Chapter 6
Work-Energy Principles
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6.1 Introduction

Virtual work methods, now widely implemented on computers, are the
practical means of solving for the loads and deflections in complex
structures. Virtual work principles convey the requirements of
equilibrium and compatibility as integral equations, instead of the
partial differential equations presented in Chapter 3(Equations 3.3.4
and 3.9.6). The partial work principles are mathematical alternatives
to — not approximations of — the differential equations of elasticity.
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Figure 6.1.1 [a} Truss with an applied load P af jeint A. (b) Member forces as a func-
tion of the displacements of point A.

All members have the same axial rigidity AE. Structures
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6.1 Introduction

This chapter develops the principles of virtual work and the principle
of complementary virtual work from the basic concepts of vector
statics. These principles are then extended to deformable
continua, cast in general terms from which formulas for specific
structural elements will be obtained in subsequent chapters.
Castigliano’s theorems and the theorems of minimum potential
energy are consequences of applying the principles of virtual work
to linear elastic structures. Since they underlie the Castigliano and
minimum energy methods, virtual work methods will be used

nearly exclusively in this text.
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6.2 System Equilibrium and Compatibility

Consider a system of N particles.

[, = L [ [6.2.1] Q : r\
:._Tl-' i.l ;

By =1 [6.2.2] "

Figure 6.2.1 System of porficles, showing

external and internal forces.

For the three particle system of Figure 6.2.1, Equations 6.2.1 and 6.2.2 imply that

f; =12+ fi3
f, =) + 23 =—f2 + 3 [6.2.3]
f3 = |'31 o f32 = "'fH - f23
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6.2 System Equilibrium and Compatibility

Q+f=0i=1,---,N [6.2.4]
Q=1 —fi3

O = [6.2.5]
Qs =13 + fo3

The position vector I; of point j relative to point i before deformation is
Xij =Trj—I; [6.2.6]

The relative position vector,
l";j =(r;+q;)—r;+q)=r;+q; —q;

—> Arj; =4q; —q; [6.2.7]

This equation is a compatibility condition
which states that: the change in relative

position between.two partlcles of the system Figure 6.2.2 Relafive: posifion vee:
cannot be prescribed independently of the tors of a pair of parti-

displacements of those points. cles i and j before and
after deformation.

National Research Laboratory for Aerospace Structures !



6.2 System Equilibrium and Compatibility

Let us take the dot product of the equilibrium equation with the particle’s
displacement vector g,

Q-q=-t-q

Summmg this equatlon over all the particles of the system,
Z Q=05 = Zf Qi [6.2.8]

For the special case of the three-particle system,

Zf q=fi -+ @+ (N=3)

i=l]

fo -q; = (fi2 + f13) - q + (—Fi2 +£23) - q2 + (—F13 — F23) - q3
i=l

=fio- (@ —q) +fi3- (@1 —q3) + 3 (2 — q3)
Usmg the compatibility relation,

Zf i = fi2 - (Arp) + fi3 - (—Args) + fo3 - (—Args)

i=1
National Research Laboratory for Aerospace Structures !



6.2 System Equilibrium and Compatibility

If a system is in equilibrium and the relative displacements are compatible, then

N N
Y Qi-q= ) f; Ar; [6.2.9]
i=1 i i=l

i<j
For the three-particle system,
Q-1 +Q2-qu+Qs3-qs =f1p- Aryp +f13 - Argz +fo3 - Arps

Qi q1+Q2 Q@ +Q3-ga=Ffi2- (@ —q1) +fi3:- (@3 —q1) + 3 (q3 — q)
Qi +f) q+Q+f) @+ (Q3+1)-q3=0 [6.2.10]
Q,+f)-qi =0 for any q; # 0

Repeating this argument for each of the N particles,
Q+fi=0i=1,.---,N

A system is in equilibrium if and only if Equation 6.2.9 is valid for any compatible deformation
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6.2 System Equilibrium and Compatibility

Next, let us place no restrictions on the displacements,

Q  qi+Q-q2+Q3-qs =f1n- Arp +fi3 - Aryz + 23 - Arps
Since the loads must be in equilibrium,

[Ar;; — (q2 — q1)] - fio + [Arys — (@3 — q)] - fi3 + [Aras — (@3 — q2)] - f23 =0

The forces are arbitrary and independent, so we can set f,;=f,;=0

Arp — (q2 — qllfial =0 for any value of [fi.]

