
10-2. Controllability 



State Transfer 

Consider 

( 1) ( ) ( )x Ax Bu or x k Fx k Gu k= + + = +

Over time interval 

(We say) input                          steer, or transfers state from          to   :[ , ] m
i fu t t → R

[ , ]i ft t

( )ix t

( )fx t

Questions :  

▪ where can         be transferred to at 
▪ how quickly can         be transferred to some 
▪ how do we find a u that transfers          to          ? 
▪ how do we find a ‘small’ or ‘efficient’ u that transfers           to          ? 
   

ft t=

( )ix t

( )ix t targetx
( )ix t ( )fx t

( )ix t ( )fx t



Controllability and Reachability 

Definition :Controllability (Disc. Time Case) 
      
         A System described by 
 
 
is said to be controllable if any initial state can be transferred to  any 
final state          in a finite time N by some control sequence   
     
                   
        

( 1) ( ) ( )x k Fx k Gu k+ = +

{ ( ); 0, , }= u k k N

(0)x ( )x N

Definition :Controllability (Cont. Time Case) 
      
         A System described by 
 
 
 
         is said to be controllable if any initial state 
               can be transferred to any final state 
               in a finite time by some control    
     
                   
        

( ) ( ) ( )dx t Ax t Bu t
dt
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0{ ( ); }τ ≤ ≤ fu t t t
0( )x t
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Another definitions : Controllability and Reachability 
      
Controllability : A control system is defined to be state controllable 
                        if, given an arbitrary initial  state        , it is  
                        possible to bring the state to the origin of 
                        the state space in a finite time interval, 
                        provided the control vector is unconstrained (unbounded)  
                   
        

(0)x

Reachability : A system is defined to be state reachable 
                      if, starting from the origin of the state space, 
                      the state can be brought to an arbitrary point 
                      in the state space in a finite time period, 
                      provided the control vector is unconstrained.           
                   
        

= +x Ax Bu
Reachable set 

    Define            as the set of points reachable in t seconds for 
 
 
 
         and in    steps for DT system   
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Differential Equations 
. . ( , )d e x P x t=

Two Conditions. 
 
(a)           : finite number of discontinuities. 
  :     : continuous and, at             (set of possible discontinuity points) 

has finite left- and right- hand limits at  
 
(b) Lipschitz conditions 
 
 
     : piecewise continuous function  

( ) , 0, :n n nx t R t P R R R∈ > × →
0 0. . ( )i c x t x=

Fundamental Theorem 
 
If the function            satisfies assumption (a) and (b), then 
 
(1) For each             and each             there is a continuous function such that 

 
(2) Is unique and is called the solution of the d.e. 

( , )P x t

( , )t P x t→ it D∈

it

' '|| ( , ) ( , ) || || ||P t P tξ ξ ξ ξ− ≤ −

( )K t

( , )P x t

0
nx R∈ 0t R+∈



Differential Equations 

Fundamental Theorem 
 
If the function            satisfies assumption (a) and (b), then 
 
(1) For each             and each             there is a continuous function such that 

 
 
 
 

(2)     is unique and is called the solution of the d.e. 

( , )P x t

0
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0 0( ) |
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Differential Equations 

2. Calculation of        by Laplace Transforms and Caley Hamilton Theorem. Ate
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B n n real matrices
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Differential Equations 

Theorem*   
 
Assuming that d(s) is known, Bk can be successively calculated by the formulas 
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Differential Equations 

Proof: 
 
 
 
 
 
 
 
 
 
 
 
 
Compare both side (End of Proof) 
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Differential Equations 
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Cayley Hamilton Theorem 

( ) det( )
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For any square matrix A, 
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Proof: It is equivalent to show d(A)=0 use Theorem* 

( ) 0A∆ =

Remark: Cayley-Hamilton Theorem implies that for any nxn matrix with elements in      
              a field F, An is a linear combination of I, A, A2, …, An-1 

 



Cayley Hamilton Theorem 

( ) , , ( )
( 1) , ( )
( 2) ( ) ( ) , , ( )
( 3) 0, 0 ( )
( 4) ( ), ( ) 0 ( )

( ) , ,

( ) ( )
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A F F
A F commutivity
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M F F
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The concept of field 
 Let F be a set of elements α, β, γ, … .  
 The set of F will be called a field iff 

Ex. Field of R, field of C, field of rational functions field of binary numbers. 



Controllability 

Now consider a continuous system 

0
0 0( ) ( , ) ( , ) ( ) ( )
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Let t0=0, time-invariant, 
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Cayley Hamilton Theorem 
Therefore, 
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(By the C-H Theorem), 
 Since Ak for k>n can be represented as a linear combination of  
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By C-H theorem 
 
 
therefore 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    x(t) is in range(C) 
 thus,  
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If R(C)=range(C)=Rn 
     i.e, rank C = n 
then 
   x(t) can be transferred from x0 to any state in Rn by some control inputs 
 
range : a subspace 
range(C) : a subspace of Rn 

 
                 defined by a function or transformation that maps 
                     

, ny Cx x R= ∀ ∈

{ }

into

( ) ,

n m

n

x R y R
m n
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Theorem  ( Controllability ) 
 
     The continuous system 
     
     is controllable if and only if 
            
 
 
    Where             n : the order of the system  
                  C = Wc : the controllability matrix 

cW ( )rank n rank C n= =

x Ax Bu= +

1
cW nC B AB A B− = =  



End of 10-2 
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