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6.1 Introduction

Virtual work methods, now widely implemented on computers, are the 
i l f l i f h l d d d fl i i lpractical means of solving for the loads and deflections in complex 

structures. Virtual work principles convey the requirements of 
equilibrium and compatibility as integral equations, instead of the 
partial differential equations presented in Chapter 3(Equations 3.3.4 
and 3.9.6). The partial work principles are mathematical alternatives 
to – not approximations of – the differential equations of elasticity.pp q y
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6.1 Introduction

This chapter develops the principles of virtual work and the principle 
of complementary virtual work from the basic concepts of vectorof complementary virtual work from the basic concepts of vector 
statics. These principles are then extended to deformable 
continua, cast in general terms from which formulas for specific 
structural elements will be obtained in subsequent chapters. 
C ti li ’ th d th th f i i t ti lCastigliano’s theorems and the theorems of minimum potential 
energy are consequences of applying the principles of virtual work 
to linear elastic structures. Since they underlie the Castigliano and 
minimum energy methods virtual work methods will be usedminimum energy methods, virtual work methods will be used 
nearly exclusively in this text.
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6.2 System Equilibrium and Compatibility

Consider a system of N particles. y p

For the three particle system of Figure 6.2.1, Equations 6.2.1 and 6.2.2 imply thatp y g , q p y

[6.2.3]
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6.2 System Equilibrium and Compatibility

[6.2.4][ ]

[6.2.5]

The position vector rij of point j relative to point i before deformation is
[6.2.6]

The relative position vector,

[6.2.7]

This equation is a compatibility condition
hi h t t th t th h i l tiwhich states that: the change in relative 

position between two particles of the system 
cannot be prescribed independently of the 
displacements of those points
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6.2 System Equilibrium and Compatibility

Let us take the dot product of the equilibrium equation with the particle’s 
displacement vector qi, 

Summing this equation over all the particles of the system,

[6.2.8]

For the special case of the three-particle system,

Using the compatibility relation,
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6.2 System Equilibrium and Compatibility

If a system is in equilibrium and the relative displacements are compatible, then

[6.2.9]

For the three-particle system,

[6.2.10]

Repeating this argument for each of the N particles,Repeating this argument for each of the N particles,
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6.2 System Equilibrium and Compatibility

Next, let us place no restrictions on the displacements,

Since the loads must be in equilibrium,

The forces are arbitrary and independent, so we can set f13=f23=0
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6.3 The Virtual Work Principlep

Consider a particle acted on by N forces, Qi, i=1, … , N. The resultant 
f th ti l i Q h If th ti l dforce on the particle is QR, where                . If the particle undergoes a 
real, infinitesimal displacement dq, then the incremental work done by 
the forces on the particle is                     . If instead we imagine that the 
particle is given a small but fictitious, or virtual, displacement      , while 
the forces are held constant, then the total virtual work       done on the 
particle isp

A particle is in equilibrium if and only if the virtual work done on the particle is 
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zero for any virtual displacement.



6.3 The Virtual Work Principlep

[6.3.1]

[6 3 2][6.3.2]

∴∴
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6.3 The Virtual Work Principlep

Example 6 3 1Example 6 3 1Example 6.3.1Example 6.3.1
Figure 6.3.2 shows a weight W supported by two cables. Use 
the principle of virtual work to find the tension in each cable.

National Research Laboratory for Aerospace Structures



6.3 The Virtual Work Principlep

E l 6 3 1E l 6 3 1Example 6.3.1Example 6.3.1

Resolving the forces on C into components, the total virtual work of the weight and 
the cable tension isthe cable tension is,

Setting δW = 0,g ,

According to the principle of virtual work this equality must hold for arbitraryAccording to the principle of virtual work, this equality must hold for arbitrary 
values of δu and δv

The solution of these equations is 
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6.3 The Virtual Work Principlep

Example 6.3.2Example 6.3.2pp
The figure shows three springs rigidly attached to the wall at points 
B, C, and D, and attached to each other at point A, where the 
external load P is applied Each spring has a unique springexternal load P is applied. Each spring has a unique spring 
constant. Use the principle of virtual work to find the spring forces 
F1, F2, and F3. 
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6.3 The Virtual Work Principlep

