Aircraft Structural Analysis

Chapter 8

Force Method: Idealized Thin-Walled Structures
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8.1 Introduction

This chapter applies the force method based on the complementary
virtual work principle to the analysis of

- assembles of thin shear panels and stiffeners
- deflections of box beams, with and without taper
- shear flows in multicell box beams

- the unrestrained warping of beam cross sections due to the
torsional component of loading

- the effects on shear flows of warping restraints, as occurs near
supports.

The chapter concludes with a discussion of shear lag, which is not so
much an aspect of the force method as it is a means of assessing
the influence of deformation restraints on shear flow distribution.
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8.2 Shear planes and stiffeners

The rod element discussed in section 7.2 commonly plays the role of a
constant-area stiffener attached to one or more constant shear flow
panels as in a box beam. This situation is depicted in Figure 8.2.1.

P2+qL—P1=0

Py — P
or e = . [8.2.1]

(a) Actual load (b) Virtual load

Figure 8.2.1 Rod and adjacent shear web. t*%
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8.2 Shear planes and stiffeners

N=pP(1-7)+2(7) 22
s (1-X)om(5)  mas
||‘ NSN = P8P, (1 . }})2 + PP (%)2 + (PSP, + P28 Py) (1 o %) (%) [8.2.4]

After substituting this expression into Equation 7.2.1, and doing the first integral,

L L
N8N
SWE, :f dx+/(a T)SN dx [7.2.1]
AE
0

0

3
||‘ S, = ﬁ}f [(P1 s }EPQ) P + (P2 i % PI) §P2] + f @T) [SPI (1 — %) + 8P (—Z-)J dx| web stiffener [325]
0
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8.2 Shear planes and stiffeners

- S VI 4 R .__5({ N 3

CToT T TSy e fffee
“ o bo Lo % { V& N b dq L, v

| of b r = [[ 550 ()
= "'_q"w— ~ 1 - % ~ = 5 .

2
_ et )
h— M. - [ (59) (L)
. -4 5 _dq f Gt
J_\.}. = i T vy = T A

299 [ s
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A
Figure 8.2.2 Rectangular, constant shear flow panel.
For a rectangular shear panel, oW, = el qdq [8.2.6]

where A=1L, * L, is the area of the rectangle.
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8.2 Shear planes and stiffeners

For a curved cylindrical panels,

Figure 8.2.3 Cylindrical shear panel.

(a) Actual load (b) Virtual load

Figure 8.2.4 Parallelogram shear panel.

The only nonzero stress components are

o O — 2g cotf e &= 4
[ )

Where ¢ is the panel thickness and € is the acute included angle of the parallelogram
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8.2 Shear planes and stiffeners

Substituting these stresses into Equation 6.6.4,

oW, = ]]] Sdo.e.dV + f/j 8TxyVaydV
Vv v
Oy Txy
— ]] 80, — tdA +‘[f§r,1.\,4f td A
E “ G
A A
= [[ (Fewe) 5 6 )aat [ () (% ) s
¢ 2(14+v) G t G
A A

SW* — 2cot?9] A
e = | 1+ [0 Grqﬁq parallelogram shear panel [8.2.8]

Where 0 1s 90°, this expression reduces to that for a rectangular panel, Equation 8.2.6
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8.2 Shear planes and stiffeners

Figure 8.2.5 shows a flat trapezoidal panel, two edges of which are parallel while

the other two (extended) intersect at the vertex P through which a baseline
parallel to the parallel edges 1s drawn.

P Baseline
‘ ‘ u\ﬂ\\/\y 5 a\{\\\J'Y ‘
g, by A\
AN /N |
A &ff& % 1 ! N 1
) — . ‘3 y |
bl : = 65{
q VM\G f= P1P2¢I‘ oq 3« o4 1dp
Wiy \ f‘? = i
5 P % o »\
™ T T — e 25 i iy
qZ qu

(a) Actual load (b) Virtual load

Figure 8.2.5 Trapezoidal shear panel, where h, and h, are the lengths of the

parallel sides.
b
P2

q — [3-2.9]

P : the perpendicular distance from the vertex to the differential element

B : a constant related to the average shear flow in the panel ( &=pypsg)
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8.2 Shear planes and stiffeners

int int,differential parallelogram

oW = f@W*

trapezoid
. 1 2cot’ 67 BB
Sﬂfint = ff a ,:1 + 1+ v :| p:f, dA [8.2.10] ‘
A dp
p dp pdpdf |
dA = (= d@) = )= 2
sin @ (sm@) sin” 6 211 !

Figure 8.2.6 Detail of the shaded dif-

ferential parallelogram

180—« P> in Figure 8.2.5.
B 8B f . 2cot?0\ db f dp
LT 1 il 2.12
™ Gt T 0. ) e p? 8 }

4 P21

w=coth, du=—df/sin’0

—Ccolo

P2
Bsp / 2u? dp
W, = ——— 1 d —
. Gt T ) p’

coty 21
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8.2 Shear planes and stiffeners

For a trapezoidal shear panel, 3=pw.q and 63 =pw.0q
SW> = |1+ ; (cot2 y —cota coty + cotza) i 704 [8.2.13]
int ' 3(_[—}-14") g GTCI { 2.

]
whichis A = 5 (hy + h2) (p2 — p1)

For a quadrilateral shear panel no two sides of which are parallel, the expression for
1s even more complicated will not be given here.
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8.3 Statically Indeterminate Stiffened Webs

According to Equation 2.5.7, a plane stiffened panel is statically determinate if

(no. rods) + (no. panels) + (no. reactions) = 2 X (no. nodes)

1 ]

(no. rods) + (no. panels) + (no. reactions) — 2 X (no. nodes) = degree of static indeterminancy  [8.3.1]

(a) (b) (c)

Figure 8.3.1 (a) Statically determinate, stiffened panel assembly.
(b) and (¢] Statically indeterminate structures.
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8.3 Statically Indeterminate Stiffened Webs

Example 8.3.1

(a) % ! 2 / 3 1
—_— —_ T o — 0 e iy hr
L1} (2) .
ol o ® e
(b) 1 L2 » P 4
—~— — . 2
q{l} ;
3
(5)
(C) ,PI(Z) -4_2&-/‘-_3_-. ﬁ Pl 1 h
~— 2 (2)
Uy ©
4 C[(I) / 5 2 6
(d) P g '~ " - P 4}1 r
“!—“‘-r—‘*-— 2 q(l) q(Z)
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Figure 8.3.4 Free-body diagrams of individual stiffener elements of the structure in Figure 8.3.2.

Let us choose g as the redundant shear flow,
= "
gDl 4 @) = 5 "‘ 542 =— 540

Forrod element 1, PN =447 and P = 4"

I _
swr1) [P(l) 1p() (1) 1) | 1pM) m] 3
YV ( R 2 )3P1 +(Pz + 35 )5P2 Il (D ! gM5gM

[ it = 3A ;
= [0+ 3¢ V0 0+ (¢ + 1 x 0)8¢V1] Z
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8.3 Statically Indeterminate Stiffened Webs

Example 8.3.1

For rod element 2, P& = p= U7 pl&— p/a and sP% =31, 6P =0

X ) - P P 2 P
(2) (1) 1 1
Wo” = TR [(&; I+ 3 x 5) 8q'V1 + (3 oE %Squ) X {}] S EYY; (1 +,_rqm) 5q

Forrod element 3, P{¥=p, P =p—24Y and PV =0, sP¥ =— 254

272

SWH Se 8
3AE

int 3AE ( P 2({(')!)5 (1)

—={[P + 3 (P-20P0)] x 0+ [(P-2¢V1) + 1 P] (- 254 V1) | =

Using the remaining free-body diagrams in Figure 8.3.4 and processing as before leads
to the following complementary virtual work expressions for the remaining rods:

#(4) 212 (1) (1
m = 3ap (P-2¢'"1) 8¢
" h3
*(5)
m? = mq(%qm

h3 P
#(6) _ (i £ (1)

o W P
rSW.*“} - [ . S (1)
mnt BAE (q 2] q
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8.3 Statically Indeterminate Stiffened Webs

Example 8.3.1

The total internal complementary virtual work for the structure, including all 12 rods, is

Wity sitfeners = 20Wing + 28Wir® + 8Wi + sWii® + 26w 4 25w 4 25w

1t 1nt 1t mnt mt mnt mnt
12 n\? 3 N2
= 4gVt|14+(=) |=P|Z+(= S
AE { 1 7 5 17 o

For the complementary internal virtual work of the webs,

hi

. hl _
SWE. - g el @ 5,2
int, panels (GI q q iy Gt q q

h |
= (4(;”)! — P) 8q'V

The total complementary internal virtual work for the structure is

Wi = W ffeners +9 ;

int int, sti int, panels

= m {8 [AE!"I!E + Grlt (f3 _{_;13)](?{1) . [ZAEf 4 6 (zh’% _f_3£?,)] P}ﬁq“}
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8.3 Statically Indeterminate Stiffened Webs

Example 8.3.1

Since the redundant shear flow, ¢(!, is an internal load, the external CVW is zero.

The principle of complementary virtual work therefore requires §W.* = 0.

nt

3 AE h h? ' 3
3y AR 4B 1y AER 4 I
q“} et 2 Gilr | I fi q[g} . 2 + Git 1 + ] o4
; 3\ ] - 3\ 7
4(1+4—fﬂ+ﬂ_)- AEL o W)
It 1 ! 41+Jfff+f'
98— se0m
B .
1 15" 2 0 5" 3
* J-_LL_L [ .
570 11239 1b/in. 9.41 Ibfin. "
| Y [\ il Stiffener areas = 0.1 in.?
| e~ ~ == | _ ; i
4120 1b 72 1b f —471b  Panel thicknesses = 0.05
1000 Ib a—T 2 51 2 by
| —+283Db
+1000 1b—"
Figure 8.3.5 Panel shear flows and stiffener axial load distributions in
the top half of the symmetric structure of Figure 8.3.2
corresponding to the indicated numerical data.
National Research Laboratory for Aerospace Structures !



8.3 Statically Indeterminate Stiffened Webs

Using the same numerical data as Example 8.3.1, a shear lag analysis (in the section
8.10) yields the shear flow distribution shown in Figure 8.3.6. The Associated
average shear flows computed in the example are 23.9 Ib/in. and 9.41 1b/in.

q

100 1 Shear lag analysis

ol Two constant-shear flow panels
50 1 /
\
F 2 \
\ | 3\

e

10 20 A

Figure 8.3.6 Shear flow g (Ib/in.) vs. station x (in.) for the stiffened web struc-
ture of Figure 8.3.2.

Shear lag results are compared to those in the previous example, using the same
numerical data.
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8.3 Statically Indeterminate Stiffened Webs

Example 8.3.2

Using the principle of complementary virtual work to find the
shear flows in each of six panels of the stiffened web structure in
Figure 8.3.7.

Throughout: G = 0.4E
Web thickness = ¢
Stiffener area = A

15 rods, 6 panels, 6 reactions and 12 nodes l (15+6+6)-2x2=3

We choose three shear flows of shear panels, 4, 5, 6 3 redundants

Figure 8.3.7 Stiffened web structure with three degrees of static indeterminacy.
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8.3 Statically Indeterminate Stiffened Webs

Example 8.3.2 from parts (a) through (f) of the figure, we obtain,
—!q“’ o fq(?'} - .fqm XK= i
a; ; 1 - S L W (1) (2) 3) 4 5
W e e e lqV +1g® +19® + Xg = 1g® +1g® +14©
qm q(il q(S}
A AL ENEY X1z =—1g® —1q® —14®
(b) - T  q— = = e XS
Ig® =g
g .0 00 !11 Dy —lgV +1g® =199 ~1q® + F,
(© P o il ) | AN e § el = N N 5 6
1 2 3 —1g'? + 1) = 1g®) — 14©®
L
; rf?‘” ¢ Ng® ) rff"” Solving for the unknowns on the left, we get
A
T \ il ¢V =—¢@ [g1]
5 6 7
5 \ r @) s, 2 [h1]
r q? =—q® + =
; ,J GA l‘ f
X
T ‘ " |
9 10 11 ¢ =—q©+ = [11]

Xa=—-1g® —1g® —1g® + F +2F,  [j1]

(d) (e) (f) Xg =21q® +21g® +21g©-2F, [k1]
Figure 8.3.8  Free-body diagrams of the six sfiffeners in Figure 8.3.7. Xip=—Ig® —1g® —1g® [11]
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8.3 Statically Indeterminate Stiffened Webs

Example 8.3.2
To obtain t1_1.¢ Virtu_al load counterparts of these true loads,

5qV = —5q@® [22]
§q@ = —5q® [h2]
8q® = —5q©® [12]
8Xq4 = —18qgW —16g© — 15¢© [12]
8Xg = 218q™ +218¢" + 215¢© [k2]
8X12 = —18q™W —18¢® — 15¢©® [12]

The complementary virtual work of a stiffener element is found in Equation 8.2.5

¥

¥ (e)

*(e) _ (e) , 1 ple) (e) (€) ; 1 ple) (e)
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8.3 Statically Indeterminate Stiffened Webs

Example 8.3.2 O
F, _‘___i_, - Pz(ll
for stiffener element 1, @q{”
/
LR (1) R - > P2
PQ — Fl - q [ ""-l—q?z-q—)
AP @ g - X,

according to Equation (g1), ¢V = —¢®,
q{'JJ

|
PV = F) — q¥I .
Figure 8.3.9 Free-body diagrams
of the individual ele-

_ ments comprising the
The virtual end loads are then topmost sﬁﬁener?

5PV =8F, =0 and §PY = sF, —5q@1 = —5@]

Thus, for element 1,

[

. [
1 e L(F, _ @ @ 3
o = 30 U+ 2 (A =90 @ + (Fi - g f+%ﬂ)(—6q“’f)}=m(fi“’*”z“gm)
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8.3 Statically Indeterminate Stiffened Webs

Example 8.3.2
Moving on to stiffener element 2.
P? =PV = F; — ¢
For equilibrium,
P = PV +q@1 = (Fi - ¢®1) + 4@
Substituting Equation h1,
Pf} =—q¥ —¢®I+ F + F,

From these relationshps,
5PV = —8g®1  and 8Py = —8¢Wi1 8¢
From Equation m, we therefore obtain, .

*(2 1’ . (£ 3 (5):2 \ ; 2 ) ‘5,9 .
Wi = 37 (3¢9 + 3¢OP3F1 = 3F1) 3¢9 + (3¢9 +¢OF — 3Rl - Fy1) 8¢
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8.3 Statically Indeterminate Stiffened Webs

Example 8.3.2

For stiffener element 3,

Pl{'.ﬂ £ P.}(E:' e _qliil‘llr i q(ﬁ}jf +F+Fy

.

