System Control Review

Fall 2014

Professor Kyongsu Yi © 201 VDCL Vehicle Dynamics and Control Laboratory Seoul National University

Review (1)

1. Some examples of control systems

2. Key concepts

Systems, control, dynamic system, linear/nonlinear Analysis, design, synthesis Openloop control, feedback control systems

3. Laplace Transformation

4. System representations

Block diagram, signal flow graph Mason's gain rule

5. System responses

Transient response, steady state response, pole/zero, System types, static error/velocity error/acceleration error constants, Stability, Routh stability tests

6. Basic control algorithms

On-off control, PID control, openloop/closed loop control and modeling error

7. Root Locus analysis and design method

lead-lag compensator parameter variations

Review (2)

8. Frequency response method

Bode plots, Nyquist plot, Nyquist stability criterion Gain margin, phase margin, Robustness to model uncertainties

9. State space method

state feedback and pole placements solution of state equation, state transition matrix (discrete systems) Regulator reference tracking integral control Controllability, observability, Cayley-Hamilton theorem Observer design, observer-controller, Separation property

10. Design Examples (state space design)

Inverted bar(pendulum) control, PID (Vehicle control systems) (path tracking)