ Loop \ Poles$$

z : Number of unstable closed loop poles (characteristic roots)p : Number of unstable open loop poles

If $R \to \infty \to C_N$

 $N(0, 1+G(s), C_N) = Z - P; 0$ 을 중심으로 몇 번 돌았는가?

Stability :

$$N(0, 1+G(s), C_N) = -P (z=0)$$

$$N(-1, G(s), C_N) = -P (z=0)$$

<u>Ex1)</u>

Open loop poles : $s = -\frac{1}{T}$

1)

$$G(j\omega) = \frac{1}{j\omega T + 1}$$
: $\omega \approx 0, \quad |G| = 1, \ \angle G = 0^{\circ}$

$$\omega \approx \infty, \quad |G| = 0, \quad \angle G = -90^{\circ}$$

2)
$$s = \operatorname{Re}^{j\theta}$$
 : $\theta : 90^{\circ} \to 0 \to -90^{\circ}$
 $R \to \infty$

3)
$$s = \operatorname{Re}^{j\theta}$$
 : $\theta : -90^{\circ} \to 0^{\circ} \to 90^{\circ}$
 $r \to 0$
 $G(s) = \frac{1}{re^{j\theta}T + 1}$
 $= 1$ $\phi : 180^{\circ} \to 0^{\circ} \to -180^{\circ}$
 $N(-1, G, C_N) = 0 = Z - P(P = 0, no open loop poles in RHP)$
 $\Rightarrow 0 CW encirclement of -1$
 $\Rightarrow Z = 0, no closed loop poles in RHP$
 $\Rightarrow stable$

<u>Ex1)</u>

<u>Ex2</u>)

$$G(s) = \frac{1}{s(Ts+1)}$$

Open loop poles :
$$s = 0, -\frac{1}{T}$$

1) $G(j\omega) = \frac{K}{j\omega(j\omega T + 1)}$: $\omega \approx 0, |G| = \infty, \angle G = \pm 90^{\circ}$
 $\omega \approx \infty, |G| = 0, \angle G = \pm 180^{\circ}$
2) $\omega : -\infty \rightarrow -r$
 $|G|: 0 \rightarrow \infty$

$$\angle G: -\angle (-jR) - \angle (-jRT+1)$$

3)
$$s = \operatorname{Re}^{j\theta}$$
 : $\theta : 90^{\circ} \to 0 \to -90^{\circ}$
 $R \to \infty$

4)
$$s = \operatorname{Re}^{j\theta}$$
 : $\theta : -90^{\circ} \to 0^{\circ} \to 90^{\circ}$
 $r \to 0$

$$G(s) = \frac{K}{re^{j\theta}(re^{j\theta}T+1)}$$

$$= \frac{K}{r}e^{-j\theta} : -\theta \Longrightarrow \phi$$

$$= \infty \times e^{j\phi} : \phi : 180^{\circ} \to 0^{\circ} \to -180^{\circ}$$

$$N(-1, G, C_{N}) = 0$$

$$\Rightarrow 0 G$$

$$\Rightarrow Z = 0$$

$$V(-1,G,C_N) = 0 = Z - P(P = 0, \text{ no open loop poles in RHP})$$

$$\Rightarrow 0 CW \text{ encirclement of } -1$$

$$\Rightarrow Z = 0, \text{ no closed loop poles in RHP}$$

$$\Rightarrow \text{ stable}$$

<u>Ex2)</u>

<u>Ex3)</u>

$$G(s) = \frac{1}{s^2(Ts+1)}$$

Open loop poles : $s = 0, 0, -\frac{1}{T}$ 1) $G(j\omega) = \frac{K}{(j\omega)^2(j\omega T + 1)}$: $\omega \approx 0, |G| = \infty, \angle G = -180^\circ$ $\omega \approx \infty, |G| = 0, \angle G = -270^\circ$