S0 [hal 31[;.]13:' eaa _(Sq{‘i]z b 5!:1'(':})!}2

At the other end, we see that P; V= X4 X ,,and 9X4, in terms of the redundant and
applied loads, were found in Equations j1 and j2. Therefore, the complementary virtual
work of element 3, from Equation m, is

*(3 llY AN 5 (5 57 (6) 172 C A 5 n
) e (3¢ +3¢1% + 3¢ 91P-3F 1 — $F31) 8¢ + (3¢W1% + 3¢ 4 2¢O P3F 1 — 21 8¢

o (%qm‘,z e %qm!z +q©p2 _ %F”; B %sz) 5quﬁ1]
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8.3 Statically Indeterminate Stiffened Webs

Example 8.3.2

The total complementary virtual work of all the stiffeners
15
Suji::clr,slifl‘ulcrs . Z (SWiZEF)
e=|

12 . |
= ——[(92¢™1 + 5041 + 18¢®1-15F,-31F,)8¢“® +
6AE [n]

+ (50¢1 + 5691 + 14¢©1-15F|-31F,)8¢®
+ .(qu{‘d')f + 14@!(5]‘? gl 16(;(6)!1_35:1_]5]:2)59,(6}]

To calculate the complementary virtual work of the shear panels, Equation 8.2.6 applies.

‘12 0 : .
. - (e)o . (e)
atvim.nanels s :(:; Zt’{ 99
st =

A

— J__ [2@{'4)64{(4} 3 (2(‘{(5) o ?) b‘q{ﬁ) + (2{1{6‘] . ?) Sq(fﬂ} [0]

Gt

The total internal complementary virtual work for the structure is that of the
stiffeners, Equation n, plus that of the panels, Equations o,

Wiv = g, [(124EL +92GP1) ¢ +50GP1q® + 18G 14O -15G I FI-31GI*1F] 8¢
i e [50GI*1g® + (12AEP + 56G1%1) ¢ + 14GIP1g®—9GI* Fy — (6AE! +38G1*) Fa] 3

1 3, : ok
+ 5, (1868t +14GP g™ + (12AE1 + 16GPt) ¢ O-3GI*tFy — (6AEL + 15GI°t) 2] 8¢® ¥



8.3 Statically Indeterminate Stiffened Webs

Example 8.3.2

Three equations for the true redundants,

(12AE12+92G:’3f) q 4 +50GPtg™
50GPtg™ + (12AEP® + 56GPt) ¢
lKGr’“qm + 14GP g™ +

18613 (6)
+ 114G =
(12AEP* +16G1%t) ¢ =

F AEN? AE Fy
6012— 4644 432{ - F4392°— 43 s
on) # i } I J{ (Gh) Han et 744} / ]

= ISGI*tF) +31GI*tF;
9GI*tF) + (6AEL +38GI*t) F
3GI*tF) + (6AEl + 15GIPt) Fy

g, F AEN? AE\? Fa
7@ = — '1100 048 | —L 864(— 11,376 =2
FE=A ) ) + Bh) T BT LB [q]
o 3 2 =
& ] AE Py AE AE\? AE F
= — 1432 | — 57(—+m — + | 864 —) +11,808( =—— | +26,856—— + 15,968 | -2
=g { (on) ’ il Glt Gir) Tt I [r]
o _2160 6912‘45 agaa | FL_ |4 (2E 2+429v“ r3744 | 22 [s]
N o 222 La3602% - 2
=] T Glr Glr !
! F AEN3 AEN\?2 I
T, Roa [ — 12,240 | — -z t
Bl ; e Glr &7 [t]
il AE AE F AEN? AEN? AE F>
©—— 1433 (— 576=—-156 | -1 + | 864 —) 11,808 o7 dad-— 15 dsg [ 2
& A G!) s 77 Bl B R ol Tl e oI I TS s b [u]

where

Gl

+ 31, 456

[v]

A= 1?28( )H+54,U{JOA,E
Glt

AEN’ AE
23,616
*;) + (GJ:
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8.3 Statically Indeterminate Stiffened Webs

Example 8.3.2

At one extreme, in which the panels are very rigid compared to the relatively flexible
stiffeners, we have AE / Glt — 0. Inthis case Equations p through v imply in the

limit that *—’1“):—0.1476?+0_1190?
g = —0.03014? - 0.3332%
g% = 0.004959? + [).5[}76?
g = [_}.1476?—0,1190?
g = uo3()14."7;'_ + 0_6(},7?
g® = —o.um%gg +0.4924 f_;_

At the other extreme, in which the stiffeners are much more ri gid than the panels, the shear flows are

q[ll = qrj-l; =

3 3 =4 I !E'J
(f[_}l — q[] e f;f[ﬁ:l — {f{{ﬂ . -

2 E*é
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8.3 Statically Indeterminate Stiffened Webs

Example 8.3.2

For a more typical situation, set A = 0.5 in.?, r = 0.05 in., E = 10’ Ib/in.2 and G = 0.4E. If [ = 15 in.
then AE/Glr =1.666, so that
F F
g =_0.1 1367' . 0.0628773
F F
g = —{_}.0417?73 3 (}.4192{—3
| F Fs
¢ = 0.01027 f—l +0.5000—
_. F F
g® = (3.11:-_16?I —0.06287—
(5) F 2

(6 F !L:J
7© — _n.m(mﬁj—f +0.5000->
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8.4 Thin-Walled Beams

In three-dimensional idealized beams of arbitrary * M,
cross section and lateral dimensions, the internal

virtual work is divided between bending and shear,
as follows:

éufmt o SH/LI bending o 5”’/1111 sh [8.4.]] ¥ \ l
where : ) B s
: i p midsurface
SWi, bending = ff[ 3o, 6.dV = f[/ lE —dAdx [34_2] M.
1I ' Figure 8.4.1 Section of a thin-walled box beam.
and

' 1'1‘,51““
§w111| shear — //./\57-1\]/1\&”’; — /ff (JIAd\ [843]

Where 7, is the shear stress, directed along the tangent to the middle surface of the wall

Since 7, =g/t ,

||‘ C‘)W!]rru shear — [f

.H'

Il
No. walls (;} (j)
qc?q - q"8q
f[ Zl / tr);(f f (I'S)Id Z f (’(!}1‘(”
0 = {:
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8.4 Thin-Walled Beams

If the thickness and shear modulus of each wall are over the length of the wall, then

I$.[U

No. walls
| : .
® = @iy,
Smm.shear =L Z GO0 fﬁf F 5qds [844]
i=l
0

according to Equation 4.6.6,

Gx -— K}'_‘P’ + K:Z

where y and z are the coordinates of the point in the cross section relative to the centroid,

K — ML+ M_:[_\.\g K. = Myl + Mii},.z 8.4.5]
- [}' I, - I\L Iy1I; ~ [}.jz:
| I ,
Thus, 6 Wint bending = /// E (Kyy + K.z) (8Kyy + 8K z)dV
o
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8.4 Thin-Walled Beams

Expanding the integrand,

L

: 1 o 2
H/lm bending — / ‘f[ E [K.“éK."-‘f s (KVSKv I KJSK‘*) yz + Kz(SK‘"-Z ]dA }dx
A

0
L

:f_é I:KU(SK} (/[ yza'A) + (K,8K. + K.5K,) (/,[ ysz) + K.OK, (f! zsz):,a’)s

0

The three integrals are the area moments and the product of inertia. Therefore,
L

1
Wy bending = f = [K\8K, 1. + (K,8K. + K.8K,) I,, + K.5K.I,]dx [8.4.6]
0

Substituting Equation 8.4.5 into Equation 8.4.6,

L
‘SW;]I bending — f B i L B [ 2) {I:M‘.I: & Mz])-‘:] ‘SM} + [Mz"}‘ -+ Myf}-z] SM:} dx [8.4.7]
0

National Research Laboratory for Aerospace Structures !



8.4 Thin-Walled Beams

Example 8.4.1
find the displacement vy in the direction of the 1000 Ib

load for the box beam in figure 8.4.2. The elastic moduli are E =
10 * 10 psi and G = 4 * 10° psi.

1000 Ib

37.52 in# t
, = 7443 in*
I,, =-15.50in.* 9

b
[ |

12"
Uniform wall thickness = (0.1

Figure 8.4.2 Cantilever box beam. The section proper-
ties were calculated in Example 4.7.3.

L
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8.4 Thin-Walled Beams

Example 8.4.1

Using Equation 8.4.7 to obtain the internal complementary virtual work due to
bendingin M, =0 and &M, = 0 for this problem,

L
I
8 i::iu hendin :f : M.5M.dx
t.bending E{I}r[f - [1'.':2) z z
0 i i

Substituting the material and section properties and the true and virtual bending

moments A, = 1000z , §M, = §Px

L3
sM, = 9.720;51” = 0.2106 P

Since the four walls of the cross section have a common thickness and shear modulus,
4 13 g 12
. L : : o e T
W chear = = ([q”:‘iq‘”cﬂs —{—fq"’&,z"?]a'_s' —|—/q[”5q[ﬂd$ —I—/ c;rH’BqH’.:h)
0 0 0 0
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8.4 Thin-Walled Beams

Example 8.4.1

The variable shear flows for
this problem were calculated in

i rq”’(.i} = 33.9 + 6.085 — 1.4657 Example 4.7 3

g(s) = —85.0 — 12.95 + 1.4652

(a) g M(s) =827 + 13.4s — 0.304s2

5P
I s .(2) oF
1 9¢2(s) = (34.9 - 5.585 — 0.2085%) T

12
12/

_OP

5¢¥(s) = (~85.0 - 12.95 + 1.465%) 725
8¢ (s) = (33.9 + 6.085 — 1.465) -5

|

_F'

4 ’ 1 S
(b) 8¢N(s) = (~82.7 + 13.45 - 0.3045%) 7500
Figure 8.4.3 Wall shear flows accompanying (a) the actual load, and (b) the virtual load
Substituting the true and virtual shcur flows shown in Figure 8.4.3

W2 hear = BS—SP =02034F
s Gt
National Research Laboratory for Aerospace Structures !



8.4 Thin-Walled Beams

Example 8.4.1

The total internal complementary virtual work is therefore

SWE = SW:

int int, bending

+ §W> =) 25Ua P

int, shear

Setting this equal to the external complementary virtual work, we get vpd P = 0.2305 P, or

Vp = 0.230 in.

Observe that bending accounts for 91 percent of the displacement.

National Research Laboratory for Aerospace Structures !



8.4 Thin-Walled Beams

Example 8.4.2

Calculate the angle of twist per unit length for the beam in
Figure 8.4.2.

1000 Ib
[, =37.52 in* T g
I, = 7443 in.* P
I, =-1550in% o h /

9.

2
Uniform wall thickness = 0.1"

Figure 8.4.2 Cantilever box beam. The section proper-
ties were calculated in Example 4.7.3.

National Research Laboratory for Aerospace Structures
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8.4 Thin-Walled Beams

Example 8.4.2

Applying a virtual torque 87T to the section produces the uniform shear flow

502 0T _ 5T _ o 2 \
24 2x 1O +4 .12 156 Lr [ J0064eT

L 4

=5 ‘-.

0.006416T 12
g ’ r().{)()émeT
i 1 1 g 0 (:064 oT o1

Since the virtual bending moments are zero, bl

4 13 9 1 ~ e8.4.4 Constant shear flow due

. L ' ; - 5T to a virtual torque §T.
BWE, = W e = — ](]“)dﬁ+[q{2](f.ﬁ'-|—[q[“d.§ +[q'\4\’d.s- %o %
Gt 156
0 0 0 0

Substituting the shear flows from Figure 8.4.3a and integrating yields,

SW, = %(— 730167 = — (18.5 10" °) LT
f,

Since sW2*, = 6,8T, - =-185x 107 rad /in. = —0.00106 degree /in.
The negative sign means that the angle of twist due to the actual load is clockwise, in the
direction opposite to the virtual torque in Figure 8.4.4.

National Research Laboratory for Aerospace Structures !



8.5 Deflections In Idealized Beams

The complementary internal virtual work formula for idealized beams built up of
stringers and shear panels combines Equation 8.4.7 for the stringers with the
expressions obtained in section 8.2 for shear panels as follows:

L

" 1 No. panels o
SW, = ] BT, =17y Wk + Mclyc oMy + DAL + My L. 15M )+ e L [8.5.1]

nt

0 i=1
For each panel we substitute the appropriate virtual work expression, depending

on whether it 1s a rectangle( Equation 8.2.6 ), parallelogram (Equation 8.2.8 ), or
trapezoid (Equation 8.2.13 ).

. A
Wiy = =2 454 [8.2.6]
i 2cot’] A
SW* = |1 [8.2.8]
nt + 1 _+_ T, } Grng
SWE = —I + N (cot? y — cota coty + cot® ) 4 784 [8.2.13]
i _' 3(1+v) ¥ o Yy oot o Grq q L
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8.5 Deflections Iin Idealized Beams

Example 8.5.1

calculate the horizontal (z) displacement of the centroid at
the free end of the idealized, single-cell box beam depicted in Figure
8.5.1, given that a vertical shear of 1000 Ib acts through the centroid.
The location of the centroid and the values of the centroidal
moments of inertia are shown.

. E =107 psi
1000 Ib / , e
f Hc G = 4% 100 psi
5 , = 1600 in.*
; ., = 96in*

5 I, = —80in?
47 ] i Wall thicknesses:
6" Stringer areas: Wall 1, 2: 0.032"

4] Ay =Ay=1in?  Wall2, 3: 0.040"

_ = Z A; =14 in.: Wall 3, 4: 0.081"
20" 20" Ay = 0.6in.” Wall 4, 1: 0.040"
Figure 8.5.1 Single-cell box beam subjected to a shear load. Material

and geometric properties are given.

National Research Laboratory for Aerospace Structures
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8.5 Deflections Iin Idealized Beams

Example 8.5.1

1000 1b 1 1000 Ib A 00 x
e |
3 2 = | )00y 3 2 —50)
T =Y. o e
6 | g o 4
4 1 x7 4 [
- - -“ - - --“
20" 20" 20" 20
(a) (b)
Figure 8.5.2 (@) Actual load and the internal reactions at station x. (b) Virtual load and the

internal reactions at station x.

