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Tokamak Operation Scenario
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Tokamak Operation Scenario
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JT-60U



H-mode
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• 1982 IAEA F. Wagner et al. (ASDEX, Germany)
- Transition to H-mode: state with reduced turbulence at the plasma edge
- Formation of an edge transport barrier: steep pressure gradient at the edge



H-mode
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• 1982 IAEA F. Wagner et al. (ASDEX, Germany)
- Transition to H-mode: state with reduced turbulence at the plasma edge
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H-mode
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• Established in stellarators as well
Wendelstein 7-AS

V. Erckmann et al, Physical Review Letters 70 2086 (1993)



H-mode
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Hoover dam

• 1982 IAEA F. Wagner et al. (ASDEX, Germany)
- Transition to H-mode: state with reduced turbulence at the plasma edge
- Formation of an edge transport barrier: steep pressure gradient at the edge
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Hoover dam
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• First H-mode Transition in KSTAR (November 8, 2010)

- B0 = 2.0 T, Heating = 1.5 MW (NBI: 1.3 MW, ECH: 0.2 MW) 
After Boronization on November 7, 2010

H-mode



H-mode: How to?
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• Separation of plasma from wall by a limiter and a divertor

• Advantage of the divertor configuration
- First contact with material surface at a distance from plasma boundary
- Reducing the influx of ionized impurities into the interior of the plasma 

by diverting them into an outer „SOL“

Strike point



Tokamak
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H-mode: How to?
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H-mode: How to?
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• Role of wall condition
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H-mode: How to?
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H-mode: How to?

J-W. Ahn, H.-S. Kim et al., “Confinement and ELM 
characteristics of H-mode plasmas in KSTAR”, Nucl. 
Fusion 52 114001 (2012)

019.0941.0032.0803.0035.0717.0
20, 0028.00488.0 ±±±±= SBnP Tescalingthr

Y. R. Martin et al., “Power requirement for accessing the H-mode 
in ITER”, J. Phys.: Conf. Ser. 123 012033 (2008)



H-mode: Why?
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• 1982 IAEA F. Wagner et al. (ASDEX, Germany)
- Transition to H-mode: state with reduced turbulence at the plasma edge
- Formation of an edge transport barrier: steep pressure gradient at the edge
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• 1982 IAEA F. Wagner et al. (ASDEX, Germany)
- Transition to H-mode: state with reduced turbulence at the plasma edge
- Formation of an edge transport barrier: steep pressure gradient at the edge

Density fluctuations 
at r/a = 0.65

G.R. McKee, et al.  Plasma Fusion Res. (2007)
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H-mode: Why?
• 1982 IAEA F. Wagner et al. (ASDEX, Germany)
- Transition to H-mode: state with reduced turbulence at the plasma edge
- Formation of an edge transport barrier: steep pressure gradient at the edge



H-mode: Why?
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Theoretical physics



H-mode: Why?
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Theoretical physics

Experimental physics



Basic Tokamak Variables
• Safety factor q = number of toroidal orbits per poloidal orbit
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Conventional Operation Mode – H-mode
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• Naturally peaked current profile

• Mild pressure gradient with steep 
edge pedestal

• Monotonic q-profile

• Positive magnetic shear



q0 < 1: Sawtooth instability, periodic 
flattening of the pressure in the core

Stability of H-mode plasmas related safety factor profile: q(r)

H-mode: Limitations
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Sawtooth
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- nonlinear low-n internal mode
- internal (minor) disruption
- enhanced energy transport 

in the plasma centre



q0 < 1: Sawtooth instability, periodic 
flattening of the pressure in the core

Stability of H-mode plasmas related safety factor profile: q(r)

q = 3/2 and q = 2: 
Neoclassical Tearing Modes (NTMs):
• limit the achievable β ≡ 2µ0p/B2

• degrade confinement (+ disruptions)
• often triggered by sawteeth.

H-mode: Limitations
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Neoclassical Tearing Mode (NTM)
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Neoclassical Tearing Mode (NTM)
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• Pressure flattening across magnetic islands due to large transport 
coefficients along magnetic field lines

p



Neoclassical Tearing Mode (NTM)
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• Pressure flattening across magnetic islands due to large transport 
coefficients along magnetic field lines



Neoclassical Tearing Mode (NTM)
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q0 < 1: Sawtooth instability, periodic 
flattening of the pressure in the core

Stability of H-mode plasmas related safety factor profile: q(r)

q = 3/2 and q = 2: 
Neoclassical Tearing Modes (NTMs):
• limit the achievable β ≡ 2µ0p/B2

• degrade confinement (+ disruptions)
• often triggered by sawteeth.

H-mode: Limitations
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conservatively: bN £1.8 !

K. Miyamoto, “Controlled Fusion and Plasma Physics” Taylor & Francis (2007)



q0 < 1: Sawtooth instability, periodic 
flattening of the pressure in the core

Stability of H-mode plasmas related safety factor profile: q(r)

q = 3/2 and q = 2: 
Neoclassical Tearing Modes (NTMs):
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• degrade confinement (+ disruptions)
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Edge Localised Mode (ELM)
• Example of sawteeth and ELMs JET, Pulse 52022



36

Edge Localised Mode

Disruption

Edge Localised Mode (ELM)
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Edge Localised Mode (ELM)
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Power Supply Limit

Inherent drawback of Tokamak!

Faraday‘s law
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H-mode: Limitation
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Faraday‘s law
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H-mode: Limitation
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IC

BT

BP

IP

IOHdt
dIC By

induction

IP = IOH+ INI Standard inductive operation

steady state scenario: producing continuous fusion power
in a tokamak reactor.

IP = 0 + INI Non-inductive operation
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