Example 6.3.2Example 6.3.2

The virtual displacement of point A is

Let the extension or stretch of each spring due to the load be si, i=1,2,3

And the virtual stretches are,
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6.3 The Virtual Work Principlep

Example 6.3.2Example 6.3.2
Thus, the internal virtual work is,

Next, the external virtual work of the applied load is,
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6.3 The Virtual Work Principlep

From Equation 3.14.1, we know that in a quasistatic loading process, the work done q , q g p ,
within a solid by the true stresses during an increment of the true strains is

[6.3.3]

[6.3.4]

[6.3.5][6.3.5]
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6.4 Minimum Potential Energy and 
Castigliano’s First TheoremCastigliano s First Theorem

If a solid is linearly elastic, then according to section 3.14, the 
internal work associated with a quasistatic loading process equals 
the strain energy U orthe strain energy U, or

[6.4.1]

For a virtual deformation, 

[6. . ]

[6.4.2]

[6.4.4]
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6.4 Minimum Potential Energy and 
Castigliano’s First TheoremCastigliano s First Theorem

If we set all of the virtual displacements except δq1 equal to zero,

Repeating the argument for the remaining virtual displacements,

[6.4.5]      Castigliano’s first theorem

The potential energy V of the external loads is,

[6.4.6]

[6.4.7]

Castigliano’s first theorem may thus be written

[6.4.8]
(Eq 6.4.8 is a statement of the theorem of 

i i i l )
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[6.4.8]

(where Π = U + V is the total potential energy of the structure)
minimum potential energy)



6.4 Minimum Potential Energy and 
Castigliano’s First TheoremCastigliano s First Theorem

Example 6.4.1Example 6.4.1
Solve the problem in Example 
6.3.2 using the principle of 
minimum potential energy.p gy

The total strain energy of the three-spring assembly is,

[a]

From Equation 6.4.6, the potential energy of the load P is

[b]
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6.4 Minimum Potential Energy and 
Castigliano’s First TheoremCastigliano s First Theorem

Th t t l t ti l i Π U + VThe total potential energy is Π = U + V, 

[c]

[d]

[e][e]

Substituting the displacements in Equation [e] into Equation [c],

[g]
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6.4 Minimum Potential Energy and 
Castigliano’s First TheoremCastigliano s First Theorem

Calculating the second partial derivatives of yieldsCalculating the second partial derivatives of       yields,

Since k is positive, both conditions in Equation [g] are satisfied:      is indeed a 
i iminimum.
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6.5 Stiffness Matrix

If a structure is not only elastic but linearly elastic, then by definition, the y y , y ,
generalized loads Qi and the generalized displacements qi in the direction of the 
loads are directly proportional to each other.

[6.5.1]

<Stiffness matrix>
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6.5 Stiffness Matrix

[6.5.2]

[6 5 3] & [6 5 4]and

From Castigliano’s first theorem

[6.5.3] & [6.5.4]

[6 5 5]From Castigliano s first theorem, [6.5.5]

[6.5.6]

[6 5 7]

The stiffness matrix of an elastic structure is symmetric.
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6.6 The Complementary Virtual Work 
PrinciplePrinciple

The internal complementary virtual work is defined as,p y ,

[6.6.1]

The external complementary virtual work is defined as,

[6.6.2] (The virtual quantities are the loads 
instead of the displacements)instead of the displacements)

∴∴
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6.6 The Complementary Virtual Work 
PrinciplePrinciple

Example 6.6.1Example 6.6.1

Figure 6.6.1a shows a load W supported by two springs with 
identical spring constants k. The picture is similar to that for 
Example 6 3 1 in which the spring loads were found to have theExample 6.3.1, in which the spring loads were found to have the 
values shown. Find the horizontal displacement of point P, using 
the principle of complementary virtual work.
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6.6 The Complementary Virtual Work 
PrinciplePrinciple