1000 1b &
! 0.01510950
v ¥
2.174 - Voo
3 e a2 3 e e 2 0000108780
y I §
47.834 }52.17 0.000108780 T 7 | === 50
4 A \ r
: ‘r“n‘ﬁ-*‘-‘ﬂrl 4'7'7'77‘7
2.174 0.00980150
(a) (b)

Figure 8.5.3 (a) Shear flows (Ib/in.) accompanying the true 10,000 Ib load.
(b) Virtual shear flows due to the virtual load.
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8.5 Deflections Iin Idealized Beams

Example 8.5.1

the internal complementary virtual work of the stringers,
120

< r ok ]
B e = f - H(_]-%Jr (1000x) (mgo;} (—8Q x) + [10{10_.\- - 16(_}0+0-(—8U)] (o)}d,\-

107 [1600 - 96 — (-80)°]
120

— 5435 x 10950 [ w2dx = 0.0313060

(0

0

For the shear panels,

0 l':ifjnl.paumlx = Z E'{fréq

panels
= 21059 17)(0.000108760) + — 2040 _ 5 174y (00151095
124 10 120 - 40

(—=47.83)(0.00010875 Q) + ) (—2.174)(0.00989186 Q)

+ —
4(109)(0.081) 4(109)(0.04

= 0.00037435Q
The total complementary virtual work for the beam is
§Win, = 0.031308 O + 0.00037435 0 = 0.0316850

int —
The complementary external virtual work is >—> weg = 0.03168 in.
OB = naadi0

(Where we i1s the displacement of the centroid
in the direction of the virtual load 6@ ) earch Laboratory for Aerospace Structures t*%



8.5 Deflections Iin Idealized Beams

The angle of twist of a box beam with constant cross section

orT

(a) (b)

Figure 8.5.4 (a) Shear flows due to an arbitrary load on the box beam. (b) Virtual shear flows
due to a virtual pure torque 8T.

The virtual load is pure torsion. This means that the virtual bending moments are zero, so the
stringers are not involved in the virtual work calculations.

For such panels, the internal complementary virtual work for panel 1 is

A® s OAE o
§@0 g @) _ ~ (i) g ()
Wy, = Gmri”q 0q* = Gm;(f]q 5q
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8.5 Deflections Iin Idealized Beams

Since the virtual load is pure torsion, the virtual shear flow is the same in every web and is

. 5T
SqW =6gP =.. . =8¢V =... = —
q q oq 7 A
For each panel, @
mt 2:‘4 G(;‘}r{”

The external complementary virtual work is Af §T , where A6 . is the true rotation of the
cross section at x + Ax relative to that at x.

Setting the external complementary virtual work equal to the total internal complementary
virtual work of all n panels comparing the cross section yields,

1 AD)

ol Ax S :
Aol — @)
' A % C 1

5 ()10

i=1

or
AB, [oL ettt

e (1)
q

Ax 24 & GO

National Research Laboratory for Aerospace Structures !



8.5 Deflections Iin Idealized Beams

In the limit as Ax approaches zero,

dé., 1 < g ) :
X =l (J}
dx 24 Z; GO 7 e
do. I < . gt
X “} T
= gy — uniform G 8.5.3
dx ~ 24G ; g L
do, & LIS _
pure torsion [8.5.4]

P 4A2G o ¢ ()

According to Equation 4.4.14, the torsion constant J is givenby J =T / G¢, where ¢ =dO, /dx.
For an idealized box beam, Equation 8.5.4 therefore yields

4A2

J = H .
gitl
>

=1

[8.5.5]

Remember that Equation 8.5.2 through 8.5.5 are valid only for beams of constant cross section.
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8.5 Deflections Iin Idealized Beams

Example 8.5.2

Calculate the angle of twist of the free end of the cantilevered
idealized box beam 1n Figure 8.5.5. The location of the centroid, as well as
the values of the centroidal moments of inertia, are shown in the figure.

LTI g:;(;f’gép%.

= : 51

1600 1b 4 I, =2400 in*
I, =200in?

P P ‘ ‘I;' =0

-

5 / F i Wall thicknesses:
v | 120 _ Wall 1, 2: 0.032"
4] 1 Strlfgfsl Hens: Wall 2, 3: 0.040"
il ol Ap=4;=1lin" wall 3, 4: 0.081"
10" 30" Ay =A;=3In" w4, 1: 0.040"
Figure 8.5.5 Single-cell box beam subjected to a shear load. The material

and geometric properties are shown.
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8.5 Deflections Iin Idealized Beams

Example 8.5.2

1600 Ib y
) 4 1600 b
I
v : ) Lz : 20 Ibfin. 5
raofdN, 7 2 (—40) 1 s e :
e = qi.?)J rqt 1) T " 140 Ib/in. r 20 Ib/in, I'O,,
)
LS < i _ 1
(120) 4 e 1 (40) 4 ™ TR W 1 B
= 20 Ibin.
L 40— - 4y
Figure 8.5.6 Flange load gradients (Ib/in.) and Figure 8.5.7 Computed shear flows in the box beam.

the assumed shear flow directions.
From Equation 4.8.2,

g =g 140

g =¢V —40= (q”"] + 40) — 40 = ¢ [a]

g =¢q® — 120 = ¢¥-120
Moment equivalence about flange 4 requires that

(104V) x 40 + (40¢”) x 10 =0
using Equation a,
400 (¢ +40) +¢“¥] =0
National Research Laboratory for Aerospace Structures E*%



8.5 Deflections Iin Idealized Beams

Example 8.5.2

Solving this for ¢ and substituting the result into Equation a yields the shear flows
shown in Figure 8.5.7

Using Equation 8.5.3,
40 1

0 40 10 40
0y _ 20) ——— + (<20) —— + (~140) —— + (=20) —-
dx _ 240 x 10) (4 x 105) [( 0032 T 20502 T 140 g7 T 20)0.04]

= =159 % 1G-® radians/in.
Therefore,
8 =85 ). 151 x 100

Since 8, = 0 at x = 120 in.,
0= 6,),-0-15.9 x 107 (120)

so that
Be) o = 0.00191 rad = 0.109°

The positive sign means that the rotation of the section is clockwise.
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8.5 Deflections Iin Idealized Beams

Example 8.5.3

for the 1dealized tapered box beam pictured in Figure 8.5.8,
calculate: (a) the deflection in the direction of the applied load, and (b) the
rotation of the free end. The figure shows the geometric and material
property data for the structure.

- — A SR

y I e R A
/I 2 /, / L

»
) /L ————————————— =
B v '
_\ e
1 -~
bt #
-~
- . _ y
- 10" 710" All stringer cross sections = 1 in.*
3 /,T 2 _ All panel thicknesses = 0.05"
o ! 7 ‘L Throughout: £ = 10/ psi
> G 1= P G =4 X 10° psi
4 U o™ v =0.25
- d =~
.'f}

Figure 8.5.8 Cantilevered, tapered, idealized box beam with a point load at the free end.
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8.5 Deflections Iin Idealized Beams

Example 8.5.3
(a)

First, we note that the centroidal area moments of inertia are
, 2 /
ly, =0and I, =4 x [] ¢ (5/2)-} — 95 in 4
M’_v = ()

M= Px

the virtual bending momentis M. =8P x

the internal complementary virtual work for the stringers is
100 100

; l 1
6wi;t.atringcrs =5 / F_]"*M:‘wazd«r — f m (Px)(6Px)dx = 0.001333P6P

0 0

we first establish spanwise equilibrium of each of the stringers by means of Equation 4.9.9,

adjoining webs

National Research Laboratory for Aerospace Structures !



8.5 Deflections Iin Idealized Beams

Example 8.5.3

The average flange load gradient gp"/4y. 1s found by computing the flange load at each end of
the beam and using Equation 4.9.8,

dp’ POWLy-pPY
A ) S 1Y) le]
dx L

The flange loads in this expression are obtained from Equation 4.8.1,
Px;y;
B8
All of the flange loads are zero at the free end of the beam (x = 0).

po — _ _
X i
atx = 100in., PP @0y =10P PP100)=-10P PP100)=-10P  P*(100) = 10P

Substituting these into Equation e,

arP® p  aP® P 4P® P aP® P

dx 10 dx 10 dx 10 dx 10

we can obtain the average shear flows

g T 5 . 2 I . 5 i :
G® =g _ g® :qfl}_? (;W:q“?ﬁ?ﬁ [i]

10
National Research Laboratory for Aerospace Structures !



8.5 Deflections Iin Idealized Beams

Example 8.5.3

Setting the moments of the shear flows about flange 1 equal to the moment of the load P,

20¢2(0) x 54+5¢P(0) x20=—P x d [j]

[n the top and bottom panels.

_h(0)Ah(100)

q(x) =¢q

P\3 g? 2( p
10 10

ff'r.-_a] [L “ g
ﬁ ' . . e - i
10/ 4 f‘;(‘“ 1 lU}

Figure 8.5.9

A generic cross section of the tapered
beam, showing the average flange
load gradients (in parentheses) and
the assumed directions of the aver-
age shear flows.

National Research Laboratory for Aerospace Structures !

h(x)?2

1 i 20" -
3 410y 2
i | -y - -~
5" Q(B-J(O) L 1 l{{{ I ]{U)
4 ra(0) 1‘ 1
I —»
P l
Figure 8.5.10  Shear flows at the free end of the tapered beam.



8.5 Deflections Iin Idealized Beams

Example 8.5.3

where the variable width of these panels is given by
h(x) =20(1 4+ 0.01x)

Thus, gm (0= 2(}{23'+ Equation j therefore becomes
2005 + 1004 = —P x d

(2) =(1)

Substituting for ¢® and ¢ in terms of ¢‘", using Equation i, yields

gesi i P
200 (@'i“ - E) + 100 (c;f” — g) =—P xd

- C?“):MU;USHP GO 0—dP o Q0+DP Ly (10-d)P

300 300 4 300 Lk]

we use Equation k to find the virtual average shear flows:

(40 — d)s P 5o _ (10— d)sP 570 = _20+d)sP 550 (10 — d)8 P

8 —'{I 1 e
1 300 d 300 300 300

National Research Laboratory for Aerospace Structures !



8.5 Deflections Iin Idealized Beams

Example 8.5.3

-Equation 8.2.6 for the rectangles-

., A
5W1’m e a ng

Using Equation 8.2.13 for the trapezoids,

. 2 A
SWr, = |:1 + ———— (cot? y O 3ot coty + cot? u*)} aq’éq

3(14v)
panel | panel 3
S _ 510 [PU0-d][0FE0—a) [ SWIOGHIT P@0+d) 5P (20 + d)
ntpanels " 4106) - 0.08 300 300 4(109) - 0.05 300 )

panels 2 and 4

3(204+40)-100 TP(10—d)] [8P (10 — d)
4(10°) - 0.05 L 300 300

pi ] o Ee I RS 7y 2k 1
i x[ —|—3“+0.25)w ) }

or Wi vanels = (3.966 x 1077d*~7.898 x 107°d + 8.982 x 107) PSP
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8.5 Deflections Iin Idealized Beams

Example 8.5.3

The total internal complementary virtual work, § W.*

int, stringers

+ W

int. panels?®

SWik, = (3.966 x 107d>~7.898 x 107°d + 142.3 x 10°)Ps P

The external complementary virtual work 1s  v§P
the location of the appiicd load,
v = (3.966 x 107d*~7.898 x 107%d + 142.3 x 107°) P
For example, it we select d = 5 in. for the load application point, the vertical displacement of that point is

v = 0.001393 P in. (where P 1s measured in pounds)

Just as for Equation J, we sum moments about flange 1:

8P (0) x 20 x 54+ 8¢P(0) x 5 x 20 = 8T

Y/
5q3 (0Y = 847 \
20gr x 20 x 5468gr x5 x20=4T

5@ (0) = 28G7

National Research Laboratory for Aerospace Structures



8.5 Deflections Iin Idealized Beams

Example 8.5.3
SO that 5T

Sy —
17 = 300

Since there are no virtual bending moments associated with the applied virtual
torque §7. Thatis, §W> = §W?

int, panels?

so that | paneL] he 2
sy — 5100 U 0-d7[e77 5 V1002 +202 [ PQ20+d)] [ 6T
T 4(106) - 0.05 300 300 4109 .0.05 | 300 300

panels 2 and 4

5'.:2{]-+~4(.n.1(1() P10 — d) 5T
4(109) - 0.05 300 300

2
+ 2x |1 T cot> 78.69°
[ +3[_1+0.25_} i ; J

Upon simplification, this becomes
SWE, = (3.949 x 107°-3.966 x 107'd)PsT

it

6 = (3.949 x 107°-3.966 x 107'd)P radians (where P is measured in pounds)

As expected, the twist angle depends on the location of the applied load P. That angle
is zero if the load passes through the point d = 9.96 inches.

National Research Laboratory for Aerospace Structures !



8.6 Shear Center of Closed Sections

The shear center of constant-cross-section beam
IS the point through which the shear load borne
by a section must pass if the accompanying
stresses in the cross section are those dictated
by beam theory. For thin-walled sections, this
means Equation 4.7.3 alone governs the shear
stress distribution.

By definition, there are no torsional shear
stresses If the shear load acts through the
shear center.

National Research Laboratory for Aerospace Structures !



8.6 Shear Center of Closed Sections

Example 8.6.1
Find the shear center of the section shown in Figure 8.6.1

< 7.14"—=] 21
‘}q 55" 003" | 4
SR TR L e N 1SR R e
® & _ ® Z
2 i ‘0.5 in.2 | in.?
- 10" —— 10—
Figure 8.6.1 |dealized beam section.

National Research Laboratory for Aerospace Structures
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8.6 Shear Center of Closed Sections

Example 8.6.1

First we calculate the location of the centroid G.
B x2)+(6x05)+@x1)
2x 2405+ 1)
_2x(10x05)+2x (20x1)
N 2x(24054+1)

= 3.286 1n.

YG

ZG = 7.143 in.