2)
$$\omega: -\infty \to -r$$

 $|G|: 0 \to \infty$
 $\angle G: -\angle (-jR) - \angle (-jR) - \angle (-jRT + 1)$

3)
$$s = \operatorname{Re}^{j\theta}$$
 : $\theta : 90^{\circ} \to 0 \to -90^{\circ}$
 $R \to \infty$

4)
$$s = \operatorname{Re}^{j\theta}$$
 : $\theta : -90^{\circ} \to 0^{\circ} \to 90^{\circ}$
 $r \to 0$

$$G(s) = \frac{K}{r^2 e^{2j\theta} (re^{j\theta}T + 1)}$$

$$= \frac{K}{r^2} e^{-2j\theta} \quad : -2\theta \Longrightarrow \phi$$

$$= \infty \times e^{j\phi} \quad : \phi : 180^\circ \to 0^\circ \to -180^\circ$$

$$N(-1, G, C_N) = 2 = Z - P(P = 0, \text{ no open loop poles in RHP})$$

$$\Rightarrow 2 \ CW \ encirclement \ of \ -1$$

$$\Rightarrow Z = 2, 2 \ closed \ loop \ poles \ in \ RHP$$

$$\Rightarrow unstable$$

<u>Ex4)</u>

$$G(s) = \frac{1}{s(s^2 + 2\zeta\omega_n s + \omega_n^2)} \qquad \qquad 0 < \zeta < 1$$

Open loop poles : $s = 0, -\zeta \omega_n \pm j \omega_n \sqrt{1-\zeta^2}$

$$G(\mathbf{j}\omega) = \frac{K}{(j\omega)\{(j\omega)^2 + 2\zeta\omega_n(j\omega) + \omega_n^2\}} \qquad \omega \approx 0, |G| = \infty, \angle G = \mp 90^\circ$$
$$\omega \approx \infty, |G| = 0, \angle G = \mp 270^\circ$$

2)
$$\omega: -\infty \to -r$$

 $|G|: 0 \to \infty$
 $\angle G: -\angle (-jR) - \angle (-j(2\zeta\omega_n R) + \omega_n^2 - \omega^2)$

3)
$$s = \operatorname{Re}^{j\theta}$$
 : $\theta : 90^{\circ} \to 0 \to -90^{\circ}$
 $R \to \infty$

4)
$$s = \operatorname{Re}^{j\theta}$$
 : $\theta : -90^{\circ} \to 0^{\circ} \to 90^{\circ}$
 $r \to 0$

$$G(s) = \frac{1}{re^{j\theta}(2\zeta\omega_n(re^{j\theta}) + {\omega_n}^2 - \omega^2)}$$

$$= \frac{K}{r({\omega_n}^2 - \omega^2)}e^{-j\theta} \quad : -\theta \Rightarrow \phi \qquad \Rightarrow 0 \ CW \ encirclement \ of \ -1$$

$$\Rightarrow Z = 0, \ no \ closed \ loop \ poles \ in \ RHP$$

$$= \infty \times e^{j\phi} \quad : \ \phi : 180^\circ \to 0^\circ \to -180^\circ \qquad \Rightarrow stable$$

<u>Ex4)</u>

$$G(s) = \frac{1}{s(s^2 + 2\zeta\omega_n s + \omega_n^2)} \qquad \qquad \zeta = 0.7 \\ \omega_n = 1$$

Nyquist Stability Criterion

Minimum phase System : no pole and zero in RHD

G(s): open loop Transfer function

 $G(j\omega) = me^{(-\pi)}$ $K_g G(j\omega) = K_g me^{(-\pi)}$ $K_g = \frac{1}{m} \qquad : \text{stability 7} 유지되는 \text{gain margin}$ $G_m \text{ or } K_g \qquad : \text{gain margin} \text{ reciprocal of } |G(j\omega)| \text{ when phase angle is -180°}$

$$\phi_m$$
 : phase margin

 $\phi_1 < \phi_2$

Relative stability

Stability for minimum phase systems

 $G_m > 1, \ \phi_m > 0$ The bigger G_m , the more stable Rule of thumb : $G_m = 3 \sim 10$ $\phi_m = 30 \sim 60^\circ$

39

Unstable Systems

Bode plot

Control Systems Design by Frequency Response

Lead-Lag Compensation

Design using Openloop transfer function

Unit-step response curves and unit-ramp response curves.

