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Operation Limits
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• Density ranges in a tokamak discharge
- There exist a lower and an upper density limit at a given Ip.

• High densities
- atomic processes (radiation, CX, neutral atom ionization) 

at the plasma edge become rather important
- atomic processes can lead to contraction of the plasma column 

(decrease of the effective plasma radius) 
→ danger of kink instability becomes real

• Low densities
- e-i collision frequency not sufficient to prevent 

the generation of run-away or accelerated electrons 
- run-away electrons produced by the inductive E field
- run-away electrons spoil the discharge characteristics 

and may be dangerous for the vacuum chamber
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• Assumptions
- Circular CX, steady-state with purely OH heating, Te = Ti = T, 

no impurities, atomic processes not important (radiation, 
recycling, etc), fully ionized hot plasma

- Under these conditions, one can expect the existence of self-
similar self-organized plasma states, if they have the same 
macroscopic non-dimensional parameters.

Operation Limits
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• Murakami and Hugill Numbers
- consider atomic processes
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- To evaluate the role of atomic processes appropriate power losses 
with Joule heating power should be compared.
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Dimensional Analysis of Tokamaks
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- If PR becomes comparable to POH, 
atomic processes start to play a significant role.

- The role of atomic processes is defined by a non-dimensional
parameter H (Hugill number): as increasing H, the role of atomic
processes increases compared with OH heating

TB
nRM = Murakami number
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Operation Limits
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• Hugill plot
- limited operational region on the current-density plane
- non-dimensional current .VS. non-dimensional density

TB
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Operation Limits
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• Hugill plot
- Tokamak operational domain on the current-density plane is 

restricted by four limits. 1: limit of run-away electrons at
low density

2: current limit due to the 
MHD-instability

3: Murakami limit at high density 
(at the maximal permissible plasma 
current): radiative power balance

4: Hugill density limit where 
H (H = qeffM) remains constant (n~I):
confinement/disruptive limit

Rnq
B

H a

T=
1

gradient:

non-dimensional density

no
n-

di
m

en
si

on
al

 c
ur

re
nt

- The limiting density is determined by the power balance on the
plasma periphery (by balance of the energy flow from the central 
region and radiation and ionization losses).

- The density limit usually increases with additional heating as P1/2.
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• Hugill plot
- Tokamak operational domain on the current-density plane is 

restricted by four limits. 1: limit of run-away electrons at
low density

2: current limit due to the 
MHD-instability

3: Murakami limit at high density 
(at the maximal permissible plasma 
current): radiative power balance

4: Hugill density limit where 
H (H = qeffM) remains constant (n~I):
confinement/disruptive limit

- The limiting density is determined by the power balance on the
plasma periphery (by balance of the energy flow from the central 
region and radiation and ionization losses).

- The density limit usually increases with additional heating as P1/2.

e
thermal
e mTvenj /2/ ==



Operation Limits
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• Hugill plot
- limited operational region on the current-density plane
- non-dimensional current .VS. non-dimensional density
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- The two dashed lines illustrate the density limits in earlier OH/ICRF
and NBI experiments with a mainly carbon 1st wall. 

- When heating power is increased, the Hugill limit shifts towards higher
densities.

• Hugill plot
- Attaining high densities by using beryllium coating of the chamber

wall in JET and with the help of pellet injection in JT-60U

ITER Physics Basis, Nuclear Fusion 39 2261 (1999)

1 – gas puffing, 2 – minor pellets, 
3 – large pellets, 

Full circles – limiter, open circles - divertor

Operation Limits



Operation Limits
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• Hugill plot
- limited operational region on the current-density plane
- non-dimensional current .VS. non-dimensional density

J. T. Scoville, Nuclear Fusion 31 875 (1991)

D = H
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• Hugill plot
- limited operational region on the current-density plane
- non-dimensional current .VS. non-dimensional density
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• Greenwald density limit
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Basic Tokamak Variables
• Greenwald density
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Basic Tokamak Variables
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- As the limit is approached, the plasma becomes increasingly
susceptible to disruption and data become sparser.

M. Greenwald et al, NF 28 199 (1988): one of the most cited paper in NF
Martin Greenwald, PPCF 44 R27 (2002)

• Greenwald density



Basic Tokamak Variables
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• Greenwald density

Y. Sakamoto et al, PFR 5 S1008 (2010)
H. Urano et al, PPCF 44 11 (2002)
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• Pressure Limit
- related to the ballooning instability occurring due to convex 

magnetic lines of the outer region: 
swelling on magnetic surface at the high pressures

- force balance between the cause for swelling (plasma pressure 
gradient) and the magnetic tension
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Operating range of high beta discharges 
in PBX compared to calculated stability 
limits, including the ideal n = 1 external 
kink limit with a conducting wall at 
twice the plasma minor radius and 
without a wall

E. J. Strait, Phys. Plasmas 1 1415 (1994)

ITER Physics Basis, Nuclear Fusion 39 2261 (1999)
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• Pressure Limit
- If g is constant, for the most effective use of the BT

it is preferable to have the values of β as high as possible.
→ high IN

• Since I/Ic is limited by the upper current limit on the Hugill
diagram, κa/R should be maximized.
→ The column should be elongated vertically as much as possible.

• The experimental data for critical β are summarized by a simple 
empirical formulae
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E. J. Strait, Phys. Plasmas 1 1415 (1994) ITER Physics Basis, Nuclear Fusion 39 2261 (1999)
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• DIII-D hybrid modes

limited by tearing modes limited by fishbones limited by sawteeth

q95=3.2, βN=2.7, H89P=2.3q95=3.6 without sawteethq95>4 without sawteeth
PLASMA CURRENT(0.1MA)

NBI power (MW)

4xli (internal inductance )
βN

Amplitude of magnetic fluctuations at the vacuum vessel
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Operation Limits
• Pressure Limit

- Fundamental elements 
affecting the bN-limit

1. Current profile
2. Pressure profile
3. Plasma shape
4. Stabilising wall
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• High βN in KSTAR
1. Strong plasma shaping
(PF/CS system capability)
2. Passive stabilizers
3. High heating power
4. RWM control coils

Operation Limits
• Pressure Limit



Dimensional Analysis of Tokamaks
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• Dimensional Analysis of Energy Confinement
- Complicated mechanisms of energy losses from tokamak plasmas

several channels of energy leakage
anomalous thermal conductivities

- One may try to apply methods of dimensional analysis to find out
the main non-dimensional parameters which control transport

- Although it cannot replace real theory, it can help to shed light 
upon the most important physical mechanisms of transport.