The centroidal area moments of inertia are
Iy =2 % [2x (7.143)*] +2 x [0.5 x (10 = 7.143)?] +2 x [1 x (20 — 7.143)*] = 542.9 in.*
I: =2 x [(8 —3.286)% + (3.286)*] 4 0.5 x [(6 — 3.286)° + (3.286)?]
+1 x [(4 —3.286)* + (3.286)*] = 86.43 in.*
IGy: =2 x [(8 — 3.286) (—7.143) + (—3.286) (—=7.143)]
+0.5 x [(6 — 3.286) (10 — 7.143) + (—3.286) (10 — 7.143)]
+ 1 x [(4 — 3.286) (20 — 7.143) + (—3.286) (20 — 7.143)] = —54.29 in.*
From Equation 4.8.2, the flange load gradient at the ith flange is,
P\ =2274 x 10™ {V, [542.9 (3i — yo) + 54.29 (zi — z6)1+ V. [54.29 (y; — yg) + 86.43 (z; — z6)1} A;

National Research Laboratory for Aerospace Structures E



8.6 Shear Center of Closed Sections

Example 8.6.1
No. walls (i)
Qr ] —._I q{f}? _[}
2A e ¢ ()
y A 1000 1b
‘-— —6?:—»:
L08.76) 3 G0~ 1852 |
(—24.69)
2
L qo 18.52 ¢ g, + 24.69
(98.76) & ™ o S ”
5 (18.52) 1(24.69)

Figure 8.6.2 Flange load gradients (Ib/in.) and

wall shear flows.

Starting with the wall joining flanges 1 and 2, and moving counterclockwise around the cell,

1 4 10.2 10.2
» + 24.69
2AG [{(" ](003)“? (ﬂos)ﬂ% ]852)(005)

3 !
=+ (‘Tfa_l ]T-B) (m) (510“18 52) (U‘ 85) T 4o (%)] =0
I:> o =13.291b/ in.

National Research Laboratory for Aerospace Structures



8.6 Shear Center of Closed Sections

Example 8.6.1

Finally, we locate the shear center by requiring that the moments of the shear
flows corresponding to zero twist angle equal that of the 1000 Ib load acting
through the shear center. Summing the moments about the lower left corner of the
section, (2 x 40 x 37.98) + (2 x 40 x 13.29) — (2 x 40 x 5.229) = 1000 x e.

D) e:=3.683in.
As before, we locate the 1000 1b force by summing the moments around flange 5,

— (2 x40 x 26.64) — (2 x 40 x 22.16) + (2 x 40 x 3.992) = -1000 x e,
# ey = 3.383 1n.

¥ A 1000 Ib

- - ————-

4 2664 1b/in.

22.16 1b/in.

% 13.29 Ibfin. E J

Lo o P Ay 2 i T~

= 1 40in2) -~ 2 = 1| G0in7) o 2 —o>y. 2 1000 Ib

= st (40 ln._) B ] o ',"- ( “1:_}——’ el 3.002 ]b/ R Rl

*E" 1 7 - r 37.98 Ib/in. = J /f/, e (40 in.zj 2.Z72 10/, 4 e,
e - el - = z g ‘——r':) —_— — . 2
5 5.229 Ib/in. > 13.29 Ib/in. 1 25.99 |b/fin. 25.21 Ibfin.

Figure 8.6.3 Shegr HOWS required to pr‘evenf Figure 8-6.4 She(]r ﬂOWS For a -EOOO' Ib |OGCI to the rlghi Ond

the section from rotating. zero twist.
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8.7 Warping Deflections

(a) (b) (c)

Figure 8.7.1 (a) Thin-walled box beam in pure torsion. Each panel shows a “local” xy axis relative to which the sign of stress
and strain in that panel may be established. (b) Rigid-body rotation of the cross section. (c) Cross sectional
warping, which is superimposed on the rigid rotation.

Figure 8.7.1a shows a thin-walled, idealized box beam in pure torsion. The
dimensions of the rectangular cross section are h and w, where w> h.

The deformation at a given section of the torque box consists of the modes,
shown in Figure 8.7.1b and c, respectively. The first is a rigid-body rotation of
the cross section around the twist axis.

National Research Laboratory for Aerospace Structures !



8.7 Warping Deflections

?\\-’ arp

I

| /
P
B’
7
oA
A -
i F‘,»l

(a) (b)

Figure 8.7.2 Portion of the side panel ABCD of Figure 8.7.1.
Shear strain due to (a) twist and (b) warping.

Warping occurs because of the torque-induced shear strain in the walls of the
box beam.

Suppose for simplicity that all of the walls have the same thickness t, which

means that the shear stress, and therefore the net sl ¥y, strain IS the same
IN every pan Vy,wwist & varies from panel to panel, there must be another
component of the Yy . warp1in, such that

Yy = Vxystwist T Vxyswarp

National Research Laboratory for Aerospace Structures !



8.7 Warping Deflections

P
d ‘ L (w - 2d)

~1 4dwh

—_—

4
, P :
& - (3w — 2d) ﬁ] ? h lr m(n‘ + 2d)

e ——

1
4}: (w = 2d)
Stringer arcas = A Lk
Wall thicknesses = £
(a) (b)
Figure 8.7.3 (a) Idealized box beam with a vertical shear load P. (b) The corresponding

section shear flows.

Consider the idealized box beam shown in Figure 8.7.3a. For purposes of
illustration, let the four stringers all have the same area A and the panels have
a common thickness t and a common shear modulus.

SW* =68Puy —S8Pu>+8Puz —S8Puy

ext
The minus signs account for the opposite directions of virtual load and
displacement at flanges 2 and 4. This expression can also be written as
SWo. =8P [(uy — us) — (uz — u3)]
National Research Laboratory for Aerospace Structures !



8.7 Warping Deflections

4 21 3
oP W [ oP
2l hly 2
| S
! aP 2 Pra -
21
(b) 1 2
Figure 8.7.4 (a) Self-equilibrating set of virtual stringer loads applied at a Figure 8.7.5 Relation between flange displacements
given section of the box beam of the previous figure. (b) The and the rotations of the vertical sides
corresponding virtual shear flows. of the cell.
* [ [——
OWey = 0P[@1ah — ozh] = hps P 8.7.1]
A | E ool o |
] i —2) (1-2) (2-3) ¢ (2-3) 34 g (34 27, (4-1) (4-1)
SWi, = Z aqbg = — [w!q{ 5q + hlg' ' 8qg 4+ wilqg“ " dq + hlg* "V 8q ] [8.7.2]

panels

l SP P P
W = —{wl | — =2d) | | — hi ) + 2d ——
= e ‘“ [ gk ”](21 ) L [411;;; it ”}( 21)
P 5P P SP
ol | — »—2d — |+ R - 3w-2d —
i [ dwh (=2 ):| ( 21 ) o [ dwh (S d):[ ( 2 )}
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8.7 Warping Deflections

Upon simplification,

s Py . w
Wi = ~56mer @~ (5 —4) bodel

the warp angle for a section

b = — (w — h) (% = d) [8.7.4]

2Gtwh?
pure torque with the same moment,

(3 -)

according to Equation 8.7.4, if the beam is in pure torsion, the warp angle is

q’) L ( h) [8.7.5]
= (e — i
2Gtwh? U ?

National Research Laboratory for Aerospace Structures !



8.7 Warping Deflections

Example 8.7.1

Calculate the warping angle for an idealized beam with constant
cross section loaded in shear, as illustrated in Figure 8.7.6.

_1L1

A 1000 1b

o] G =4x10° psi
0.35in.~12 0.04" I'

A 1 0.25in.°

'
8" 2| 0.07" ——
v 0.05" 003" |[4] 5 _
0.45in2 3 3] 4 ‘ 02in? |
= 30" —
Figure 8.7.6 Section of a constant cross section box beam.

National Research Laboratory for Aerospace Structures
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8.7 Warping Deflections

Example 8.7.1

4 4
"p"x’l' 7+ A
___Ey“ ’__4.050_”4“, _E}f © 1350: i
Yo = = = 1250 _ °° n B =13 = 10.80 1n.
Z qu' ZA,‘
=1 1=1
4
B = Z (zi — z)2A; = 2592 in?
=1
4
- A
lg, =) (i —y6)*A; = 1553 in*
:fL

lg,, = L (i — ¥6)(zi —26)Ai = —6.240 in.*

i=]

Substituting V, = —~1000 Ib and V. = 0 into Equation 4.8.2,

iy __

v = ;h——t’é_l( g, Vy — 16, V) (yi — y6) + (Ug, V2 — Ig,, Vy)(z; — 26 )]A;

National Research Laboratory for Aerospace Structures

=



8.7 Warping Deflections

Example 8.7.1
i}'“} = q:il] + P_:_“] - qi_df;‘l —36.13
QEZJ — qi;i; A Pifﬁ; . (qf:!: 8 P:_H‘J) e P_:_{E] - qf;ib — 138.6

(3)

3) . (2 13 (4) (1 2) 13 :
g7 =g+ P =@V + P+ P4 PO = D 3613
Invoking moment eauivalence about flanoe 2.

(30¢) x 8 + (5¢) x 30 =0
This can be written in terms of g'* alone by substitutin g the third of Equation c:

240 (¢-36.13) + 1504 = 0

Solving this for ¢“ and then substituting into Equations ¢,
g'¥ = 22.23 1b/in.
g =-13.90 Ib/in.
¢¥ =-116.3 b/in.
g =-13.90 1b/in.

National Research Laboratory for Aerospace Structures !



8.7 Warping Deflections

Example 8.7.1

.\‘
|
A 1000 Ib

I (1)
12 o

ClOZA) 8t -1 (-36.13)
{_/(3)4 k ¢

L = _— Z

(102.4) 3 4 (36.13)

HE)

Figure 8.7.7

Flange load gradients (lb/in.

] and

assumed directions of shear flow.

.‘rf'J

51)/'3——7' — —

Figure 8.7.8

o= o=OP =160F

the equilibrium of stringers 2, 3 and 4,

5:;"‘2} - P)‘qr“] =

ﬁq{'ﬁ’] - e‘iq‘“‘j"' =

5q¢® — 54 =

5P
o
5P
1
6 Q
s

or

or

OoF

(3)

g

50

8

Selfequilibrating set of virtual loads applied
to the stringers of an isolated free body of a
portion of the box beam, together with the
corresponding set of virtual shear flows.

by

Sg[ﬁ} — 5@’{2} it

5q

()

= 0q

== 5({

(1y _

(3)

7 ispace Structures

L



8.7 Warping Deflections

Example 8.7.1
Using flange 2 as the moment summation point,

(308¢) x 8 + (58g™) x 30 =
Substituting the second and third of Equation g into h yields
. , sP
24087 + '150(5{;;”?'—1.617) =0

From this and Equations g, we find all of the virtual shear flows in terms of the virtual load § P, as follows:

5P . 5P 5 P ) 5P
3" =06154—— 59D =-03846—- gV =06154—  5¢¥ = ~0.9846 -
With the true and virtual shear flows in hand,

A [ h (1 (1) h{zj (2) (2) h{m (3 (3) hm} (4

s T T T 5 o A3 e ) (4)

SWi, = Z| qurbq =G |:E”} 8g'" rll}q dq*” + Ok B —— @ 1 oq
panels

so that ] V30?2 + 32 SP 8 SP
SW* = — —]13.99 0.6154 — — (—116.3 —0.3 —

+ e 13.90 U(liﬁigp—l— 2 s ()93465])
m(— in JX a) et W > — L. F]L T

or SW:*

nt

= —0.0025285 P



8.7 Warping Deflections

Example 8.7.1

the external complementary virtual work is
SWZii=—8Pur +8Pus —8Qus+8Qu; = (35 — u2)8P — (s — ;)80

The counterclockwise rotation ¢, about the z axis of web 2-3 in terms of the axial displacements of stringers 2 and 3,

Uy — U2

e =
03 n

Likewise, for web 1-4,
Hq — U

f‘.’[

¢s =
Therefore,
SWey = $2h28P — pahsd Q

we obtain the external complementary virtual work in terms of the warp angle ¢ = ¢3 — ¢,

SW* = phadP = 88 P

|:> ¢ = —0.000316 radians = —0.0181 degrees

National Research Laboratory for Aerospace Structures !



8.8 Multicell Idealized Box Beams

y X
By @ e i
fx “) L)
g q . g P g (P ()
_ Y [ —-— _— ‘
; "(5)y (o () P
1_, 41———(!0\ ) {Ll) Q‘_) \;_J ({” |
NS e T e R R p
6) E 2 g : . -_‘ =
g' (PO gt s @y ¢®  (p®) 4 (P
H . 5
’f' 1 L
/” * ‘,/"/
39
o v,
Figure 8.8.1 Multicell idealized box beam section.

We have the nine dependent shear flows as linear functions of the redundants
and the applied loads, as follows:

g9 = a;q"% + b;g""V + ;4P + 4.V, + ¢; Vy+ fiT o 9 8.8.1]
Virtual shear flows

8q"") = ;8¢ + b;8q" Y + ¢;6¢1? i=1,...,9 [8.8.2]

The internal complementary virtual work is given by the familiar expression
12 i) A0 . .
oo B g o e o

W = Z COr® q''dq [8.8.3]

National Research Laboratory for Aerospace Structures !



8.8 Multicell Idealized Box Beams

The principle of complementary virtual work requires that the internal
complementary work also vanish. Equation 8.8.3 then implies that

12

E ) ‘
E “]qff}ﬁq(:}zo
i=l ;
or i . . $(10) s gD . | s42
f[_”qm&l(r} 4 Wq{ ,L(‘qu[ )+ r“_“q{ -]Sq{-[ }+ mqql_laq{l;} =1 [8.84]

Substituting Equations 8.8.1 and 8.8.2 into the first terms of this equation and
factoring out the independent virtual 549 54" and 59>, we obtain

((']_15{“{” i f']_jq[[“ 2 (']_3,4]“2] of bI.IV:’, -4 bl.'lv_‘r —|—b1.3T) SqllUl
+ (21" + 229" + 236" + b2 V. + braV, + b 3T) 8q""
+ (('3.151:“”) +c32¢"™M 4 c33¢"P + b3 V. + b3, Vy + EJ_;__:T) sqg" =0

we thereby obtain three equations for the three redundant shear flows as follows:

c1.19"” +c12g"Y +c13g"P = — (b1.1V, + b2V, + by 3 T)
21" + 22" + c23¢"P = — (b2 V, + b2 Vy + b23T) [8.8.5]
c3.1"” 4+ 326" + 33" = — (b3 Ve +b32V, + b35T)

National Research Laboratory for Aerospace Structures !



8.8 Multicell Idealized Box Beams

Example 8.8.1

The sections of a constant cross-section beam in Figure 8.8.2 carries a
pure torque of 50,000 in-Ib counterclockwise. Find the shear flow and rate of
twist.

y y

[):7_'-_3 in.” | 0.02" 0.60 in.° P : i

i P 0.02 0.60 in.- 0.02" 0.40 t”‘E C}ﬂ\ 6 - 5
1 0.06"  0.06" ' f 8 (9) )\hi
37 Vel ( (4

J & 9) N
1 0.02" * 3 [ . e (10) . 3
' e T b s = b 1} ® 2 & { 3 —‘— =
0.75 in.~ | 0.60 in.” 0.60 in.” 0.40 in.” 1 bt 2 p 3 bead
fe——10" —=—10" s RTIR
(d) []]}
Figure 8.8.2 [a) Section size and properties. (b) Flange and wall numbering.
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8.8 Multicell Idealized Box Beams

Example 8.8.1

Figure 8.8.3 Assumed directions for the shear flows.