(a) Uncompensated system; (b) lead compensated system; (c) lag compensated system; (d) lag-lead compensated system

Control System Design by Frequency Response

Control System Design by Frequency Response

Lead Compensation (Transient response 개선)

$$G_{c}(s) = K_{c} \frac{s + \frac{1}{T}}{s + \frac{1}{\alpha T}} = K_{c} \alpha \frac{Ts + 1}{\alpha Ts + 1} \left(0 < \alpha < 1 \right)$$

 α : the attenuation factor of the lead compensator

Lead Compensation

Bode plot of a lead compensator

$$\alpha \frac{Ts+1}{\alpha Ts+1} \qquad (0 < \alpha < 1)$$

$$\sin \phi_m = \frac{1 - \alpha}{1 + \alpha}$$
$$\omega_m = \frac{1}{\sqrt{\alpha T}}$$

the geometric mean of the two corner freq.

$$\log \omega_m = \frac{1}{2} \left(\log \frac{1}{T} + \log \frac{1}{\alpha T} \right)$$

Lead Compensation

$$\frac{Ts+1}{\alpha Ts+1}$$

Lag Compensation

Lag Compensation

$$G_{c}(s) = K_{c} \frac{s + \frac{1}{T}}{s + \frac{1}{\beta T}} = K_{c}\beta \frac{Ts + 1}{\beta Ts + 1} (\beta > 1) \qquad (K_{c} \approx 1) (K_{c}\beta = Static \ velocity \ error \ constant)$$

$$\phi_m = \sin^{-1} \frac{1-\beta}{1+\beta}$$

Performance Requirements

i) K_v : static velocity error constant ii) G_m , ϕ_m

1)
$$G_{c}(s) = K_{c}\alpha \frac{Ts+1}{\alpha Ts+1} = K_{c}\frac{s+\frac{1}{T}}{s+\frac{1}{\alpha T}} \quad (0 < \alpha < 1)$$

Define
$$K = K_c \alpha$$

Then $G_c(s) = K \frac{Ts+1}{\alpha Ts+1}$

Open loop T.F. of the compensated system

$$G_{c}(s)G(s) = K\frac{Ts+1}{\alpha Ts+1}G(s) = \frac{Ts+1}{\alpha Ts+1}\underbrace{KG(s)}_{G_{1}(s)} = \frac{Ts+1}{\alpha Ts+1}G_{1}(s)$$

Determine gain K to satisfy the requirement on the given static error constant

2) Using the gain K, draw a bode diagram of $G_1(j\omega)$

Evaluate the phase margin

3) Determine the necessary phase phase-lead angle to be added to the system

add an additional 5° to 12° to the phase lead angle required.

4) Determine
$$\alpha$$
 by $\sin \phi_m = \frac{1-\alpha}{1+\alpha}$

5) Determine the new gain crossover frequency

$$\omega_m = \frac{1}{\sqrt{\alpha}T}, \ \left|G(j\omega)\right| = -20\log\frac{1}{\sqrt{\alpha}}$$

6) Determine the corner frequency of the lead compensator

zero of the compensator : $\omega = \frac{1}{T}$ pole of the compensator : $\omega = \frac{1}{\alpha T}$

- 7) Find K_c using the value of K and α
- 8) Check the gain margin to be sure it is satisfactory If not, repeat the design process by modifying the pole-zero location of the compensator until a satisfactory result is obtained.