Ari; —(q2 —q1) =0 or Arp=q2 —q

The deformation of a system is compatible if and only if Equation 6.2.9 is valid
for any self-equilibrating load system.
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6.3 The Virtual Work Principle

Consider a particle acted on by N forces ,1=1, ..., N. The resultant
force on the particle is Qg, where q: = ZQ; If the particle undergoes a
real, infinitesimal displacement dq, then the incremental work done by
the forces on the particle 1s dW = Qg - dq. If instead we 1magine that the
particle is given a small but fictitious, or virtual, displacement dq., while
the forces are held constant, then the total virtual work §W done on the
particle is Qx

W = Qg -dq

o oq

Figure 6.3.1 Particle undergoing
a virtual displace-
ment while acted on
by the net force Q.

A particle 1s in equilibrium if and only if the virtual work done on the particle 1s
zero for any virtual displacement.
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6.3 The Virtual Work Principle

N
§Wet = »_ Qi - 8q, (6.3.1]
=1
.
SWie = Y fij - 81y [6.3.2]
i, j=1
i<j

If the actual displacements q, and Ar;; in Equation 6.2.9 are replaced by the virtual displacements §q; and
ér;;, where ér;; = éq; — dq; (cf. Equation 6.2.7), we obtain

N N
ZQf - 0q; = Z fij - orij
i=1 =1

i<J

YU
s Swraxt — Swint

A system is in equilibrium if and only if W = Wiy for any compatible virtual deformation.
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6.3 The Virtual Work Principle

Example 6.3.1

Figure 6.3.2 shows a weight W supported by two cables. Use
the principle of virtual work to find the tension in each cable.

45° 60°

o ; "
| Weight =W W
L

Figure 6.3.2 Supported weight and the free-body diagram.
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6.3 The Virtual Work Principle

Example 6.3.1

Resolving the forces on C into components, the total virtual work of the weight and
the cable tension 1is,

SW = (—=Wj) - (Sui—+ 8vj) + (=T cos45%1 + T sin45%)) - (Sui+ 6vj) + (T2 cos 60%i + T sin 60°)) - (Sui + 5vj)
Setting oW = 0,

(—T; cos45° + T> cos 60°)éu + (—W + T7 sin45” + T> sin60°)év = 0

Af\f\ 1ﬂ{T

1t o nrinecinle afvirtiial warle thic eanality miiet hald far arhitrary
LAVUUVU 5 v 11\/ P.l 111\/1}/1\/ Ul viiilual vy Ull\, LD v ucuu,_y 111UDL 11VIU 1Vl Al UlLl(«lrl)’
Value ou and ov

—T, cos45° + Tr cos60° =0
Ty sin45° + T> sin60° = W

The solution of these equations is T, = 0.518W and T, = 0.732W.
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6.3 The Virtual Work Principle

Example 6.3.2

The figure shows three springs rigidly attached to the wall at points
B, C, and D, and attached to each other at point A, where the
external load P is applied. Each spring has a unique spring
constant. Use the principle of virtual work to find the spring forces
F,, F,, and F;.