The circled shear flows are the chosen redundants.
(1 __ (&)

| q{“ — {{{81 ==4) q4 =4

) L,fif) . qm _ qf‘)} — 0 qm - q(%i) —0—(,.'[{'”

3 qrﬁ} - qm . qum — 0 qt.?} - q{h’l iy (9) _|_qc1m
4 qH: _q(_“n —0 ‘l qfﬂf} e _.i,f_xj + g (9 _|_q[](lr
5 ¢S — 4 _q qiﬁl = ;[Q’} +ffm q{lm
6 - qtﬁl _|_qr,'h} —I—q””} = q(rﬁ‘: _ K[R] _!_qm;

7 rm +q"} o f;’ = ) q[?} :q (8)

For moment equivalence, about flange 8

| 1 :
( l{Jxﬁ)qm - ?(—mxﬁ)q‘ Uﬁ(—lﬂx ()) g> +7(,J ><30) q”’—’l(,}lﬁ X m)q“‘” 7(E4x?.[})q(|{}" = 50, 000

National Research Laboratory for Aerospace Structures



8.8 Multicell Idealized Box Beams

Example 8.8.1

g® =185.2 — 0.5926¢° — 0.2593¢ """

gV =q" =¢® =1852 - 0.5926¢® — 0.2593¢'"

(2)

g =g =.185.2.4-0407447 — 02593450
g =g® =¢® = 1852+ 0.4074¢ 4 0.7407¢ "%

Virtual shear flows

8¢V =87 = 8q® = —0.59268¢ — 0.259384"10
3{1‘,(2} - ‘aq{f}] e 04“74(;)(![9} ot 0‘25935(1[1[]}
5qP =8¢ = 8¢ = 0.40746¢® + 0.74075¢1

the internal complementary virtual work is just that of the panels,

10 10 (i)

(1)
TR § A il e (D) L E $ LAY o (1)
(S\H’im = m{f él'{{ = a }"{Tq 5{[ ’

=l i=1l

National Research Laboratory for Aerospace Structures !



8.8 Multicell Idealized Box Beams

Example 8.8.1

webs 1, 7, and 8

i L 10 1005 6
= 26,9 0] s e (8 .
oW = G ( 2 " 00 +0.06)(_185.2—{}.592&; ' —0.2593¢"") (—0.59268¢ — 0.259384'7) +

wehs 2 and 6

( 10 10.05
oy

e ) (185.2 4 0.4074¢ — 0.2593¢"'7) (0.40748¢” — 0.25935¢'?)

webs 3, 4, and 5

10 3 10.05 i . g _
% ( e ) (185.2 + 0.4074¢® +0.7407¢"' ") (0.40748™ + 0.74075¢" 105

web O web 10

5 4
9g,,¢ 711054010
+ooed M tyged

Simplifying and combining terms leads to

SW*

mnt

il [(811.6¢® +381.1¢"” + 34,050) 85 + (381.1¢® + 785.6¢""" +43,310) 8¢""]

National Research Laboratory for Aerospace Structures !



8.8 Multicell Idealized Box Beams

Example 8.8.1
According to the principle of complementary virtual work,

é [(811.69 +381.1¢"Y + 34,050) 8¢ + (381.1¢" + 785.6¢1% 4 43,310) ¢ = 0

Bk ke 6 1434

This results in a system of two equation 5
for the two redundants, i 2 T 20.81 ’ 45. m{ I} 143.4
811.6¢® +381.1¢"” = -34, 050 1 2092 2 1884 3 1434 4

3ol qw} -+ ?85.663’[”” — 43, 313 Figure 8.8.4 Shear flows (Ib/in.) statically equivalent to

a 50,000 in.-b counter clockwise torque.

The internal complementary virtual work
IS L 10 ‘?[” - {.'{I.' ! Lt!j]. 10) 5”] -
FE — () l’.T e : l':“}
Wine = 5 Z (750,000 50. 000G Z 7

=]

~50,000G | 0.02 0.0 0. 02
10.05 - D 4 }
209.2)° + — (-20.81)° + —— (—45.03)"
002 0.02 (188.4)° 0. ()._ 0. (}6( 2y 0.0 ( ’ 0.0 (
L .
or SW =2112.4—0T T
e rch Laboratory for Aerospace Structures



8.8 Multicell Idealized Box Beams

Example 8.8.1 Wiy,
. : : : 8 7 e 8q")
Equating this to the complementary virtual work of the torque A5T, LR
b
s, 10 {] 1 @)
o = 2112.4;: : e 4 , i
T 1 2 3//’ 8(1,[3‘1 4
virtual shear tlows acting around the closed cell must all B
have the same value, denoted d¢ :
i g L Figure 8.8.5 One alternative virtual shear
(L) (D)5 i RN o R load distribution represent-
5{? i 5(-’: e 5{{ e {Sq ST 5(;; ing the virtual torque.
For static equivalence, the moment of the constant shear flow §¢r must equal the virtual torque §7.
5T 8T -
Sqr = = — 0.014286T

2Acel Z % [f],: 3+4) “OJ'J

The internal complementary virtual work is

SWH — L Sm{ Br5s® 4 s @5, @® 4 "(S)({SJ&G) 1t ‘_{_Ii]i( (10) 5, (10)
int — e r(?.) / { r{-_qu 1 ‘,(5} / { (1) 1 1

(3 (4 @ g3) " ¢ (10) 5 I
Nk T8 B Gt B B I}
_{],()]4._8(1‘[3}6,{3—% @ 9 + oL o a0 4 ) GbT

Substituting the web dimensions and the true shear flows nreviouslv comnnted

. 10 3 V102 + 12 4 i i
W =0.01428| — 1434+ —1434+ —— 143 4 —45.03) | =8T =2112.4—=8T
““ {0.02 Ea 0.06 & 0.02 T 0.06 ( L )} GH <l P



8.8 Multicell Idealized Box Beams

Example 8.8.2

Calculate the shear flows in the webs of the constant-cross-section
idealized beam in the previous example if, instead of pure tension, the beam
IS subjected to the shear shown in Figure 8.8.6D.

10,000 1b 1

0.75 'Ill..2 3 {)(]2'-’ 0.601n.< . 9 8 o

U 02" 0.60in.” 0.02"  0.40in.2 :}\I\("__‘; 6 ~ 5
T\;J_j\ 5000 1
(1 :l 10) & (4) re——

6 (006" g6 .
' LI [ ) o - N A T
- s 2 i s i -
(.75 in 0.60 in.” 60 in.~ | 14[ )in.? 3 4
g el — 10" — |
(a) (b)
Figure 8.8.6 Three-cell section carrying shear loads.
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8.8 Multicell Idealized Box Beams

Example 8.8.2

8 8
Aizy A v
ﬁ_‘_; 00 _ B o
I = i 47 1. Yo = 3 = 47 — £.30L 11.
L A Z Aj
i=1 =1
3 R 8 N 8
Io, =) (i —z26)*4; =5540in*  Ig, = (3 —y6)?A; = 28.98 in* =Y (i —yo) @i — z6)A; = -
=1 i=] i=1
To compute the flange load gradient at the ith flange,
P = : Ig,Vy =16, V-)(yi — ¥ I6.V, — I
L= 7 [kle, Vy —ilg,. Vo)W —Ye) + g Vs — g, VY& — 25

‘ Il lg. — I
E> P = [-371.4y-27.59z; + 1230] A;
q“] = ¢® 922.0
q? = q® + ¢ + 1494
¢ =q" +4% +4"Y +1900
o= f%’+‘¢”14-q ) 42061
qa.’}) o q{H} +cj{“ +q:|m 11776

g™ =q® +¢% + 1291
(M _ q{s] 17492 ratory for Aerospace Structures

20

1A,

L



8.8 Multicell Idealized Box Beams

y * 10,000 Ib
1

Example 8.8.2

]
g 4" (--542-171b/in-Jq<m (—484.8 bfin.)
=1~ ST R (-§85.()Iblin_)

(=749.2 Ib/in.)

i e 5.000 Ib
q K t‘ _____ >
(922.0 Ib/in.) & : —e z
1 iy 3 (160.6 1b/in.)
(572.0 Ib/in.) - (406.5 1bfin.)
Figure 8.8.7 Flange load gradients (in parentheses) and the assumed directions for
moment eq uivalence about -ﬂange 8 il;e shear flows, with g and g!'® highlighted as the selected redun-
i ants.

1 1 1 . 1 1 : 1
2 (510 X 6) gV +2 (5 10 x 6) g9 +2 (5 10 x 6)5;(3’ +2 (53 X 30) g2 (55 x 10) g2 (54 X 20) " =

10,000 x 10 + 5000 x 4.5

|Z> 270" + 160g™ + 70¢"Y + 4.445 x 10° = 122, 500
g = —0.5926¢ — 0.2593¢'Y — 1193
¢ =0.4074¢® - 0.2593¢" 4-98.70
from which we obtain ¢® = 040749 + 0.7407¢1 4 583 5
g® = —0.5926¢” — 0.2593419 — 1,193 g = 0.40749® + 0.74074"7 + 868.6
¢? = 0.4074¢® 4 0.7407¢"9 4+ 707.9
g'? = 0.4074¢® —0.2593¢'Y 4 301.5 E*%
National Rese: /(1) — _() 50264 — 0.2593¢® — 270.6 e



8.8 Multicell Idealized Box Beams

Example 8.8.2
These virtual shear flows

8qM = —0.59268¢” — 0.25935¢10
8q'Y = 0.40746¢® — 0.25935¢1%
8q® = 0.407459® + 0.74078¢?
8qW = 0.40745¢® 4 0.74075¢1"
8qg® = 0.40745¢” + 0.74075¢"0
8q'® = 0.40745¢” — 0.25935¢""
8g" = —0.59265¢° — 0.25935¢10
5q® = —0.59268¢ — 0.25935¢17

the internal complementary virtual work expression,
10 i)
_ Ls - -
* (i) g ()
Wi = eoasq

i=1

Setting the result equal to zero (6 W/, = 0 because the redundants are internal loads) leads to
[(811.69° +381.1g"%) + 6.459 x 10°] 8¢ + [(381.1g* + 785.6¢'7) + 5.834 x 10°] 84117 =0

National Research Laboratory for Aerospace Structures !



8.8 Multicell Idealized Box Beams

Example 8.8.2

By the usual argument, this yields the following system of two equations:

811.6¢ + 381.1¢4"'Y = —645, 900
381.1¢® + 785.6¢"'19 = —583, 400

A 10,000 1b
]
|

19.4 Ibfin.

7

17.5 Ib/in. :
0 6 5.65 Ib/in. 5
| ‘ 5,000 Ib
730 Ib/in. 1 579 Ib/in. 1 462 1b/in. 1 291 Ib/in. 1 ------ =
4 Z
l _—— 2 Ll Lail 3 Ll Ll 4
192 1b/in. 185 Ib/in. 130 Ib/in.
Figure 8.8.8 The shear flows, which are statically equivalent to the combination of

an upward-directed 10,000 Ib shear force through web 7-2 and a
rightward-directed shear force whose line of action bisects web 4-5.

National Research Laboratory for Aerospace Structures !



8.8 Multicell Idealized Box Beams

(/I.W — ([“ l(",t") (P\:'E) 23 (P‘j{] )
& @ S0 o Tl A
b . p R TSR L —_— = N S — & A
q\m (P;‘(”) L qi 1(F 'f‘lJ (},l ) (R‘w&{ ) L]{‘h (P
- : .L
i { e
Figure 8.8.1 Multicell idealized box beam section.
2 .
(10 [ (12 : §
g“ = a;g" + b;g"V + ;" + 4V, + ¢, v+l i=1,...,9 [B-B-”
12 2(2).4 () (
i) (i)
W= —(}“}! i ¢ [8.8.3]

National Research Laboratory for Aerospace Structures !



8.8 Multicell Idealized Box Beams

L .] [" 2
e D ali)e AE)
G rmq ags =10
H.m L (10) 5, (10) D e an 5“'}} 12 12
e (i) g, - _ ‘ (125,02 —
01 210 2 ags £(10) q0g r['l—l}q 2 + PPk oq =0 [8.8.4]
((2'1_1{}“{}} —{—(']__I[H} —E—( —f—b] |V +[?| 'JV +b1 3 )aff 30
+ (219" 4+ 220" + 23" + bay V. + a2V + 523 T) 8
+ (319" + 329" + 339" + 531V, + b3V, + b33T) 512 =0
c11g"”" +e12¢"Y + 13" = — (b1 V, + b2 Vy + by 5 T)
c2.1qg" + 20 ;“” + ¢2 -1"33 = — (bo ) V. + booVy + by s T) [8.8.5]
319" + 320"V + 336" = — (bsa Vo + b3 Vy + b33 T)

National Research Laboratory for Aerospace Structures !



8.8 Multicell Idealized Box Beams

Example 8.8.1

The section of a constant-cross-section beam in Figure 8.8.2

carries a pure torque of 50,000 in-lb counterclockwise. Find the shear
flows and rate of twist.

National Research Laboratory for Aerospace Structures

0.75 in.” | e 8
) 0.027 0.60In." [ nnv 0 enin 2 .\ = 7 '
A . 0.02"  0.60 in. 0.02" 0.40 in.2 C/\ ) 6 e 5
. — A 1/ -_
6" 0.06 0.06" f 8) (9 T‘D -
| o 3% 10) (4
i 0.02 . It 3 [ T3 \I/ e (T3 _J
0.75 in.2 | & 2 2 104002 ~ g heE T e )
el 0.60 in. 0.60 in.” 0.40 in. 1 ) 3 4
0 e 1 10" -
(a) (b)
Figure 8.8.2 [a) Section size and properties. (b) Flange and wall numbering.



