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hChapter 7

Force Method: Trusses, Beams, 
and Framesand Frames



7.1 Introduction

The force method of analyzing a structure begins with the use of statics to 
obtain the equilibrium equations, which relate the unknown forces to the 
known forces. 

th k f th li d l d- the known forces : the applied loads 

- the unknowns : the reactions at the supports and the internal member loads

- No. of unknowns = No. of equilibrium equations : statically determinateNo. of unknowns = No. of equilibrium equations : statically determinate
; as far as the forces are concerned, the problem is finished once equations 

are solved.

We must be sure that the structure is stable before seeking the solution of 
the equilibrium equations; if it is not, a solution is not possible.
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7.1 Introduction

unknowns : 5 support reactions 
+ 5 member forces = 10

(a) plane truss (b) Free-body diagram showing 
th t ti

equilibrium eqs. = 5 node * 2 

=  10
the support reactions.

Statically Determinate.

But the structure is unstable.

In figure (c) there exist  
moment about point A.

(c) Free-body diagram of the portion of the truss spanning 
nodes 1,2, and 4.  (d) illustration of the kinematic instability.
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7.1 Introduction

Once the forces have been determined, we can find the displacements at selected points on the 
t t i th i i l f l t i t l k Thi i b i i thstructure using the principle of complementary virtual work. This requires bringing the 

structure’s material properties and cross-sectional details into the picture. All real structures are 
flexible to one degree or another; there is no such ting as a perfectly rigid body. The degree of 
flexibility allowed is part of the design process, and deflection analysis is required to ensure that y p g p , y q
static displacements remain within the limits prescribed. Calculating displacements is therefore 
fundamental to the analysis of structural dynamics and structural stability.

Statically indeterminate structures are those for which the methods of statics alone are Statically indeterminate structures are those for which the methods of statics alone are 
not sufficient for calculating the internal loads and external reactions.not sufficient for calculating the internal loads and external reactions. A structure of this 
type has more than the minimum number of members and/or supports required for it to sustaintype has more than the minimum number of members and/or supports required for it to sustain 
a given load without collapsing or moving off as a rigid body. The excess members and 
supports are called redundants. Highly redundant structures, such as aircraft, provide a variety 
of internal load path options. Should a given redundant member fail for some reason, the p p g
remaining ones will continue to provide the means of carrying the load.
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7.1 Introduction

- Simple example of a redundant structure

• One of the springs is redundant, only a single spring is needed to transmit the load P to the 
wall.    =>   the redundant : member spring 2

• Applying statics to the free-body diagram in part (b) of the figure, P1=P - P2

• We must also take into consideration the deformation of the structure and invoke a 
compatibility condition. If s1 is the stretch of spring 1 and s2 that of spring 2, then 
compatibility simply means that   s1 = s2

• From Hook’s Law
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7.1 Introduction

The portion of the applied load carried by a spring depends on its relative stiffness. 
The large part of the load is borne by the stiffest spring. Obviously, as the spring rake 
k1 goes to zero, so does P1, and the other spring must absorb all of the load. If k1=k2, 
then P1=P2=P/2: both springs share the load equally.

Adding more parallel springs to the assembly would not limit our ability to find all of 
the internal loads using this procedure which is a simple example of the force methodthe internal loads using this procedure, which is a simple example of the force method. 
In more complex structures, the principle of complementary virtual work is used to 
enforce compatibility.

In this chapter, we will apply the force method to the analysis of skeletal or “stick-
like” structures using the principle of complementary virtual work to findlike  structures, using the principle of complementary virtual work to find 
displacements and forces in statically determinte and indeterminate trusses, beams, 
and frames.
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7.2 RODS: Complementary Virtual Work

- a slender bar, possibly slightly tapered

- transmit loads parallel to its long axis

- The load resultant N at any section must pass through the centroid of that sectiony p g

- carry an intermediate load p distributed along its axis, such as when it is attached to 
shear panels in a stiffened web structure. 

- There may also be a variable temperature change T from ambient along the rod, 
producing thermal strain. 