<u>Ex</u>

$$G(s) = \frac{4}{s(s+2)}$$
Design spec.

$$K_{v} = 20 \sec^{-1}$$

$$\phi_{m} = 50^{\circ}$$

$$G_{m} = 10 dB \text{ at least}$$

The static velocity error coefficient of the original system

$$K_{v,0} = \lim_{s \to 0} sG(s) = \lim_{s \to 0} \frac{4}{s+2} = 2$$

1) Consider lead compensator

$$G_{c}(s) = K_{c}\alpha \frac{Ts+1}{\alpha Ts+1}$$

Let $G_{1}(s) = K_{c}\alpha G(s) = K \cdot G(s)$
 $K_{v} = \lim_{s \to 0} sK \cdot G(s) = 2K = 20 \implies K = 10$

2) With K = 10 plot bode diagram of $G_1(j\omega)$

$$G_1(j\omega) = \frac{40}{j\omega(j\omega+2)} = \frac{20}{j\omega(0.5j\omega+1)}$$

Phase lead compensator

3) Necessary phase-lead angle : 33° to have $\phi_m = 50^{\circ}$

Add 5°;
$$\phi_m = 38^\circ$$

4) $\sin \phi_m = \frac{1-\alpha}{1+\alpha} = \sin 38^\circ$ $\alpha = 0.24$

5) Since lead compensator

$$\left|\frac{Ts+1}{\alpha Ts+1}\right|_{\substack{s=j\omega\\\omega=\frac{1}{\sqrt{\alpha T}}}} = \left|\frac{jT\frac{1}{\sqrt{\alpha T}}+1}{\alpha T\frac{1}{\sqrt{\alpha T}}j+1}\right| = \frac{1}{\sqrt{\alpha}}$$

$$\frac{1}{\sqrt{\alpha}} = \frac{1}{\sqrt{0.24}} = \frac{1}{0.49} = 6.2dB$$

Find

nd
$$|G_1(j\omega)| = -6.2dB \implies \omega = 9 \, rad \, / \sec = \omega_c \qquad G_c(s)G(s)|_{\omega_c} = 1$$

$$\frac{1}{\sqrt{\alpha}T} = \omega, \ T = \frac{1}{\sqrt{\alpha}\omega} = \frac{1}{4.41}$$

6)
$$\frac{1}{T} = \sqrt{\alpha}\omega = \sqrt{0.24} \cdot 9 = 4.41$$

 $\frac{1}{\alpha T} = \frac{1}{\alpha}\frac{1}{T} = \frac{1}{0.24} \cdot 4.41 = 18.4$

7)
$$G_c(s) = K_c \frac{s+4.41}{s+18.4} = K_c \alpha \frac{0.227s+1}{0.054s+1}$$

 $K_c = \frac{K}{\alpha} = \frac{10}{0.24} = 41.7$

8) Check the gain margin

$$G_{c}(s)G(s) = 41.7 \frac{s+4.41}{s+18.4} \frac{4}{s(s+2)}$$
$$= \frac{G_{c}(s)}{K} K \cdot G(s) = \frac{G_{c}(s)}{K} G_{1}(s)$$

Bode diagram for the compensated system

Bode plot
$$G_c(s)G(s) = \frac{G_c(s)}{K}G_1(s), \quad K = 10$$

Lag Compensation

$$G_{c}(s) = K_{c} \frac{s + \frac{1}{T}}{s + \frac{1}{\beta T}} = K_{c} \beta \frac{Ts + 1}{\beta Ts + 1} \qquad (\beta > 1)$$

Lag Compensation Technique

: to provide "attenuation in the high freq. range" to give a system sufficient phase margin

1)
$$G_{c}(s) = K_{c} \frac{s + \frac{1}{T}}{s + \frac{1}{\beta T}} = K_{c}\beta \frac{Ts + 1}{\beta Ts + 1} (\beta > 1)$$

Define $K = K_{i}\beta$

$$G_{c}(s)G(s) = K \frac{Ts + 1}{\beta Ts + 1}G(s) = \frac{Ts + 1}{\beta Ts + 1}G_{1}(s)$$

$$G_{1}(s) = K \cdot G(s)$$

Find K to satisfy the requirement on the given static velocity error constant.

