10-2. Controllability

State Transfer

Consider

$$
\dot{x}=A x+B u \quad \text { or } \quad x(k+1)=F x(k)+G u(k)
$$

Over time interval $\left[t_{i}, t_{f}\right]$
(We say) input $u:\left[t_{i}, t_{f}\right] \rightarrow \boldsymbol{R}^{m}$ steer, or transfers state from $x\left(t_{i}\right)$ to $x\left(t_{f}\right)$

Questions:

- where can $x\left(t_{i}\right)$ be transferred to at $t=t_{f}$
- how quickly can $x\left(t_{i}\right)$ be transferred to some $X_{\text {target }}$
- how do we find a u that transfers $x\left(t_{i}\right)$ to $x\left(t_{f}\right)$?
- how do we find a 'small' or 'efficient' u that transfers $x\left(t_{i}\right)$ to $x\left(t_{f}\right)$?

Controllability and Reachability

Definition :Controllability (Cont. Time Case)
A System described by

$$
\frac{d x(t)}{d t}=A x(t)+B u(t)
$$

is said to be controllable if any initial state
$\boldsymbol{x}\left(\boldsymbol{t}_{0}\right)$ can be transferred to any final state
$\boldsymbol{x}\left(\boldsymbol{t}_{f}\right)$ in a finite time by some control $\left\{\boldsymbol{u}(\tau) ; \boldsymbol{t}_{0} \leq \boldsymbol{t} \leq \boldsymbol{t}_{f}\right\}$
Definition :Controllability (Disc. Time Case)
A System described by

$$
x(k+1)=F x(k)+G u(k)
$$

is said to be controllable if any initial state can be transferred to any
final state $x(0)$ in a finite time N by some control sequence $x(N)$

$$
\{\boldsymbol{u}(\boldsymbol{k}) ; \boldsymbol{k}=0, \cdots, N\}
$$

Another definitions: Controllability and Reachability
Controllability : A control system is defined to be state controllable if, given an arbitrary initial state $\boldsymbol{x}(0)$, it is possible to bring the state to the origin of the state space in a finite time interval, provided the control vector is unconstrained (unbounded)

Reachability: A system is defined to be state reachable if, starting from the origin of the state space, the state can be brought to an arbitrary point in the state space in a finite time period, provided the control vector is unconstrained.

Reachable set
Define $\boldsymbol{R}_{\boldsymbol{t}} \leq \boldsymbol{R}^{n}$ as the set of points reachable in t seconds for $\dot{\boldsymbol{x}}=\boldsymbol{A x}+\boldsymbol{B u}$

$$
R_{t}=\left\{\int_{0}^{t} e^{(t(t)} B u(\tau) d \tau \mid u:[0, t] \rightarrow R^{m}\right\}
$$

and in \boldsymbol{k} steps for DT system $\boldsymbol{x}(\boldsymbol{k}+1)=\boldsymbol{G} \boldsymbol{x}(\boldsymbol{k})+\boldsymbol{H} \boldsymbol{u}(\boldsymbol{k})$

$$
R_{k}=\left\{\sum_{i=0}^{k-1} \boldsymbol{A}_{\boldsymbol{G}}^{k-1-i} \underset{\boldsymbol{H}}{\left.\underset{B}{B} u(i) \mid u(i) \in R^{m}\right\}}\right.
$$

Differential Equations

d.e. $\dot{x}=P(x, t)$

$$
x(t) \in R^{n}, t>0, P: R^{n} \times R \rightarrow R^{n}
$$

i.c. $\quad x\left(t_{0}\right)=x_{0}$

Two Conditions.
(a) $P(x, t)$: finite number of discontinuities.
$t \rightarrow P(x, t)$: continuous and, at $t_{i} \in D$ (set of possible discontinuity points)
has finite left- and right- hand limits at t_{i}
(b) Lipschitz conditions

$$
\left\|P(\xi, t)-P\left(\xi^{\prime}, t\right)\right\| \leq\left\|\xi-\xi^{\prime}\right\|
$$

$K(t)$: piecewise continuous function
Fundamental Theorem
If the function $P(x, t)$ satisfies assumption (a) and (b), then
(1) For each $x_{0} \in R^{n}$ and each $t_{0} \in R_{+}$there is a continuous function such that
(2) Is unique and is called the solution of the d.e.