- Since the axial load N acts at the centroid, the stress σx is uniform across each section 
and σx is the only nonzero stress component; likewise δσx is the only virtual stress 
component.
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7.2 RODS: Complementary Virtual Work

In a truss structure, constant cross 
section and no distrib ted a ial loadsection and no distributed axial load 
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7.3 Truss Deflections Using Complementary 
Virtual WorkVirtual Work

To find the displacement at a given node of a statically determinate truss

1. calculate the internal forces N(e) in each truss member e due to the actual applied loads. 

2. remove all of the true loads and apply a fictitious force δQ to the given node, in the direction 
of the desired displacement component.

3. solve for the resultant virtual forces δN(e) throughout the truss. 

4.   

5. Recall that the complementary virtual work of the virtual force δQ is  the product of δQ and p y Q p Q
the actual displacement q in the direction of the virtual force or

6 Finally we equate the internal and external complementary virtual work as follows:6. Finally, we equate the internal and external complementary virtual work, as follows:
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7.3 Truss Deflections Using Complementary 
Virtual WorkVirtual Work

u
Example 7.3.1     For the statically determinate truss in Figure 7.3.1, calculate the horizontal 
displacement at node 4 due to a vertical load P at node 1 using the principle of complementary4udisplacement      at node 4 due to a vertical load P at node 1, using the principle of complementary 
virtual work. The Axial rigidity AE is the same for all members of the structure.
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7.3 Truss Deflections Using Complementary 
Virtual WorkVirtual Work
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7.3 Truss Deflections Using Complementary 
Virtual WorkVirtual Work

Example 7.3.2  For the truss of the previous example, loaded as shown in Figure 7,3,1, Calculate 
the rotation of member 5the rotation of member 5.
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7.3 Truss Deflections Using Complementary 
Virtual WorkVirtual Work
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7.3 Truss Deflections Using Complementary 
Virtual WorkVirtual Work

Example 7.3.3    The Truss in Figure 7.3.4a is not loaded, but member 1 is heated to a uniform 
temperature T above ambient and member 2 is heated to 2T The temperature in the other rods

α 1u

temperature T above ambient and member 2 is heated to 2T. The temperature in the other rods 
increases linearly from T to 2T. If the axial rigidity AE and the thermal expansion coefficient 

are the same for all members, calculate the displacement        of node 1, using the principle of 
complementary virtual workcomplementary virtual work.
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7.3 Truss Deflections Using Complementary 
Virtual WorkVirtual Work
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7.4 Statically Indeterminate Trussesy

- For indeterminate structures,

the number of unknown forces > the number of equations available from 
statics 

=>  The differences are the number of redundant forces

- the first step towards calculating the forces in an indeterminate structure is to 
single out the redundant members and/or supports and on a sketch showsingle out the redundant members and/or supports and, on a sketch, show 
their effect on the structure through the loads they exert. In other words,

We cut through each redundant member, revealing the force within itWe cut through each redundant member, revealing the force within it 

and applying that force to the structure as though it were an external load.
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7.4 Statically Indeterminate Trussesy

Thi h t d f d d t b l t t If t k b 4This has two degrees of redundancy: an extra member plus an extra support. If we take away member 4
the truss remains stable. If we also take away the support at node 4, the truss is still unable to undergo 
rigid-body motion. Upon removal of both the member and the supports, the truss becomes statically 
determinate. The statically determinate structure that remains after cutting away the redundant iThe statically determinate structure that remains after cutting away the redundant iy g yy g y
called the base structure.called the base structure.
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7.4 Statically Indeterminate Trussesy

Assuming member 4 is in tension, it exerts the force N(4) on nodes 2 and 3. The roller support 
at node 4 applies a vertical force Y4 to the node. We assume this force to be directed upwards. 
The truss in Figure 7.4.2a appears to be a statically determinate truss acted on by four external 
forces. 

Using statics, we can now solve for the forces throughout the base structure, in terms of P, 
N(4), and Y4.