8.8 Multicell Idealized Box Beams

Example 8.8.1

Solving for shear flows ¢! through ¢ in terms of ¢®, ¢, and ¢19,

| q{il - qu-«;m — 0 q“} » qm
g) qti) - qflh - g_[ﬁ)} il q.{z'; _ qgg} —|-t’f[('}]
3 ql-“ = (},{31 22 {fi[ﬂj =) q""” =g® 4 qm + q10
4 g® —¢® =9 g® =g® 4 ¢g® 4 400
5 g — qm —0 g =g® 4+ ¢ + 410
6 . gfﬁm _|_q(ﬁ_: _‘_qr_m} - qu . {f[Ei] _l_('.‘,(L_JJ
7 B q[m 4 {_f[?] + q(gj 0 qf?} - q{tim
Figure 8.8.3 Assumed directions for the shear flows.
)\space Structures t*%

The circled shear flows are the chosen redundants.



8.8 Multicell Idealized Box Beams

Example 8.8.1
For moment equivalence,

| R | 1 1 Y | 1
2 (5 10 x ﬁ) g 42 (E 10 x 6) @ + 2(; 10 x 6) ¢ +2 (;3 X 30) g™¥-2 (;5 x 10) g2 (;4 X zn) g% = 50, 000

g = 185.2 — 0.5926¢9 — 0.2593410)
g =¢'? = ¢® = 1852 - 0.59264® — 0.259341
g'® = q© = 185.2 + 040749 — 0.2593410

¢ = ¢ = ¢ =185.240.4074¢° + 0.74074

virtual shear flows
8q'V =8¢ = 6¢® = —0.59268¢® — 0.25938¢ 1%
8¢9 = 8q© = 0.40748¢° — 0.25935¢10
8¢ = 8¢ = 8¢ = 0.40748¢ + 0.74075¢10

e

National Research Laboratory for Aerospace Structures



8.8 Multicell Idealized Box Beams

Example 8.8.1

10 (i) 10 ()
7 _Z A L) e (1) _ - 2 ‘ LD g ()
o' int — G“}.“U]q T 5 ;(—i}q 09

i=1 i=1

webs 1, 7, and 8

SWr* =

mnt

L 10 10.05 6
G

TR T 06) (185.2 - 0.5926¢® —0.2593¢"%) (=0.59266¢® — 0.25935¢) +

wehs 2 and 6

webs 3, 4, and 5

10 e 3 +1().05
r (002 - 01065 0.02

web 9 web 10

) (185.2 + 0.4074¢ + 0.7407¢"?) (0.40748¢® +0.74075¢"™)

5 \ ' 4
(913 (9) {10)8 (10)
Ll ey

Simplifying and combining terms leads to

SW*

L S : L AR S L ) 30
n=G [(811.69 +381.1¢? +34,050) 85 + (381.1¢™ + 785.6¢"? 4-43,310) 8¢"* |
The redundant shear flows ¢ and ¢''? are internal to the structure; therefore we know W7, = 0,

a [(811.6¢® +381.1¢"" + 34, 050) 8¢ + (381.1¢"™ + 785.6¢"'? +43,310) 8¢ =0

Ql

National Research Laboratory for Aerospace Structures !



8.8 Multicell Idealized Box Beams

Example 8.8.1

This results in a system of two equations for the two redundants,

n

( 10 1(}{;’}
811.69 +381.1¢""9 = -34, 050 884 6 1434

381.1¢ +785.6¢"1% = 43,313 ”‘“ { Zﬂng 410'%T I} 143.4

1 2092 2 ]884 3 14’%4

Figure 8.8.4 Shear flows (Ib/in.) statically equivalent to
a 50,000 in.-Ib counter clockwise torque.

Therefore, the internal complementary virtual work 1s

10 (i) ,

7 10 S[;’] . L"{” ) LoT 5 2
* . (£) S'.r = — _ C“}
Wine = = Z 0750 000" 50, 000G Z 101

i=l1

ST 10 10 3 10.05 5
Lo ]: 10 (209,332 4+ v (1884)% + = (143.8)° —1-0—(14 47 + W(M}@h

50, 000G | 0.0z 0.02 0.02
10.05 , 10.05 Bl A 3}
e —— 81 — (—45.03
02 e By 0.02 (2 2) +0 . ) +[]06( ) +0.06( )
i
or SW.X —21]2.4F§T

il
T
National Research Laboratory for Aerospace Structures !



8.8 Multicell Idealized Box Beams

Example 8.8.1
Equating this to the complementary virtual work of the torque 68T,

L
0 =21124—
G

I

Since the virtual flange loads are zero,
virtual shear flows acting around the closed cell must all have the same value, denoted g7,

(10)

8qg""") = 8¢ = 8 =6 = 8¢y

For static equivalence, the moment of the constant shear flow §gr must equal the virtual torque 67

5T ol
dgr = — : = (0.0142857
2 P [5(34—4) (_10)}

8

|
F
2
e
h

A\

I 2 3

Figure 8.8.5 One alternative virtual shear
load distribution represent-

National Research Labc ; :
ing the virtual torque.



8.8 Multicell Idealized Box Beams

Example 8.8.1

The internal complementary virtual work 1s

R P O NN T g
£ _ Ne 3D L2 @ (4 , 5)e (5 4 ¢
Wi, = — (Wq 5V + —q'P8q'™? + ftﬁ}q* '8q") + g""Pég" J')

G I{"-]-J r“ﬂ]
.(3) (4) (3) A 10)
S L) g syl i
i T il (4) (5) an \ £ ¢
0.01428 (r[?_} q3 + @ gl rﬁ}q g ~(10) q ) Gé)T

Substituting the web dimensions and the true shear flows previously computed,

) 10 : JI0Z + 12 4 L L
SW* =0.01428 | — 14344+ — 1434+ Y~ TV 1434 _45.03) | =T = 2112.4=
nt {0.02 o006 T T om + 506 Y }} g AT

National Research Laboratory for Aerospace Structures !



8.8 Multicell Idealized Box Beams

Example 8.8.2
Calculate the shear flows in the webs of the constant-cross-section
idealized beam in the previous example if, instead of pure torsion, the
beam is subjected to the shear loads shown in Figure 8.8.6b.

10,000 1b T
0.02"  0.60 in.?

0.75 in.? i i 3
- ; 0.02 0.60 1n. ] 4 |
‘ 0.02" 040in? s 6 :
) — \-/\I:\\E/ /;\ J
1 ' N —/I 5000 1b

-1t - 14 ™ 3 ™ T 4
6 ) 0.06 —_— 0.06" I 3 (3/, M Ql),:' El \|¢qu E (4) —_— -
Y : : . ~ | T3 Fo T Pa T] 1.5 )
G i 2 o i) o e .oz ° / 2 < - - N ———
0.75 in.” 0.60 in.” 0.60 in.” | 0.40 .~ 1 — 2 R 3 l 4 ]
10" —f—— 10" 10" —|
(a) (b)
Figure 8.8.6 Three-cell section carrying shear loads.
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8.8 Multicell Idealized Box Beams

Example 8.8.2

8 8
Az Ay
E} 60 2 S, L e e
Ic = 5 = {_—1——? = 12.76in. Vo = s — 17 = 2.362 1n.
E Aj Z A;
i=l1 i=1
8 . 8 8
I, =) (i —z6)*Ai =5540in*  Io, =) (y —yc)*A; =2898in* I5 = > O — ¥6)(zi — z6)Ai =-27.70 in*
i=1 =] i=1

To compute the flange load gradient at the ith flange, we use Equation 4.8.2, which is

Hr l - > 4 %
P = e 72 [(Ic,Vy — 16,. V2): — Yg) + UG, Vz — I, Viy)zi — z¢)]4;
G,le, — 15,

P/ = [-371.4y,-27.59z; + 1230] A;
gV =¢® +922.0
g? =¢® + ¢ + 1494
q{fa‘.l Lot q[ﬁj _|_ Q‘LE}] i q{l(}j RT l{)(){]
qMJ 23 QLS} +q{9] +q:;l[}j —|—2061
g® =g® + 49 4419 4 1776
g =g® +¢® 1 129] t*%

qm - {!{8] 47492 :ory for Aerospace Structures |



8.8 Multicell Idealized Box Beams

Example 8.8.2

v ‘ 10,000 Ib
1

q{?-‘ (=542.1 1b/in.) (6) (—484.8 Ib/in.
i 7 4

}(S;

(~749.2 Ibfin.) | - < 6 q (~285.0 Ib/in.)

¢ml ¢ qpl rqmy 5.000 1b
R A L | e T | i e R e ot F
(922.0 1b/in.) & — s : 4 i
160.6 1b/in.
(5720 1b/in.) - (406.5 Ib/in.) e b
Figure 8.8.7 Flange load gradients (in parentheses) and the assumed directions for
the shear flows, with g¥! and g!'% highlighted as the selected redun-

dants.

We now invoke moment equivalence about flange 8 to get ¢® in terms of the redundants ¢® and ¢,

| 1 . | . 1 I | I
J S (1) 2) 3
2 (2 10 x 6) g’ +2 (510 X 6) q'” +2 (510 X 6)q( ) 2 (53 X 30) g®-2 (55 X 10) g2 (54 X 20) q‘10 —

| 10, 000 x 10 + 5000 x 4.5
we can reduce this to

270¢"® + 160g® + 70¢"? + 4.445 x 10° = 122, 500

from which we obtain ~ ¢® = —0.5926¢® — 0.2593¢1 — 1, 193

National Research Laboratory for Aerospace Structures !



8.8 Multicell Idealized Box Beams

Example 8.8.2
True shear flows Virtual shear flows
q{?_] pe | 3976 9 0 25()';(;(10) L] 19:} 56}'{” = —0.59265(}(9} s 0.25935@'“0)

8 = 0.40746g® — 0.25938¢ %
8q") = 0.407469® + 0.74078¢""
8" = 0.407489 + 0.74078¢ %
8¢ = 0.40745¢” + 0.74075¢ "%
8g© = 0.40748¢” — 0.2593541°
8q'" = —0.592659" — 0.259354'%
5q"® = —0.592689 — 0.25935¢ %

g© = 0.4074¢® — 0.2593¢7? + 98.70
g® =0.4074¢® + 0.74074"9 + 583.5

D =0.4074¢® + 0.7407¢"9 + 868.6

) = 0.4074¢® + 0.7407¢"° + 707.9
g% =0.4074¢® — 0.2593¢"? + 301.5
g’ = —0.5926¢® — 0.2593¢9 — 270.6

the internal complementary virtual work expression,

SWiny = ) _ w}q 5q"
i=1

Setting the result equal to zero (8 W, = 0 because the redundants are internal loads) leads to

[(811.6¢° + 381.1¢"?) + 6.459 x 10°] 8¢ + [(381.1¢"" + 785.6¢""7) + 5.834 x 10°] 8¢"'? =0

National Research Laboratory for Aerospace Structures !



8.8 Multicell Idealized Box Beams

Example 8.8.2

By the usual argument, this yields the following system of two equations:

811.6¢® +381.1¢19 = —645, 900
381.1¢¥ + 785.6¢"1Y = —583, 400

19.4 1b/in.

A 10,000 1b
]
|
1 .
o - L1y, 5.65 Ibfin.

_ ‘ 5,000 1
730 Ib/in. 1 579 Ib/in. 1 462 1b/in. 1 291 1b;in‘ﬁ11 —————— B
® Z
—_— Ll 2 Ll Lt 3 Ll | 4

1

192 Ib/in. 185 Ib/in. 130 Ib/in.,

Figure 8.8.8 The shear flows, which are statically equivalent to the combination of
an upward-directed 10,000 Ib shear force through web 7-2 and a
rightward-directed shear force whose line of action bisects web 4-5.

National Research Laboratory for Aerospace Structures !



8.8 Multicell Idealized Box Beams

Example 8.8.3
Calculate the angle of twist per unit length for the previous example
if G=4*10°Ib/in.?
8T 5T
Phan5. v LD

dqr =

Referring to Figures 8.8.6 and 8.8.8, the internal complementary virtual work 1s

L (s a5 @, 5P POFPIC 57 @ 5P @5 @
£ mg = o (1 : ) 4 ) )
{SWilﬂ - ( 1 q 56] i R r(g] 5@' (7]' q bq o flg} q aq )

G\t
1| 10 5 V102 + 12 6 L
L e £ AR S G |+ R R 1) e
110 [0 T 0.02 0.06 ¢ )} G
or SW, = 736.355?“

Noting that § W

ext

= 08T and setting W7, = W , we find

mt?

6 7363 d
L RS g DOEIEES
L G 1.

National Research Laboratory for Aerospace Structures !



8.8 Multicell Idealized Box Beams

Example 8.8.4

use the principle of complementary virtual work to calculate the
maximum shear flow in the tapered, redundant cantilevered box beam illustrated
in Figure 8.8.9. Loads in both transverse directions are applied to the free end,
as shown. Figure 8.8.10 depicts the flange and web numbering and thickness
information. Also, E = 10 * 106 psi and G = 4* 106 psi (v = 0.25).

| A 1000 Ib |

L 1000 Ib .
10" 10" i — 4y )
-.E: :;.:.: o i _:: -.: 3” 4' 5(}“ ”_') e —J " -

A 4” i i i
L : I— _\'

-

L 3:.!

- - —-‘

61( 6”

Figure 8.8.9 Tapered box beam with loads applied to the free end at x=0.

Lin® 530 0.5in2 530 0.5in.2

0.5" 0.5" 0.5"

1in2 03" p5in2 03"g5i2

Figure 8.8.10  Flange and web numbering and, on the Ek
right, the flange areas and web thicknesses. ace Structures o



8.8 Multicell Idealized Box Beams

Example 8.8.4

f §

3 Aiz:(40) g 3 A;yi (40) .
26(40) = Z‘f—— = '? =75in.  yg(40) = = { = =40in
X Ag Z A,'
i=1

i=l1

6
I6,(40) = ) " A; [2:(40) — z6(40)]> = 275in.*
i=l|
§
l.(40) = ¥ " A; [y (40) — y(40))* = 64.0in.*
i=l
6
lg, (40) = Z Aj [yi(40) = y6(40)][2;(40) — z26(40)] =0

i=1

We then use Equation 4.8.1 to compute flange loads at x = 40 in.; that is,

] Ar' ; :
P (40) = (- (M:1g, + MyIg,.) i — yo) + (Mylg. + M:1g,,) (zi — 36‘)]}

2
g, dg, — Gy x=40"

National Research Laboratory for Aerospace Structures !



8.8 Multicell Idealized Box Beams

Example 8.8.4

Therefore, the average flange load gradients are

P40y — PV©0)  795.4-0

Pl == G = =g = 19891b/in
"’) (2)

, P20y =1704% 0 _
Pl _ (40)40 Lo 7 = —42.61 Ib/in.
ARSI (3) (3) ey -

. 3 (40) — P LS )
PO _P( J)40 el = — —33.52 Ib/in.
5@ gy _ p@® e

= POy — P2NO) - 30460 _

P =2 0 = e = 76.14 1b/in.
(6} (6)

— P94 - PPO0) 1159-0 :
@b WO s ) T o bjin.