Differential Equations

Fundamental Theorem

If the function $P(x, t)$ satisfies assumption (a) and (b), then
(1) For each $x_{0} \in R^{n}$ and each $t_{0} \in R_{+}$there is a continuous function such that

$$
\begin{aligned}
& \Phi\left(t_{0}\right) \mid=x_{0} \text { and } \\
& \dot{\Phi}(t)=P(\Phi(t), t) \quad \forall t \in R_{+} \text {and } t \notin D
\end{aligned}
$$

(2) Φ is unique and is called the solution of the d.e.

Differential Equations

2. Calculation of $e^{A t}$ by Laplace Transforms and Caley Hamilton Theorem.
```
Let \(\hat{\Phi}(s)=\mathcal{L}\left[\Phi\left(t_{0}\right)\right]\)
since, \(\frac{d \Phi\left(t_{0}\right)}{d t}=A \Phi(t, 0)\)
    \(s \hat{\Phi}(s)-\Phi(0,0)=A \hat{\Phi}(s)\)
    \((s I-A) \hat{\Phi}(s)=I\)
```

hence $\hat{\Phi}(s)=(s I-A)^{-1}$
crammer's rule applies, $A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{Adj}(A)$

$$
\rightarrow \hat{\Phi}(s)=\frac{B(s)}{d(s)}=\frac{s^{n-1} B_{0}+s^{n-2} B_{1}+\cdots+s B_{n-2}+B_{n-1}}{s^{n}+d_{1} s^{n-1}+d_{2} s^{n-2}+\cdots+d_{n}}
$$

where $d(s)=\operatorname{det}(s I-A)$,

$$
B_{i}=n \times n \text { real matrices }
$$

Differential Equations

Theorem*
Assuming that $\mathrm{d}(\mathrm{s})$ is known, Bk_{k} can be successively calculated by the formulas

$$
\begin{aligned}
& B_{0}=I \\
& B_{1}=B_{0} A+d_{1} I \\
& B_{0}=B_{1} A+d_{2} I \\
& \quad \vdots \\
& B_{k}=B_{k-1} A+d_{k} I \\
& \quad \vdots \\
& B_{n-1}=B_{n-2} A+d_{n-1} I \\
& 0=B_{n-1} A+d_{n} I
\end{aligned}
$$

Differential Equations

Proof: $\Phi(s)=\frac{B(s)}{d(s)}=\frac{s^{n-1} B_{0}+s^{n-2} B_{1}+\cdots+s B_{n-2}+B_{n-1}}{s^{n}+d_{1} s^{n-1}+d_{2} s^{n-2}+\cdots+d_{n}}$

$$
=(s I-A)^{-1}
$$

post multiply $(s I-A) d(s)$

$$
\begin{aligned}
\rightarrow d(s) I= & \left(s^{n-1} B_{0}+s^{n-2} B_{1}+\cdots+s B_{n-2}+B_{n-1}\right)(s I-A) \\
= & s^{n} B_{0}+\left(B_{1}-B_{0} A\right) s^{n-1}+\left(B_{2}-B_{1} A\right) s^{n-2}+\cdots \\
& +\left(B_{n-1}-B_{n-2} A\right) s+\left(-B_{n-1} A\right)
\end{aligned}
$$

Compare both side (End of Proof)