Figure7.4.2b shows an alternate choice of base structure. Indeed, there are several other 
possibilities, all of them equally valid. In any case, the base structure we end up with must be 
stable and properly supported.
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7.4 Statically Indeterminate Trussesy

After settling on a proper base structure, we draw its free-body diagram and calculate the axial g p p , y g
load N(e) in each member e in terms of the applied load P and the redundants N(4) and Y4. We 
then remove the true loads from the truss and replace the redundant loads by virtual loads.
Using statics, we calculate the resulting virtual internal load         in each member of the truss.
With th l d i t l l d th d t i d it th l t i t lWith the real and virtual loads thus determined, we can write the complementary internal 
virtual work           for each member of the original structure. We sum them up to obtain       
for the whole truss, as follows:

According to the principle of complementary virtual work, the external and internal 
complementary virtual works must always be the same. Therefore, for the truss, we have
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7.4 Statically Indeterminate Trussesy

The external complementary virtual work            is that of the virtual 
forces in Figure 7 4 4 acting through the real displacements of theirforces in Figure 7.4.4 acting through the real displacements of their 
points of application. The complementary virtual work of       
is                            , where      is these true vertical component of 
displacement of node 4. But              because the support at node 4 
presumably prevents vertical motion. The complementary virtual 
work            is also zero, as can be seen by studying Figure 7.4.5

Remember that we do not physically cut the redundant 
members out of the structure. The redundant forces 
shown on the base structure in Figure 7.4.4 occur at an 
imaginary cut taken at some point along the member, 
such as point a in Figure 7 4 5 The complementarysuch as point a in Figure 7.4.5. The complementary 
virtual work of these virtual forces is
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7.4 Statically Indeterminate Trussesy

This same argument can be used to show that the complementary virtual work of redundant 
member forces is zero not only for truss elements but for members of any other type of structure, 
as well.
Since the external virtual work is zero, 

This equation must be valid for any choice of the two virtual loads         and         . Therefore, 
above equation will yield the two additional equations needed to solve for all of the forces in the 
indeterminate truss.

It should be pointed out that although the displacements at a structure’s supports are usually zero, s ou d be po ed ou a a oug e d sp ace e s a a s uc u e s suppo s a e usua y e o,
this need not be the case. For example, node 4 of the truss in Figure 7.4.1 might well have been 
given a specified upward displacement v4. In that case, the complementary virtual work of       
would be instead of zero, which would appear on the right of above equation. The point ifwould be                 instead of zero, which would appear on the right of above equation. The point if 
that v4 is a known nonzero quantity, so that the complementary virtual work equality,
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7.4 Statically Indeterminate Trussesy

Example 7.4.1    Calculate the internal forces in the Figure 7.4.6, using the principle of 
complementary virtual work. 
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7.4 Statically Indeterminate Trusses
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7.4 Statically Indeterminate Trusses
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7.4 Statically Indeterminate Trussesy

Example 7.4.2    Solve the problem in the previous example by selecting member 1 of the truss as 
the redundant.
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7.4 Statically Indeterminate Trussesy
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7.4 Statically Indeterminate Trussesy

Example 7.4.3      Calculate the vertical component of the displacement of node 1 of the staticallty 
indeterminate truss of examples 7.4.1 and 7.4.2.
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7.4 Statically Indeterminate Trussesy
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7.4 Statically Indeterminate Trussesy

Example 7.4.4 Each member of the indeterminate truss in Figure 7l4l15 undergoes ap g g
uniform temperature rise from ambient, in which state the truss is
unstressed. Assuming the axial rigidity AE and the thermal expansion
coefficient  are the same for all of the members, find the internal loads.
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7.4 Statically Indeterminate Trussesy

Example 7.4.5 Find the forces throughout the truss in Figure 7.4.17, using the principle p g g , g p p
of complementary virtual work. The axial rigidity AE is the same for all
of the members.
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7.4 Statically Indeterminate Trussesy

Example 7.4.6 Use the principle of complementary virtual work to calculate p p p p y
the horizontal component of the displacement at node 1 of 
the previous example
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7.4 Statically Indeterminate Trussesy
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7.4 Statically Indeterminate Trussesy

Example 7.4.7 The truss in Figure 7.4.23 is identical to that in Example 7.4.5. p g p
However, in addition to the applied load P, the vertical displacement 
at the roller support 4 is prescribed to be d. Calculate the member loads.
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7.4 Statically Indeterminate Trussesy

National Research Laboratory for Aerospace Structures



7.4 Statically Indeterminate Trussesy

National Research Laboratory for Aerospace Structures
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7.5 SIMPLE BEAMS: Complementary 
Virtual WorkVirtual Work

At any point in the cross section of a beam loaded in the xy plane, there is a normal stress        
d t th b di t d h t d t h l d th tidue to the bending moment          and a shear stress        due to shear load       on the section. 