' 40 40

g?® =g+ p® =30 — 4261

c}{'B) _ qFEjE} o C}f’?} + P.:_L3} == (q_f“) o 42.61) . (;(f} B Sy q—!“} —l'?J

i@ =3® + P = (3¢ —76.14) — 48.86 = q“’ c}”) ~ 125
79 =g® 4 p® ( ~ " —125) +76.14 = g — 48.86
§9 =q® + 37+ P® = (" - g” — 48.86) +28.98 = ._r}‘” qa

National Research Laboratory for Aerospace Structures

—76.14

— 19,89
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8.8 Multicell Idealized Box Beams

Example 8.8.4
4 ,a'-‘ ' 3 ?‘-’ 2
(—48.86 1b/in.) ¢ ’ : (~42.61 Ib/in.)
[ (~33.52 Ibfin.)
(28.98 Ib/in.)
(76.14 1b/in.) . & (19.89 Ib/in.)
5 x 6 2 1

Figure 8.8.11  Computed average flange load gradients and assumed
directions of the average shear flows, with g highlighted
as the chosen redundant shear flow.

moment equivalence at the free end (x = 0) of the beam. Thus, summing moments about flange 5 we get
[¢(0) x 2] x 12+ [¢P(0) x 6] x 2+ [¢D(0) x 6] x 2 —[¢'"(0) x 2] x 6 = 1000 x 3 — 500 x 1

The shear flows at x = 0 are related to the average shear flows by Equation 2.5.4,

| , h©(40)
@y — 50 - L

National Research Laboratory for Aerospace Structures !



8.8 Multicell Idealized Box Beams

Example 8.8.4

where A" (x) is the width of panel i at station x. We thus have
S -
q(l)(o) s, q(U§ o 4q(1_)

10
¢?(0) =GP — = 1.6675@

6
10
¢?(0) = ¢ — = 16677
_7 8 .
q(4)(0) A3 qu - 4q(7)

we obtain the relationship between the average shear flows,
136.04" — 68.0'" — 2375 = 2500
which yields ¢V in terms of ¢, as follows:

gV =0.5" +35.85
g =0.5¢'" — 6.768

g® = -0.53" —40.29
g® = —0.5" —89.15

=5
qi)__

= —0.5¢" - 13.02
=(6) o= (}.Sém +15.96 search Laboratory for Aerospace Structures !
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8.8 Multicell Idealized Box Beams

Example 8.8.4

Figure 8.8.12  Virtual shear flow applied to the longitudinal cut in the

redundant center spar.

gtV = 0.58¢""
B e (. 58G 0
The virtual average shear flows resulting from 87 55 = .55
&?[4} ats _0'55&{?3
8¢® =-0.56¢g7

8§ = 0.56g7
We are now in a position to calculate the complementary virtual work of each panel,

. A.[f'JAl'r'J .2 s
() (1) o =(r)
oW, = oo ? dq
kfa’}_ [ i 2 ( 1.2 (i) I € 3 (i) vt 2 o, (1) E*é
= 271 oy \cobat —cotar cotyt” + cot” y ) )\ace Structures

3(] +U["I-]) o



8.8 Multicell Idealized Box Beams

Example 8.8.4
From the geometry of the structure as presented in Figure 8.8.9, we can prepare Table 8.8.1.

Table 8.8.1 Shear panel geometry for the beam of Figure 8.8.9.

Panel A (in.?) o (degrees) y (degrees) k

1 200.0 85.71 85.71 1.0030
2 320.9 90.00 84.30 1.0053
3 320.9 95.70 78.72 1.037

4 204.0 85.79 85.79 1.0029
5 3209 78.72 95.70 1.0371
6 320.9 95.70 90.00 1.0053
7 201.0 85.73 85.73 1.0030

we find the total complementary internal virtual work of the beam.

panel | pane] 2 panel 3

= 0.0005015(0.5¢7 + 35.85)8¢" +'0.00|344(0.5c}”’ — 6.768)53 7 + (—0.001387)(— 0.5 — 40.29)857

panel 4 panel 5 panel 6

SWi

mt

+ (—0.0005114)(=0.5"-89.15)577 + (- 0.001387)(— 0.557 — 13.02)85" +0.001344(0.557 + 15.96)557

panel 7

+0.001008G"sg"



8.8 Multicell Idealized Box Beams

Example 8.8.4
Therefore,
Wi = (0.004245G” + 0.1498) 57
Also, since 6" is an internal force quantity, then Wie =0.

the principle of complementary virtual work that the redundant shear flow is

g = -35.30 Ib/in.

1000 1b X

22.64 1b/in. 24.42 1b/in. }4.55

4 : 3 A Y
71.51 Ib/in. 1 35.30 Ibfin. W II‘ 18.20 Ib/in. 286 1>
o
E i 2 '
— e \

> 4.6301bfin. © 1.689 Ib/in. 1

500 1b

Figure 8.8.13  Average shear flows in the panels, displayed, for simplicity,  Figure 8.8.14  Shear flows (Ib/in.) at each end of the box beam, in response fo the
on a generic cross section of the beam. loads at the left end.

National Research Laboratory for Aerospace Structures !



8.8 Multicell Idealized Box Beams

Example 8.8.5

Calculate the angle of twist ¢ _ at the free end of the tapered beam in
the previous example.

=t

Moment equivalence about flange 5 at the free end of the beam requires that
[6¢'V(0) x 2] x 12+ [8¢®(0) x 6] x 2+ [6¢P(0) x 6] x 2 = 8T

Using Equation 2.5.4 to relate each of the shear flows in this equation to the average shear flow dgr yields

g . 5 S )
[46gT x 2] x 12+[;{—5ch xﬁ} xZ—l—[g(ﬁf}T xé:[ X 2 =0T

From this we obtain

oo 0T
gr = ——
IT = 136

National Research Laboratory for Aerospace Structures !



8.8 Multicell Idealized Box Beams

Example 8.8.5 — —
84t e 8
(4] Lﬁrﬂ 5T 54,
Odr e 4 O
—_— N .
5 1

Figure 8.8.15  Generic section of the beam in
Figure 8.8.9, without the center
web, carrying pure virtual forsion.

the internal complementary virtual work corresponding to the virtual torque is

6 . .. . ;
_ k) A , 8qr kO A6

() g =(i) __ =(1)
L Z G ) () q7'0q" = G Z ¢ () q

i=l1 =1

Substituting Equation a, along with panel data and the true shear flows from Example 8.8.4,

SWFY — _0.0012878T

1t

Since sW;,, = 6,8T, the principle of complementary virtual work yields the following result for the angle of twist:

0y = —0.001287 radians = —0.07373 degrees

The minus sign means that the rotation is clockwise looking inboard, towards the wall.

National Research Laboratory for Aerospace Structures



8.8 Multicell Idealized Box Beams

Consider the two-cell section illustrated in Figure $.8.16 Wal 1 ; Wall 2
Ea® - -
1) g ) ~R
Wi = G ? 8q i=1,2,3

Since the redundant is an internal load, the A
external complementary virtual work is zero; so g Wall 3
Is the internal virtual work,

Z 0 Wl?lifj .

=]

Figure 8.8.16 Two-cell idealized beam sec-
tion where g is redundant.

or L (s (1) g (1) g (2) s 3) 5,3
e (r—-q B ey g““6q® + r(—_ﬂq .17 ) =1 (8.8.6]
With no virtual shear loads, the virtual flange load gradients vanish.

. For equilibrium,
5(}{1} L. ﬁqizl + 3{}{'3)

National Research Laboratory for Aerospace Structures !



8.8 Multicell Idealized Box Beams

Summing the moments about flange 1 we therefore have
2A,8q"V +24,8¢@ =0
(3) @ _ Az (3)

A>
— 3¢ dq oq

5 —
A1+ Ar A+ As

oq

Substituting these expressions into Equation 8.8.6 yields
Ay s _ & 5P o o ﬂc
A+ Ar f“:'q Al + As I(Z}Q f{gjf
Then, multiplying by (A; + A») / 2 and rearranging terms leads to

(1 L(3 (2) 3)
1 ms” +q(3-;.2 _ 1 qmim _qmst
2A; T m t3) 2A; t@ t3)

According to Equation 8.5.3, this can be interpreted as

dﬁ_i.) 9l dH_\)
dx Jeen1 4% Jcen2

If the cross section has # cells, we therefore have

d&)) d@) - d{-;:)
A% /) een 1 ' X ) sqn dx )., , \erospace Structures !!

{3}20




8.9 Restraint Effects In Idealized Box Beams

Consider the box beam of uniform rectangular cross section shown in Figure 8.9.1.

As shown in section 8.7, the external complementary virtual work associated with
these couples is

SWY, = hpsP [8.9.1]

where ¢ is the warp angle. Since warping is to be restrained, sW* = 0.

ext

LI,

Figure 8.9.1 Idealized box beam of constant cross section. The
webs have the same thickness f, and the crosssec-  5ce Structures E*%

tional area of each stringer is A. mrm—"



8.9 Restraint Effects In Idealized Box Beams

The complementary internal virtual work is that of the panels alone and is

given by (cf. Equation 8.2.6)

/ A L ,
(SWi'm i Z:l aqaq — a [wq(iicsqﬂ} e th)(Sqﬂ) 3 wq(3)5q(3) o hq(«*o)éqﬂ}] [8.9.2]
panels 4P ;
! 6P
(fl'.‘? 3 4 2] 3

1
4 1 > > = . ol

oPh
CMl h Lz r‘-h —-—-”%1 h : L g—‘?-q-q--——

1 "4 " B 1 3P 2

(a) (b)

Figure 8.9.2 (a) Assumed directions for the shear flows due to P, with warping restrained.
(b) Virtual shear flows shown in section 8.7 to accompany the virtual couples
applied in the planes of the vertical webs.

we can impose the restriction that they be statically equivalent to the applied shear load P.
Z By gPh—qg®Ph="P
ZF: : qPw—¢q¢®Pw=0
> M qPhw+qPwh =0

These imply that | | P t*%
g? = —gM g® =g & _,0_ = [8.9.3] 7



8.9 Restraint Effects In Idealized Box Beams

Substituting Equation 8.9.3 and the virtual shear flows into Equation 8.9.2, we therefore obtain

LI - U)( 5P)+w( 8P

G |29 ap Thia 2L TR
which simplifies to

P

2Gr [2 (w+h)qg'V + P] =0

4 (wq(” ;

37

oP

__,_ﬂzo

21

)(-

Solving this for ¢! and substituting the result into Equation 8.9.3,
we obtain all of the shear flows accompanying the warping restraint:

4

g = P 4@ = P " Y. P "
2(w + h) 2(w + h) 2(w + h)
AP AP
: P i __ii_f
4 ! . ah X 3 4 : 2w+ ) :
ap P h+ 2w
4 1[ h W jr 4h 2[:1’1.’ + .If!)fi‘ P 1[; W ]r 2(1-'1' 4 m
1 = 2 1 P i
20w+ h)

Figure 8.9.3
(b) Shear flows if warping is prohibited.

(a) Shear flows if the section of Figure 8.9.1 is free to warp.

h+ 2w
2(w + h)h

(8.9.4]

04(L
(4#;) 3

r 0.4(:%)

w = 4h
~ —_

1
0.4(%)

Shear flows in Figure 8.9.36
if w=4h.

2

Figure 8.9.4



8.9 Restraint Effects In Idealized Box Beams

Example 8.9.1

If warping is restrained, calculate the shear flows in a beam with
the cross section illustrated in Figure 8.9.5.

30"

Figure 8.9.5 Lload on a section of a box beam in
which warping is restrained.

National Research Laboratory for Aerospace Structures !



8.9 Restraint Effects In Idealized Box Beams

Example 8.9.1

Let us assume that the directions of the true shear flows are as sketched in Figure
8.9.7. The shear flows must be statically equivalent to the 1000 Ib shear load
directed upward through web 2-3. Therefore, the following three conditions apply:

Z F.r = () — 30((},“] _y q(3)) =]
ZE} = 1000 = (8 -5V —87?@ +5¢“ = 1000
ZMﬂangeZ =0 = (30@!{3)) X 8+(5q£4}) % 30 =0

y y
| 0615422
—— [

2
i

8P 0.9846 22

0.3846 2 1I~\I§, ;

3 06154 %’3 4
(a) (b)

Figure 8.9.6 (a) Virtual couples applied to the vertical webs. (b) The corresponding virtual
shear flows, calculated in Example 8.7.1.

Using these to express ¢, ¢, and ¢® in terms of g we have

5
g@ = _240_125 4@ =, @ _
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8.9 Restraint Effects In Idealized Box Beams

Example 8.9.1

The internal complementary virtual work is just that of the shear panels, which is

Gt G

A | (s 5@ R @
(1 2 2) (3 (3
Wi =D —qdq = — (—;mq{ 897 + 547847 + 54V +

panels

G 0.04

@4 o4

Thus
; | [ V3073 5P 8 [ 5 5P
SWE = — [—+ g® (0.61537) + — (—gq“}—m) (—0-38467)

5P
or 4 i;l:E(llz3q“’+5494)

¥

4 10,000 Ib
]

| (1)
]

q
2 gt o I
q(Z] 4 8” 30" 5" Pq(ﬂ-)
T — — — -
e 4

Assumed directions of
the true shear flows.

Figure 8.9.7

0
30 5P 5 /8

20 (061542 ) + == (=24 ) (-o0.