LELLILLLL QLA A A A L Y / LI Y
B 45° € 45° D

Figure 6.3.3 Three springs in equilibrium under the point load P.
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6.3 The Virtual Work Principle

Example 6.3.2

The virtual displacement of point A is
3qa = dual+8vaj

Let the extension or stretch of each spring due to the load be s, i=1,2,3
S1 =(4 Mgy = Uy CO845" — vy sindd”
§2 =(4 -Nca = —V4

53 =0(4 -Npg = —i4C0845" — v, sin45°

And the virtual stretches are,
851 = 8qa -Npgs = Suy cosd5” — Svy sin45°
532 = 5(]1 Ny = —51-‘_,-11

853 =8qa -Npg = —8uy cos45” — §v, sind5°
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6.3 The Virtual Work Principle

Example 6.3.2

Thus, the internal virtual work i1s,
8 Wint = 6 Wint,spring 1 + 6 Wing spring2 + 8 Wing, spring 3
= k81651 + (1.5k) 506572 4+ (2k) 53853
= k(g cos45” — vy sind5°)(Su s cos45” — v 4 8ind5”) + (1.5k)(—=v4)(=dvy)
+ (2k) (—t 4 c0845° — v 4 81n45°) (—du 4 cos45° — 8v 4 sin45°)

or SWine = (1.5kus +0.5kvs)ous + (0.5kus + 3.0kvs)dvy

Next, the external virtual work of the applied load 1is,
OWext = (— P.i) 04 = —Pdvy

1.5};{{:‘___1 = 05&11, = b
OWexe = SWine ~
0.5kus + 3.0kvy = —PF

s; = 0.3328(P/k) 2 =0.3529(P/k) 53 =0.1664(P/k)
3328 2 3328 P Uy — 1.5k 352¢C i — 0.529: 2.0k 10.166 £ - 3
Fi=k [(},_mlh(z)] = 0.3328 f Fr = 1.5k [(}_3.2) (I)] =0.5294P  F3 =2.0k {(}.1(:4 ( - )] =0.3328 P

National Research Laboratory for Aerospace Structures !



6.3 The Virtual Work Principle

From Equation 3.14.1, we know that in a quasistatic loading process, the work done
within a solid by the true stresses during an increment of the true strains is

dW :jf[u'w”(f‘l /]f o de; + oydey + 0.de: + Tydyyy + T dVi: + Tydyy: )dV

v

[6.3.3]
e U (08¢, +0y8y + 088 + Ty Vay + TxdVaz + T:8Yy:)dV [63.4]
Surface traction T /Q5

SWay = ZQ . 8q; + // T™ . SudS + f/j b - dud Y g,
5 ~
(6.3.5] Vi

Figure 6.3.4 A solid body, constrained in an arbitrary fashion
and acted upon by generalized point loads (Q)
plus surface (T) and volume (b) force fields.

Distributed
displacement constraint

Q 6
Q4

National Research Laboratory for Aerospace Structures !



6.4 Minimum Potential Energy and
Cactinli an’ |: ct Thanram
o OLIUI aliIv | JU 1T 1ICVUI UII11

If a solid is linearly elastic, then according to section 3.14, the
Internal work associated with a quasistatic loading process equals

the strain energy U, or
Win[ =U

{){ — L"Ii ('ﬂff" '[1'!2,1 TR ifﬁ) [6.4.1]

For a virtual deformation, W, = éU [6.4.2]

ool
(SU — Z r—‘SQ; H b HU
=1 94 > Z Qidg; = Z Py [6.4.4]
i=1 fe=] é

SWEH = Z QE(SQI

i=]

[——]
| —
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6.4 Minimum Potential Energy and
Castiglia .o’ First Theorem

If we set all of the virtual displacements except dgq; equal to zero,

oU U
0.18q, = (%-1—) 3q . or Q1=a
Repeating the argument for the remaining virtual displacements,
ou | .
Qi = Ew i =1,2,,n [6.4.5]  Castigliano's first theorem
The potential energy V of the external loads is,
- Qigi [6.4.6]
i=1
ﬂ:_Q,. i = 10l [6.4.7]
a‘f?:'

Castigliano’s first theorem may thus be written

fi_l‘l_ —0 i=lpse,m  [648] (E.q .6.4.8 is a sta.tement of the theorem of
dq; minimum potential energy)

(where IT= U + V is the total potential energy of the structure) E*%
National Research Laboratory for Aerospace Structures



6.4 Minimum Potential Energy and
Cactinliann’e Eiret Thanram
waosuyiiaiiu oS rrirst 1 1icurciii

Example 6.4.1

Solve the problem in Example
6.3.2 using the principle of

minimum potential energy.