Assuming, for simplicity, 

• symmetry of the beam cross section   =>y y

•

The normal stress at a distance y from the neutral axis is given by

For a virtual load, this becomes
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7.5 SIMPLE BEAMS: Complementary 
Virtual Work

The shear stress at distance y from the neutral axis is

Virtual Work

Where         is the first moment about the neutral axis of the shaded area  A', that is, 

The shear stress arising from a virtual load is given by the same formula,
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7.5 SIMPLE BEAMS: Complementary 
Virtual WorkVirtual Work

Using these equations, as well as Hooke’s Law for isotropic materials
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7.5 SIMPLE BEAMS: Complementary 
Virtual WorkVirtual Work

• The familiar definition of area moment of inertia,                   

• A new quantity called the area effective in shear, As , 

• The product   EIZ is the flexural rigidity and   GAs is the shear rigidity.

The interpretation of  As is as follows. Recall that the shear stress distribution over a cross 
section is not uniform. In the case of a rectangular section, it varies parabolically; for other 
sections, the distribution is more complex. Suppose we define a nominal shear stress τ = Vy/As , , p pp y s ,
which is uniformly distributed over the cross section As.  Let the corresponding shear strain be 
denoted     . Using these quantities to calculate the internal complementary virtual work due to 
shear would yield the following:
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7.5 SIMPLE BEAMS: Complementary 
Virtual WorkVirtual Work

We can now introduce the form factor

i t f hi h th h t f th l t i t l i t l k b ittin terms of which the shear component of the complementary internal virtual work can be written 
as follows:

Th f f t f i ti iThe form factor for a given section is
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7.5 SIMPLE BEAMS: Complementary 
Virtual WorkVirtual Work

Example 7.5.1 Use Equation 7.5.9 to calculate the form factor for the rectangular
section illustrated in Figure 7.5.6.
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7.5 SIMPLE BEAMS: Complementary 
Virtual WorkVirtual Work
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7.6 Torsion: Complementary Virtual Work

The internal complementary virtual work for isotropic materials and 
including only the nonzero stress terms, is

where

Substituting Eq 7.6.1, 7.6.3 into Eq 7.6.2 yields

after expanding the terms of the integrand within the curly brackets and 
using the formula for the torsion constant Jusing the formula for the torsion constant J



7.6 Torsion: Complementary Virtual Work

Solving for J and making use of Equation 4.4.10 leads to the expression

By applying the divergence theorem for the plane, the second integral y pp y g g p , g
over the arbitrarily shaped cross section A of the bar can be converted 
into a line integral around the boundary C of A, so that

According to Eq. 4.4.12, the line integral vanishes and we are left with 
the following formula for the torsion constant as an alternative to 

S b tit ti thi i t E 7 6 4

equation 4.4.14b:

Substituting this into Eq. 7.6.4 
yields

if the torque is constant over 
the length of the torsion 
member,



7.7 Beam And Frame Deflections Using 
Complementary Virtual WorkComplementary Virtual Work

Example 7.7.1 Calculate the vertical displacement and the rotation at the 

left end of 

a cantilever beam under a uniformly distributed load, as in 

Figure 7 7 1,Figure 7.7.1,

and assess the magnitude of the deformation due to shear.



7.7 Beam And Frame Deflections Using 
Complementary Virtual WorkComplementary Virtual Work

First calculate internal loads (shear and moments)

then calculate virtual shear and bending moments to use eq. 7.5.5.