Differential Equations

premultiply $(s I-A) d(s)$

$$
\begin{aligned}
\rightarrow I d(s) & =(s I-A)\left(s^{n-1} B_{0}+s^{n-2} B_{1}+\cdots+s B_{n-2}+B_{n-1}\right) \\
& =s^{n} B_{0}+\left(B_{1}-B_{0} A\right) s^{n-1}+\left(B_{2}-B_{1} A\right) s^{n-2}+\cdots
\end{aligned}
$$

$$
B_{0}=I
$$

$$
B_{1}=A B_{0}+d_{1} I
$$

$$
B_{0}=A B_{1}+d_{2} I
$$

$$
B_{k}=A B_{k-1}+d_{k} I
$$

$$
B_{n-1}=A B_{n-2}+d_{n-1} I
$$

$$
0=A B_{n-1}+d_{n} I
$$

Cayley Hamilton Theorem

For any square matrix A,

$$
\Delta(A)=0
$$

Proof: It is equivalent to show $\mathrm{d}(\mathrm{A})=0$ use Theorem*

$$
\begin{aligned}
0 & =B_{n-1} A+d_{n} I \\
= & \left(B_{n-2} A+d_{n-1} I\right) A+d_{n} I=B_{n-2} A^{2}+d_{n-1} A+d_{n} I \\
= & \left(B_{n-3} A+d_{n-2} I\right) A^{2}+d_{n-1} A+d_{n} I=B_{n-3} A^{3}+d_{n-1} A^{2}+d_{n-1} A+d_{n} I \\
& \vdots \\
= & d(A) \\
= & A^{n}+d_{1} A^{n-1}+d_{2} A^{n-2}+\cdots+d_{n-1} A+d_{n} I
\end{aligned}
$$

Remark: Cayley-Hamilton Theorem implies that for any nxn matrix with elements in a field F, A^{n} is a linear combination of $I, A, A^{2}, \ldots, A^{n-1}$

Cayley Hamilton Theorem

The concept of field
Let F be a set of elements $\alpha, \beta, \gamma, \ldots$.
The set of F will be called a field iff
(A) $\alpha, \beta \in F, \quad(\alpha+\beta) \in F$
(A2) $\alpha+\beta=\beta+\alpha$
$\forall \alpha, \beta \in F$
(commutivity)
(A3) $\exists 0, \quad \alpha+0=\alpha$
(A4) $\exists(-\alpha), \alpha+(-\alpha)=0$
$\forall \alpha, \beta, \gamma \in F \quad$ (associativity)
$\forall \alpha \in F$
(additive identity)
$\forall \alpha \in F$
(additive inverse)
(M) $\alpha, \beta \in F, \quad \alpha \cdot \beta \in F$

$$
\alpha \cdot \beta=\beta \cdot \alpha
$$

$$
\alpha \cdot(\beta \cdot \gamma)=(\alpha \cdot \beta) \cdot \gamma
$$

$$
\alpha \cdot 1=\alpha
$$

$$
\alpha \cdot \alpha^{-1}=1
$$

(D) $\alpha \cdot(\beta+\gamma)=\alpha \cdot \beta+\alpha \cdot \gamma$

Ex. Field of R, field of C, field of rational functions field of binary numbers.

Controllability

Now consider a continuous system

$$
\begin{aligned}
& \dot{x}=A x+B u \\
& x(t)=\Phi\left(t, t_{0}\right) x_{0}+\int_{t_{0}}^{t} \Phi(t, \tau) B(\tau) u(\tau) d \tau
\end{aligned}
$$

Let $\mathrm{t}_{0}=0$, time-invariant,

$$
\begin{aligned}
\Phi\left(t, t_{0}\right)=\Phi(t, 0)=\Phi(t) & =\sum_{k=0}^{\infty} \frac{1}{k!} A^{k} t^{k} \\
& =I+A t+\frac{1}{2!} A^{2} t^{2}+\cdots+\frac{1}{n!} A^{n} t^{n}+\cdots
\end{aligned}
$$