Figure 6.3.3 Three springs in equilibrium under the point load P.

The total strain energy of the three-spring assembly is,

1., 5 Y m. 1. 5 I .s. 1 50y L
U= shisi + skosy + shasy = shsi + 5(1.51‘:)55‘ + E(zk}@

I I |
U = Ek(uA cos45° — v 4 sin45°)% + 5(1.5;;)(—%)2 s E(zfc)(—uﬂ cos 45° — v 4 sin 45°)2

3 3 1
= Zkui -+ ikvi + Ekuﬁ.l"ﬂ [a]

From Equation 6.4.6, the potential energy of the load P is
V=—(—P)vy [b]

National Research Laboratory for Aerospace Structures
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The total potential energy is II=U +V,

P TV
nzikuﬁ+§kvﬂ+§kuﬂm+Pm [c]
AL 3f< = Ly 2 )
Mem | goATHRR =
9Tl | [d]
, =] ¢ —kug +3kvya+ P =0
(}‘.”A 2

P P

us =0.1176 (?) v 4 =4}'3529(E) [e]

Substituting the displacements in Equation [e] into Equation [c],

:-‘-‘0 ""—2:}0
du’y

9211 9211 5210 9211
cEog _(‘ ) (]
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6.4 Minimum Potential Energy and
Cactinliann’e Eiret Thanram
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Calculating the second partial derivatives of I1 yields,

9’1 3 9°T1 9211 1
{r’?__k —5":3}'& ._(‘ il
du, 2 v Ju 40V 4 2

Since k is positive, both conditions in Equation [g] are satisfied: IT is indeed a
minimum.

National Research Laboratory for Aerospace Structures !



6.5 Stiffness Matrix

If a structure is not only elastic but linearly elastic, then by definition, the
generalized loads Q, and the generalized displacements g, in the direction of the
loads are directly proportional to each other.

0i=) kig, i
i=1

k11
k2y

—k!’i]

ki
koo

AUNERLARARRNRARANN RN,

Figure 6.5.1

(a)

(a) Cantilever beam with two degrees of freedom. (b) The same beam with four degrees

of freedom.

[ SO

. [6.5.1]

<Stiffness matrix>

ANRANRANANRRARARRRNRN

(b)

g



6.5 Stiffness Matrix

¥Yi =kpvi + ki26y
M;, = kavi + k220;,

BQ;' d : & HQ'!
o TR W [6.5.2]
dq; 3%; < ;‘ 18q
00; . QO3 - i 6.5.3]1& [6.5.4
“:> g =% and 9qi . [ T |

80; 93U 9 AU 90,

From Castigliano’s first theorem, — = —— = = 6.5.5
s dq; g, dq;  3qi dq;  Ig [6:5-2]
k;‘_;‘ = kjf, R P RERRPS [6.5.6]
The stiffness matrix of an elastic structure is symmetric.
. : .. n(n+1)
The number of independent components of an # by n symmetric matrix is ———.| [6.5.7]

National Research Laboratory for Aerospace Structures !



6.6 The Complementary Virtual Work

Drincinla
CIrcipic

The internal complementary virtual work 1is defined as,

Wi, = Z Ar;; - 8F;; [6.6.1]

i<j
The external complementary virtual work is defined as,
N

W= Z q; - 6Q; [6.6.2] (The virtual quantities are the loads
b=l instead of the displacements)

||'M?