∫ ∫
L L VVMM δδ
∫ ∫+=

L L

s

yy

z

zz dx
GA

VV
dx

EI
MMW

0 0

*
int (7.5.5)     

δδδ

then 



7.7 Beam And Frame Deflections Using 
Complementary Virtual WorkComplementary Virtual Work

The ratio of the shear portion of the

therefore, the transverse displacement is

The ratio of the shear portion of the 
displacement to the total 
displacement is

L/ρz is the slenderness ratio.
the displacement decreases 

for the shear 
modulus, set Poisson’s ratio 25.0=ν
let the effective area in shear

rapidly with increasing 
slenderness ratio.

Th t ti f th d f th blet the effective area in shear 
equal to the total cross-section 
area

AAs =

i )f
gyration  of radius  theis (  / z

2 ρρ zzIA =

The rotation of the end of the beam

section)crossof                    



7.7 Beam And Frame Deflections Using 
Complementary Virtual WorkComplementary Virtual Work

Frames are composed of slender, possibly curved, beam-like elements capable 

f i h d b di l d ll i l l d lik th b fof carrying shear and bending loads, as well as axial loads like the members of a 

truss. 

Even though bending deflections usually dominate, we may wish to consider the 

t ib ti f i l d f ti ll h d f ti i th fcontribution of axial deformation, as well as shear deformation, in the frame 

members. To do so, we must combine Equation 7.2.2 and 7.5.5, so that the 

internal complementary virtual work of a plane frame member (neglecting thermal 

)strain) is

where N is the force normal to the cross section of the member. In a curved 

frame like that of Figure 7.7.5 in witch the depth h of the cross section is much 

smaller than the radius of curvature R, we can use Equation 7.7.1, replacing ds

with Rdφ



7.7 Beam And Frame Deflections Using 
Complementary Virtual WorkComplementary Virtual Work

Example 7.7.3 Find the horizontal displacement of the free end of the 

statically

determinate, thin circular frame (curved beam) shown in 

Figure 7 7 6Figure 7.7.6.
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7.7 Beam And Frame Deflections Using 
Complementary Virtual WorkComplementary Virtual Work

So that

Setting this equal to the external complementary virtual workSetting this equal to the external complementary virtual work



7.7 Beam And Frame Deflections Using 
Complementary Virtual WorkComplementary Virtual Work

Example 7.7.4 Use the principle of complementary virtual work to calculate 

the horizontal displacement of point 1 of the statically 

determinate frame

in Figure 7 7 8a The area, moment of inertia, and materialin Figure 7.7.8a. The area, moment of inertia, and material 

properties are

uniform throughout.
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7.7 Beam And Frame Deflections Using 
Complementary Virtual WorkComplementary Virtual Work

Example 7.7.5 Use the principle of complementary virtual work to calculate 

the rotation

at point 4 of the frame of the previous example.



7.7 Beam And Frame Deflections Using 
Complementary Virtual WorkComplementary Virtual Work

Since the external complementary virtual work is           Qx δθ
4



7.8 Statically Indeterminate Beams and 
FramesFrames

We will use the principle of complementary virtual work to analyze simpleWe will use the principle of complementary virtual work to analyze simple, 

statically indeterminate beams and frames. 

First, Identify the redundants and treat them as external load applied to aFirst, Identify the redundants and treat them as external load applied to a 

statically determinate base structure. 

Then Remove the true loads from the structure and apply virtual loads in pp y

the directions of each redundant. 

Finally, we equate the external and internal complementary virtual work 

expressions and solve the resulting equations for the redundant loads, 

after which all the other loads follow from  the analysis of the statically 

determinate base structure.



7.8 Statically Indeterminate Beams and 
FramesFrames

Example 7.8.1 Use the principle of complementary virtual work to calculate 

the reaction

at the left end of the beam in Figure 7.8.1. The flexural 

rigidity is

zEI

rigidity           is

constant. Consider bending only.