2) The gain adjusted system $G_1(j\omega) = K \cdot G(j\omega)$

Find the frequency where

 $\phi = -180^{\circ} + \left(\phi_m + 5 \sim 12^{\circ}\right)$

Choose this freq. as the new gain crossover freq.

3) Choose $\frac{1}{T}$ 1 octave to 1 decade below the new gain crossover freq. (To minimize phase lag effect) \mathcal{O}_{c}

T

4) Determine the attenuation necessary to bring the magnitude curve down to 0 dB at the new gain crossover freq.
 Determine the value of β

$$5) K_c = \frac{K}{\beta}$$

<u>Ex</u>

$$G(s) = \frac{1}{s(s+1)(0.5s+1)}$$

Design spec. $K_v = 5 \sec^{-1}$ $\phi_m = 40^\circ$ $G_m = 10 dB$ at least

Bode diagrams for G_1 (gain-adjusted but uncompensated open-loop transfer function), G_c (compensator), and G_cG (compensated open-loop transfer function).

3)
$$T$$
; let $\omega_c = 0.5$
 $\omega = \frac{1}{T} = 0.1 rad / \sec \implies T = 10$
4) β : at $\omega_c = 0.5$ $|G(j\omega)| \approx 20 dB$
Hence $20 \log \frac{1}{\beta} = -20$
 $\beta = 10$

5)
$$K_c \cdot \beta = K = 5$$
 $K_c = \frac{5}{\beta} = 0.5, \quad \frac{1}{\beta T} = \frac{1}{100}$
 $G_c(s) = K_c \cdot 10 \cdot \frac{10s + 1}{100s + 1} = K_c \cdot \frac{s + \frac{1}{10}}{s + \frac{1}{100}}$

Lead-Lag Compensator

$$G_{c}(s) = K_{c} \left(\frac{s + \frac{1}{T}}{s + \frac{1}{\alpha T}} \right) \left(\frac{s + \frac{1}{T}}{s + \frac{1}{\beta T}} \right) \qquad (\alpha < 1 \quad \beta > 1)$$

$$=K_{c}\left(\frac{s+\frac{1}{T}}{s+\frac{\gamma}{T}}\right)\left(\frac{s+\frac{1}{T}}{s+\frac{1}{\beta T}}\right) \qquad (\gamma > 1 \quad \beta > 1)$$

Concluding comments

- PID Ziegler Nichols Tuning RulesRoot locus methodFrequency response method
- •State space method

End of frequency response method

Robustness to Modeling Errors (Stability Robustness)

Additive Modeling Error

 $G_A(j\omega) = G_N(j\omega) + \delta(j\omega)$: additive modeling error

At the verge of instability

 $1 + G_A(j\omega) = 0$ Given $|\delta(j\omega)|$, will never happen if $|1 + G_N(j\omega)| > |\delta(j\omega)|$ for all ω

Robustness Condition

 $\left|1+K(j\omega)G_{N}(j\omega)\right| > \left|\delta(j\omega)\right|$

Robustness to Modeling Errors (Stability Robustness)

Multiplicative Modeling error

$$G_{PA}(j\omega) = G_{PN}(j\omega) \left(1 + e_m(j\omega)\right)$$

critical condition

$$1 + K(j\omega)G_{PN}(j\omega)(1 + e_m(j\omega)) = 0$$
$$(KG_{PN})^{-1} + 1 + e_m = 0$$
$$|1 + (KG_{PN})^{-1}| > |e_m| \quad \text{for all} \quad \omega$$

Closed loop nominal