- 0Q; = Z Ariiid

1, j=I
facti

SW2* = SW

ext int .

R

The displacements of a system satisfy compatibility if and only if sW5, = SW;,
for any self-equilibrating virtual loading.

National Research Laboratory for Aerospace Structures !



6.6 The Complementary Virtual Work

Drincinla
CIrcipic

Example 6.6.1

Figure 6.6.1a shows a load W supported by two springs with
identical spring constants k. The picture is similar to that for
Example 6.3.1, in which the spring loads were found to have the
values shown. Find the horizontal displacement of point P, using
the principle of complementary virtual work.

LU L Wi IIIIITIIIIIIIII NI
A B A B
0.5176W 0.7320W 0.896660 —0.732060
Both spring o0

constants = k

(a) Actual load (b) Virtual load

Figure 6.6.1 Point load supported by two springs.
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6.6 The Complementary Virtual Work

Drincinla
CIrcipic

Example 6.6.1

The external virtual complementary work is,
SWZ, =udQ

To calculate the internal complementary virtual work,
:ﬁl"{'j Sfff = ﬂé}‘;‘jﬁf}j

(where Arij is the change in the distance between the points caused by the actual loading,
éfij is the signed magnitude of the virtual force in the spring)

If the spring is elastic with spring rate £,

Asij = %

National Research Laboratory for Aerospace Structures !



6.6 The Complementary Virtual Work

Prlnnlnl

nivi |JI
Example 6.6.1
Then,
(ljlw/mi""(fﬂ“Ejl 5fAF+ fBP)SfBP
k k
0.5176W 0.7320W
= ( ) (0.89665Q) + ( ) (—0.73205 Q)
0.4641W 53
B 5 0 SSWSQ
k k
0.0717W
= — 50
k
Setting sW;, = 8W;, , we have

r W
usQ = —0.0717 (%)3@3 |:> u= —0.0717 (T)

National Research Laboratory for Aerospace Structures !



6.6 The Complementary Virtual Work

Drincinla
CIrcipic

Example 6.6.2

The structure shown in Figure 6.6.2a supports a vertical at A. Use
the principle of complementary virtual work to find (a) the horizontal

displacement u of point C, and (b) the rotation 4, ,, of member AD,
due to the load P.

Spring constant = k A A

5 0.7906P 1.58150,

(s }.—r’y//’rf’; fd Sy LAY, £ .rf((';//j / 7 {/”_,r A (Ll /’/ .r/f! £ // /f"r f":/ / S

(a) Actual load (b) Virtual load 1 (¢) Virtual load 2

Figure 6.6.2 Two rigid pin-connected members joined by a spring.

National Research Laboratory for Aerospace Structures !



6.6 The Complementary Virtual Work

Drincinla
CIrcipic

Example 6.6.2
o (bl
(I:‘H"{:cl = H{SQ] ' (5 {:'.nql_ HqﬂﬁQ?
| J‘Br)
. OWL = 5f
ﬁuiﬁrfn A ( fii ) (SfB(” . ( k e
0.7906 P - ::(QLﬁﬂﬁfi) (_11185(22)
::(4_E:—){LSMEQQ | k el
_ : 2
' = — 0.884 )
:dQS(%)SQI | (kL> Q>

(to the right)

| 0 —0.884 (‘P
125 (2 : v kL
altd

| (The negative sign means that AD
rotates clockwise.)
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6.6 The Complementary Virtual Work

Drincinla
CIrcipic

For a continuous medium, the internal complementary virtual work of
the true strains (held fixed) acting through the virtual stresses is
inferred from Equation 6.3.4 by analogy :

SW* =

int —

Wi Zq, - 8Q; + // u-8T™dS + [ff u-shdVv [6.6.5]
5 Ty

8Q;: virtual generalized load

] [ (6230, + £,86, + £:80: + ViyTuy + V8T + 1y28T,)dV [6.6.4]

g; : the generalized displacement in
the direction of §Q,

National Research Laboratory for Aerospace Structures !