Example 6.6.1Example 6.6.1

The external virtual complementary work is,

To calculate the internal complementary virtual work,

(where ∆rij is the change in the distance between the points caused by the actual loading,
δfij is the signed magnitude of the virtual force in the spring)

If the spring is elastic with spring rate k,

National Research Laboratory for Aerospace Structures



6.6 The Complementary Virtual Work 
PrinciplePrinciple

Example 6.6.1Example 6.6.1

Then,

Setting                        , we have
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6.6 The Complementary Virtual Work 
PrinciplePrinciple

Example 6.6.2Example 6.6.2Example 6.6.2Example 6.6.2
The structure shown in Figure 6.6.2a supports a vertical at A. Use 
the principle of complementary virtual work to find (a) the horizontal 
displacement u of point C and (b) the rotation of member ADdisplacement u of point C, and (b) the rotation        of member AD, 
due to the load P.
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6.6 The Complementary Virtual Work 
PrinciplePrinciple

Example 6.6.2Example 6.6.2

(The negative sign means that AD 
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6.6 The Complementary Virtual Work 
PrinciplePrinciple

For a continuous medium, the internal complementary virtual work of 
the true strains (held fixed) acting through the virtual stresses is 
i f d f i b linferred from Equation 6.3.4 by analogy :

[6.6.4]

[6.6.5]

: virtual generalized loadg

qi : the generalized displacement in 
the direction of

National Research Laboratory for Aerospace Structures



6.7 Minimum Complementary Potential 
Energy and Castigliano’s Second TheoremEnergy and Castigliano s Second Theorem

From section 3 14 the internal complementary work of a quasistatic process fromFrom section 3.14, the internal complementary work of a quasistatic process from 
the undeformed to the deformed state equals the complementary strain energy U*, 

The complementary strain energy        is a function of the applied loads,

For a virtual deformation,
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6.7 Minimum Complementary Potential 
Energy and Castigliano’s Second TheoremEnergy and Castigliano s Second Theorem

The coefficients of δQ on each side of the equation must be the sameThe coefficients of δQi on each side of the equation must be the same

[6.7.4]     Castigliano’s second theorem

[6.7.5]     theorem of minimum 
l t t ti lcomplementary potential energy

(where Π* = U* + V* is the total complementary potential energy)

And,

[6.7.6][ ]
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6.7 Minimum Complementary Potential 
Energy and Castigliano’s Second TheoremEnergy and Castigliano s Second Theorem

Example 6.7.1Example 6.7.1
Solve the problem of Example 6.3.2 using the principle of minimum 
complementary potential energy as an alternative to using the 
principle of minimum potential energy, which was done in Example p p p gy, p
6.4.1. The sketch for that problem is reproduced in Figure 6.7.1a for 
convenience.
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6.7 Minimum Complementary Potential 
Energy and Castigliano’s Second TheoremEnergy and Castigliano s Second Theorem

Example 6.7.1Example 6.7.1

The complementary strain energy of a spring is,

Therefore, the total complementary strain energy is,

The potential energy of the applied load is,

The total complementary potential energy is,p y p gy ,
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6.7 Minimum Complementary Potential 
Energy and Castigliano’s Second TheoremEnergy and Castigliano s Second Theorem

Example 6.7.1Example 6.7.1
The equations of equilibrium for point A

Since F1 and P are independent variables,
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6.8 Flexibility Matrixy

Th fl ibilit t i f li l l ti t t i th t f ffi i t th tThe flexibility matrix of a linearly elastic structure is the set of coefficients that 
relate the generalized displacements to the loads

[6.8.1]

[6.8.2][6.8.2]
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6.8 Flexibility Matrixy

If we apply a load just to point 1, as pp y j p ,
in figure 6.8.2a, the displacements at 
point 1 and 2 are

Since point 1 is the shear center, c21=0

If we apply just a point couple M2 to 
point 2, as in figure 6.8.2c, then

However, since c21=c12=0, u1=0, 21 12 , 1

This means that point 1 is the center of twist

I l i h h d h f i i id
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In an elastic structure, the shear center and the center of twist coincident.