Cayley Hamilton Theorem

Therefore,

$$
\begin{aligned}
x(t)=\Phi\left(t, t_{0}\right) x_{0} & +\int_{t_{0}}^{t}\left(I+A t+\frac{1}{2!} A^{2} t^{2}+\cdots+\frac{1}{n!} A^{n} t^{n}+\cdots\right) B(\tau) u(\tau) d \tau \\
=\Phi\left(t, t_{0}\right) x_{0} & +\int_{t_{0}}^{t} B(\tau) u(\tau) d \tau+\int_{t_{0}}^{t} A(t-\tau) B(\tau) u(\tau) d \tau \\
& +\int_{t_{0}}^{t} \frac{1}{2!} A^{2} B u(\tau)(t-\tau)^{2} d \tau+\cdots+\int_{t_{0}}^{t} \frac{1}{n!} A^{n} B u(\tau)(t-\tau)^{n} d \tau+\cdots
\end{aligned}
$$

(By the C-H Theorem),
Since A^{k} for $k>n$ can be represented as a linear combination of

$$
\begin{aligned}
& A^{n-1}, A^{n-2}, \cdots, A, I\left(A^{0}\right) \\
& \text { i.e. } A^{n}=-d_{1} A^{n-1}-d_{2} A^{n-2}-\cdots-d_{-11} A-d_{n} I \\
& \quad d(A)=0
\end{aligned}
$$

By C-H theorem

$$
e^{A t}=\alpha_{0}(t) I+\alpha_{1}(t) A+\cdots+\alpha_{n-1}(t) A^{n-1}
$$

therefore

$$
\begin{aligned}
x(t) & =\Phi(t) x_{0}+\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau \\
& =\Phi(t) x_{0}+\int_{0}^{t}\left(\sum_{i=0}^{n-1} \alpha_{i}(\tau) A^{i}\right) B u(t-\tau) d \tau \\
& =\Phi(t) x_{0}+\sum_{i=0}^{n-1} A^{i} B \int_{0}^{t} \alpha_{i}(\tau) u(t-\tau) d \tau \\
& =\Phi(t) x_{0}+C \cdot\left[\begin{array}{c}
z_{1}(t) \\
z_{2}(t) \\
\vdots \\
Z_{n}(t)
\end{array}\right] \\
& z_{i}(t)=\int_{0}^{t} \alpha_{i}(\tau) u(t-\tau) d \tau
\end{aligned}
$$

$x(t)$ is in range(C)
thus,

$$
\begin{aligned}
& \text { in range(C) } \\
& x(t)=\Phi(t) x_{0}+\left[\begin{array}{lllll}
B & A B & A^{2} B & \cdots & A^{n-1} B
\end{array}\right] \cdot\left[\begin{array}{c}
\xi_{1}(u) \\
\xi_{2}(u) \\
\vdots \\
\xi_{n}(u)
\end{array}\right]
\end{aligned}
$$

If $R(\underline{C})=\operatorname{range}(\underline{C})=R^{n}$
i.e, $\operatorname{rank} \underline{C}=n$
then
$\mathrm{x}(\mathrm{t})$ can be transferred from x_{0} to any state in R^{n} by some control inputs
range: a subspace
range(C) : a subspace of R^{n}

$$
y=C x, \quad \forall x \in R^{n}
$$

defined by a function or transformation that maps

$$
\begin{aligned}
& x \in R^{n} \quad \text { into } \quad y \in R^{m} \\
& m \leq n \\
& \operatorname{range}(C)=\left\{y \mid y=C x, \forall x \in R^{n}\right\}
\end{aligned}
$$

Theorem (Controllability)
The continuous system
is controllable if and only if $\dot{x}=A x+B u$

$$
\operatorname{rank} \mathrm{W}_{\mathrm{c}}=n \quad(\operatorname{rank} \underline{C}=n)
$$

Where $\quad \mathrm{n}$: the order of the system

$$
\underline{C}=W_{c}: \text { the controllability matrix }
$$

$$
\underline{C}=\mathrm{W}_{\mathrm{c}}=\left[\begin{array}{llll}
B & A B & \cdots & A^{n-1} B
\end{array}\right]
$$

End of 10-2