6.7 Minimu Co plementary Potential

innn’’ec Carnnd Thaoanvram
1aN0 'S oeCconag 1 ne

[a)
Ul Lll1ll1

From section 3.14, the internal complementary work of a quasistatic process from

the undeformed to the deformed state equals the complementary strain energy U*,

W=

1nt

= [}~
The complementary strain energy {J ™ is a function of the applied loads,

U* = Ux(Ql* QZ* TR, Q!E)
For a virtual deformation,

B
SWrE =8U"=) —80; .
I Z 00, ‘[ Zq,ﬁQ, - Z 32 50,
awc*xt ZQF‘SQ! = = f

i=1

National Research Laboratory for Aerospace Structures
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The coefticients of 60, on each side of the equation must be the same

aU*
g = 70 i=1,2,---.n [6.7.4]  Castigliano's second theorem
oIT* _0 i=1 .. n [6.7.5] theorem of minimum
dQ; o complementary potential energy

(where IT* = U* + V* is the total complementary potential energy)

And,

= Z Qfo [676]
f=1

National Research Laboratory for Aerospace Structures !



Example 6.7.1

Solve the problem of Example 6.3.2 using the principle of minimum
complementary potential energy as an alternative to using the
principle of minimum potential energy, which was done in Example
6.4.1. The sketch for that problem is reproduced in Figure 6.7.1a for
convenience.

Figure 6.7.1 (a) The system of Example 6.3.2. (b) Free-body diagram of point A.

F, is circled to highlight its selection as the redundant force.

National Research Laboratory for Aerospace Structures !
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Example 6.7.1

The complementary strain energy of a spring is,

P T e P
s =3 =3\ %) T

Therefore, the total complementary strain energy is,
R B
2k Zks Zm

The potential energy of the applied load is,

V* = —(——-P)L’A = JDL'ﬂJ

The total complementary potential energy is,

F2 F'E FE
M =L +_2+4+_2+Py
T DT T 4

National Research Laboratory for Aerospace Structures !



Example 6.7.1

The equations of equilibrium for point A

x: —Ficos45° + F3cos45° =0 :

Fr=—-2FF4+P F3=F

b Fisin45° + F>, + F3sin45°+ P =0

2

F P2 FiP
IT* = 1.417?‘ + O.SSSST—L)QMS_}C— 4+ Puy

Since F'; and P are independent variables,

_ 28331 _0.9428— . BgaREL 4 0 I6RET 4
T, bl eRBe S e T P
Fi P
28331 — 0.9428—
i k

F 2
0.9428-? +va = _0'6667?

F1 =0.3328P

P
vqg = —0.3529—

k

National Research Laboratory for Aerospace Structures
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6.8 Flexibility Matrix

The flexibility matrix of a linearly elastic structure is the set of coefficients that
relate the generalized displacements to the loads

g =Y a0 T 2 [6.8.1]
=1

Ei =0 1=1; R [6.8.2]

Shear center Twist center

@ uy =c11 Py +ci2M,

1 2
: & = 21 Py + coaM>
Figure 6.8.1 Shear center versus
twist center.
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6.8 Flexibility Matrix

Figure 6.8.2:  (a) and (b) A load through the shear center pro-
duces no twist. (c) and (d) A pure torque pro-
duces no displacement at the center of twist.

If we apply a load just to point 1, as
in figure 6.8.2a, the displacements at
point 1 and 2 are

up =cn b

6, = c21 P
Since point 1 1s the shear center, c,,=0

If we apply just a point couple M, to
point 2, as in figure 6.8.2c, then

uy = caMs
0 = coaM>
However, since ¢,,=c,,=0, ©;=0

This means that point 1 is the center of twist

In an elastic structure, the shear center and the center of twist coincident.

National Research Laboratory for Aerospace Structures !