7.8 Statically Indeterminate Beams and 
FramesFrames

From figure (a), The true moment in terms of the true load

From figure (b), The virtual moment in terms of the virtual load

The internal complementarty virtual work,

However , since the displacement in the direction of Y1 is 0 (Supported)



7.8 Statically Indeterminate Beams and 
Frames

Example 7.8.2 Using the principle of complementary virtual work, find the 

Frames

location and

magnitude of the maximum bending moment in the 

clamped-clamped

zEI

clamped clamped

simple beam in Figure 7.8.3. The flexural rigidity        is 

uniform. 

N l t hNeglect shear.
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7.8 Statically Indeterminate Beams and Frames

Example 7.8.3 The simple beam in Figure 7.8.6 is built in at both ends, and 

there are two

intermediate roller supports. The left wall is displaced 

downwards adownwards a

prescribed amount d but remains vertical. Neglecting 

shear and assuming

EI i if th i i l f l t i t lEI is uniform, use the principle of complementary virtual 

work to

calculate the six reactions at the four supports.
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7.8 Statically Indeterminate Beams and Frames

Example 7.8.4 Calculate the transverse displacement at the midpoint of

the indeterminate beam in the previous example.



7.8 Statically Indeterminate Beams and 
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7.8 Statically Indeterminate Beams and 
FramesFrames

Then a downward displacement d at the free end beam produces anThen, a downward displacement d at the free end beam produces an 
upward displacement d/8 at its midpoint.



7.8 Statically Indeterminate Beams and Frames

Example 7.8.5 Calculate the reaction at point 1 of the frame in Figure 

7.8.10, using the

principle of complementary virtual work. Assess the effects 

of shear andof shear and

stretching on the result. Assume that the material 

properties and section

ti if th h tproperties uniform throughout.
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7.8 Statically Indeterminate Beams and Frames

Example 7.8.6 A pin-supported semicircular frame supports a horizontal 

load at point 2

on the top, as shown in Figure 7.8.13. Assuming that the 

frame can beframe can be

treated as a curved, slender beam of constant cross 

section, use the

i i l f l t i t l k t l l t thprinciple of complementary virtual work to calculate the 

reactions at the

supports and the magnitude and locations of the maximum 

bending

moment. Neglect shear and axial deformation.
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7.8 Statically Indeterminate Beams and Frames

Example 7.8.7      Use the principle of complementary virtual work to 

calculate the

maximum bending moment in the frame (grillage) of 

Figure 7 8 17Figure 7.8.17.

Assume the member cross sections are solid circles of 

radius r and that

th t i l ti if th h t iththe material properties are uniform throughout, with 

Poisson`s ration

being 0.25. Neglect shear and stretching.
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7.8 Statically Indeterminate Beams and Frames

Example 7.8.8      Use the principle of complementary virtual work to find 

the magnitude

and location of the maximum bending moment in the 

circular frame incircular frame in

Figure 7.8.21. The material and section properties are 

uniform

th h t N l t h d t t hithroughout. Neglect shear and stretching.
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7.8 Statically Indeterminate Beams and 
FramesFrames

Example 7.8.9 A frame composed of a semicircular beam and a 
horizontal floor

beam has a point load P applied to the midspan of the 
floor beam, as

h i Fi 7 8 25 Thi l d i ilib t d bshown in Figure 7.8.25a. This load is equilibrated by a 
uniform shear

flow P/2R acting around the periphery of the circular 
beam Using thebeam. Using the

principle of complementary virtual work, find the 
maximum bending

moment in the frame as well as the point where themoment in the frame, as well as the point where the 
moment is zero.

Consider bending only, and assume that all material 
and sectionaland sectional

properties are uniform.
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7.8 Statically Indeterminate Beams and 
FramesFrames

Example 7.8.10  Using the principle of complementary virtual work, find p g p p p y ,
the 

bending moment distribution in the portal frame of 
Figure 7.8.29a.

Consider bending only, and assume the flexural 
rigidity EIz is

uniform throughout.
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Example 7.8.11 Use the principle of complementary virtual work to find the 
bendingbending

moment distribution in the circular fuselage of Figure 
7.8.34. Assume

that the flexural rigidity EI is uniform through out boththat the flexural rigidity EIz is uniform through out both 
the ring and

the floor beam, and neglect shear and stretching. The 
area of all thearea of all the

stringers is 0.4 in2.
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