*0.057 ( ) T o\ 757
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8.9 Restraint Effects In Idealized Box Beams

Example 8.9.1

All of which are illustrated in Figure 8.9.8b, alongside the shear flows computed in
Example 8.7.1, in which warping was unstrained.

y b
| |
1000 1b A :
’ I 13.90 1b/in. 100 ]2 f 4.892 1b/in.
| oo A ____h_l . e e __h_l
le3tin 4| & 40 T hsssun.  TELAE E 5" 1) 7.828 Ib/in.
3 ~—y— "'-r-4 i e —~— —~— z
13.90 Ib/in. 3 48%21bfin. 4
(a) (b)
Figure 8.9.8 (a) Shear flows when warping is free to occur (cf. Example 8.7.1). (b) Shear flows

when warping is prevented (the present case).
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8.10 Shear Lag

Consider Figure 8.10.1, which shows a shear web bonded to two rigid walls and
attached to a stiffener by means of which a point load P, is applied to the system.

y
| —
I gdx
: | el
: | i L » P
X i
[ —_
_____ Bmat gelx
S—— — | @ 9
Figure 8.10.1 Load transfer to a shear web by means Figure 8.10.2  (a) Relationship between stiffener displacement
Iy e and web shear in the upper panel. (b) Free-body

diagram of a differential length of the stiffener.

the shear strain in the web is

U

Ty = _E [8.10.1]

The minus sign reflects the fact that the initial right angle between the vertical
edge of the panel and the horizontal stiffener increases.
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8.10 Shear Lag

The shear strain is related to the shear stress by Hook’s litxy = G yyy. Since
the shear flow equals the shear stress times the panel thickness t, we have
Gt
g == [8.10.2]
For the shear flow and flange load to be in equilibrium, we see from Figure 8.10.2b that d P + 2gdx = 0, or
1dP
1= "5 dr [8.10.3]
the normal strain (cf. Chapter 3) is
du P
dx _ AE

Differentiating Equation 8.10.2 with respect to x and substituting Equation
8.10.3 and 8.10.4 into the result yields a second-order differential equation

involving just P, { 2P Gt P

2dx® b AE

which we can write as

d*P
dx?

2Gt E*g
Vigyii 2 __
— kP =0 (k " AEb) tory for Aerospace Structures




8.10 Shear Lag

The solution of the h(;mmgenenus differential equation, 8.10.5,
P = Cisinhkx + Cocoshkx

where ‘ okx _ gk phx | gk
sinhkx = 3 coshkx = o

We determine the integration constants C; and C, by satisfying the boundary conditions on P.
At x =0, P = Py. From Equation 8.10.6, we have
Py = Csinhk(0) + C5 cosh k(0)

from Equation 8.10.7, sinhk (0) =0 and coshk (0) = 1,sothat C, = Py. At x = L,

P vanishes.
0 =C;sinhkL + PycoshkL
which means that C; = — P, (cnsh kL/Sinh ch).

Therefore, the stiffener load P as a function of x is

cosh kL sinh kL cosh kx — cosh kL sinh kx
sinh kL sinh kL

National Research Laboratory for Aerospace Structures !

P=-P, sinhkx + Pycoshkx = Py (



Using the definitions of hyperbolic sine and cosine given in Equation 8.10.7,

sinh(kL — kx) = sinhkL cosh kx — coshkL sinh kx

8.10 Shear Lag

Therefore, the expression for the stiffener force can be written more compactly as

P = P,

sinh kL

sinhk(L — x) p sinhkL(1 — x/L)
= Iy

sinh kL

Substituting this into Equation 8.10.3, we get the shear flow as a function of x, which is

q

_ Pok coshk(L — x) 1.0

2

sinh kL

kL = 20
N/ L=10 k=2
i f .= 5 ,fJ KL =1
P NN/ b [ ] H=0
g /N 4 o
- L/
T ]
0 X
L

Figure 8.10.3  Stiffener load as a function of
position for the stiffened web
of Figure 8.10.1, according to
Equation 8.10.8.
National Research Laboratory for Aerospace Structures



8.10 Shear Lag

Using Equation 8.10.7, we can write the expression for stiffener force, .
EILLE,—!:,:: . e—kLek.r —kx —2kL kx

€ - g €
, 0
ekl — e—kL | ey R

From this, we see that if x remains finite while kL increases without bound, then, in the limit,

P = Pye™™ [8.10.10]

It follows from Equation 8.10.3 that
. P”k —kx

1=5¢

These expressions demonstrate the exponential nature of the decay of stiffener load and

shear flow in the vicinity of the applied load.
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8.10 Shear Lag

Example 8.10.1

Using the shear lag approach, find the formulas for the stiffener loads
and panel shear flows in the plane, stiffened web structure shown in Figure
8.10.4. The top and bottom stiffeners have the same cross-sectional area, and
all other properties are uniform throughout. Plot the results for the special case
A, =A,=0.5in2 L=40in.,t=0.1in.,b=2in., Q =1000 Ib, and G = 0.4E

Ay = Aj
G, E, t uniform throughout X

|-
=
7~
=
Z
Z
2
i
Z
Z
[
-
-
[
—
-

Figure 8.10.4  Stiffened panel with axial load applied to center stiffener.
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8.10 Shear Lag

Example 8.10.1
From the free-body diagram in Figure 8.10.5a,

2P+ P, =0 [a]
We see that gdx = d P, or
ar
s [b]
dx
from Hooke’s law, Gt
q:?(ﬂl—uz) [c]

dx

bl

(a) (b) (c)

Figure 8.10.5  (a) Free-body diagram of a portion of the stiffened panels, revealing the flange
loads. The upper and lower flange loads are equal by symmetry. (b) Free-body
diagram of a differential length of the upper stiffener. (c) Relationship of the stiffen-
er displacements to the web shear strain. t*g

National Research Laboratory for Aerospace Structures



8.10 Shear Lag

Example 8.10.1

Differentiating both sides of Equation ¢ with respect to x yields

dg Gt (d?,q a'u;;)

i b dx  dx

since the normal stress equals the axial load P divided by the cross-sectional area A,
dq_Gf(ﬁ P __GE P P>
dx N b AIE AzE P Eb Al Ag
Substituting Equations a and b into this expression,

dEP[ s Gt [Pl (Q—QPI}] Gt (ZA] —|—A2)P Gt Q
- - —

dx2 ~ Eb | A, A, T Eb\ AA, Eb A,

which can be written more compactly as

d* P, 5 Gt O G oAy ik
e . ) 2 = | 2)
A2 Lo v eI Eb( ArAz

National Research Laboratory for Aerospace Structures !



8.10 Shear Lag

Example 8.10.1

The general solution of the second-order differential eauation, Equation g, is

particular solution
complementary solution e i

. = S GO
P, = Cysinhkx + C,coshkx + k—zag

- Py = C;sinhkx + Cr coshkx + ﬁ—'—— [i]

241 + A f
the shear flow is the derivative of P; with respect to x, Equation j implies that
q = kCjcoshkx + kCysinhkx [k] )
At x = 0, we know that P; = Q. Setting P; and x equal to zero in Equation j, we see that
QA
= Te o (1]
2A1 + A;

At x = L, uy = uy =0, so Equation ¢ implies that ¢ = 0 at x = L. Therefore, from Equations k and 1,
QA, sinhkL
~ 24, + A; coshkL

we get the expression for the flange load P,

Ci

QA, smhkL | QA OA
= sinhkx — ————— coshkx + ————
' T 24, + A; cosh kL 24 + A 241 + A; [n]
A 1 : E*é
= Q4 [(sinh kL sinh kx — coshkL coshkx) + coshkL] or Aerospace Structures

2A| —i—Ag coshkL Lt



8.10 Shear Lag

Example 8.10.1

Using the definition of the hyperbolic sine and cosine given in Equation 8.10.7,
coshkL coshkx — sinh kL sinh kx = coshk (L — x)
Therefore, Equation n can be written more compactly as

QA [1 B coshk (L -x)]

= [o]
2A1 + As coshkL

P

Next, we obtain the formula for P, by substituting Equation o into Equation a, which leads to

20A A» coshk (L — x)
24, + Ay [2,4] i ]
Finally, from Equation b, we obtain the shear flow in the webs of the structure, as follows:
QA k sinhk(L — x)
T 24, +A; coshkL
the normal stress in each of the flanges would be o = Q/(2A1 + A»s). Accordingly,

QA QA
e Pr=0cA) = ——
2A1 + Ay 2A1 4+ As

P>

4

Pl=0cA = q =) elementary solution
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8.10 Shear Lag

Example 8.10.1

P, (Ib) k.= 6197 P, (Ib) kL = 6.197
—————— i~ : =% 333,53
o D s SR TN 800 : | |
| ; ; - ol S ; —— - 3333
: ; : i x (in.) : : i 5 x (in.)
10 20 30 40 10 20 30 40
Figure 8.10.6  Axial load distribution in the upper and Figure 8.10.7  Axial load distribution in the center stiffener.
lower stiffeners of the structure in Figure
8.10.4, for the specified data.
g (Ibfin.) kL = 6.197
51.64
40\

- ,. x (in,)
10 20 30 40

Figure 8.10.8  Shear flow in the panels of the structure

in Figure 8.10.12. t*%
National Research Laboratory for Aerospace Structures



8.10 Shear Lag

Example 8.10.2

Using the shear lag approach, obtain an expression for the displacement of
the left end of the center stiffener of the previous example.

Pl 20A, |: Ar i coshk (L —x}i|
2A; + Ay | 24, cosh kL
According to Equation 8.10.4,
dlﬁg Pg
dx  AE
Therefore,

au, 1 204, [A;  coshk(L —x)
dx A>E 2A, + Ay | 2A, coshkL

Integrating this equation with respect to x,

U3

1 204, [ A I sinhk (L —x)
—— X e e
A E 2A, 4+ Ay | 24 k cosh kL
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8.10 Shear Lag

Example 8.10.2

The constant of integration, C, is found by applying the boundary condition u2(L) = 0.
Setting x = L and u, = 0 in Equation d, we see that

_ oL
(A1 + A)E

we find that the displacement of any point on the center stiffener is

Uy =

F 0, [L_Y+2Alisinhk(L—x)
(2/41 > Ag) E . Ag k cosh kL

Evaluating this expression at x = 0 yields the displacement at the left end, which is

Q 2A1 1 sinhkL
Udietr ena — — ik =
== (2A; + A)) E A> k coshkL

The minus sign means that the displacement is to the left, in the direction of the applied load Q.
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8.10 Shear Lag

AQ
I
I
I
I
q q
_ h N % P h 1
oy 1 a ‘k a r 4.
b b Area of corner flanges = A, b . A
Area of center flanges = A, " i i B qy .
Figure 8.10.9  Idealized, cantilevered box beam of uni- Figure 8.10.10 Shear flows in the cross
form, symmetrical cross section. section of the box beam.

Consider the idealized box beam shown in Figure §8.10.9.

To find the flange loads using beam theory, we use Equation 4.6.8, which in this case reduces to
M.y

K

‘the area moment of inertia /. is that of the six concentrated flange areas relative to G,

s P

a2 a2 a’
L [2A1 (5) i Ay (5) ] = = (241 + 42)
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8.10 Shear Lag

The bending moment as a function of spanwise coordinate x is M, = Qux.
Therefore, the axial stress in the top stringers, at y =a / 2,1s

. @0@/2) 0 x
(a2/2) QA1 + A2) 241+ Aza
for stringers 1 and 2 on the top of the beam,

B e QA X P, — 0OA> G
' T ThA + Ay a 2T D AreA [8.10.12]

v ==

By symmetry, the shear flows in the vertical webs are both equal to ¢, .

From Figure 8.10.10 we see that

_£
b 2a

Using Equations 8.10.12 and 8.10:13,

=g+ SEsOag ol
o ;Y O i

A
or g, = & : 8.10.14]
2a 2(41 + AQ

National Research Laboratory for Aerospace Structures
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8.10 Shear Lag

o

i

Y
S

) R

Figure 8.10.11 Free distortion of top panels due to a state Figure 8.10.12 Relationship between the shear
of constant shear strain. strain y in the top panels and
the displacement of the center
stringer at the wall.

The term ¥ 18 related to the shear stress by Hooke’s law, y = (_q%l :
which means that
qnb
d = —
G [8.10.15]
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8.10 Shear Lag

Consider the top panel of the box beam, as illustrated in Figure 8.10.13.

E Y
b (2]} !
e 2 — > P, z 0p=2 > P,
b 4[]r . q
—1 = E 4
i 0 ] > P,
L, | |
I X
X
Figure 8.10.14 Free-body diagram of a
Figure 8.10.13 Top panel of the box beam in Figure 8.10.2. portion of the top panel.

The relationship between the central stringer load P; and the comer stringer load Ps is

2P+ P, =0 [8.10.16]
Atx=L, P,=-Pyf2 and P, = P,

Figure 8.10.15a shows a differential length of stringer 2, from which we infer
d P;

=2 [8.10.17]
dx 1
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8.10 Shear Lag

Part b of Figure 8.10.15 shows the axial displacements u; and u, of stringers 1 and 2 at any station x.

Assuming that u; > u , the shear strain is

Bk (Uy — uz)
Viz b
from Hooke’s law,
Gt _

q = ”5“(”1 ) [8.10.18]
qdx il
dx - ap, |; b 4?
gdx i _
(a) (b)

Figure 8.10.15 (a) Free-body diagram of a differential length
of the center stringer. (b) Displacements of
the center and corner stringers at station x.
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8.10 Shear Lag

For stringers 1 and 2 Hooke’s law also yields

dul P] duz Pil

Differentiating Equation 8.10.18 with respect to x and then suEstituting Equation 8.10.19,

d Gt F P
L 2SRRIV [8.10. 20]
dx b A l E AEE
Substituting the shear flow g = ——d P, / dx from Equation 8.10.17 into the left side of this equation,

and the stringer load P, = —P, / 2 from Equation 8.10.16 into the right side,
we again get a second-order differential equation, in this case mvolvmg just P,

d” P, P, =0 8.10. 21a]
dxz 2 e . . ﬂ
where - i 3
r
£ = 8.10.21
o (Al & Az) [8.10.21b]

k 1s the shear lag parameter.
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8.10 Shear Lag

The solution of this homogeneous differential equation is
P, = C;sinhkx + C,cosh kx [8.10. 22]

At x = 0, the unsupported end of the I_Janel, P> = 0. From Equation 8.10.22,

0 = Cysinh k(0) + C; cosh k(0)

At x = L, P; equals the applied load Py. Therefore, Equation 8.10.22 with C; = ( yiéfds
P[] = C] sinh kL

the stringer load P, as a function of x is

sinh kx
sinh kL

P, =P [8.10. 23]
With this we can obtain P; from Equation 8.10.16,

p=—t2_ PoSNEx 000 of)

2 2 sinh
National Research Laboratory for Aerospace Structures !



8.10 Shear Lag

the shear flow ¢ from Equation 8.10.17,
| d P, _ Pok coshkx

f?=—‘2*a-- 2 Sinhkl [8.10. 25]

where we used the fact that d sinh kx / dx = k cosh kx.

Evaluating Equation 8.10.18 at x = L,
. Gr
q(L) = Y [y (L) —uz (L)]

with the aid of Equation 8.10.25,
Pok cosh kL . Gt 0 qnb
2 sinhkL b Gt

which yields the force P, required to keep the center stringer attached to the wall, as follows:

_ 2g), simhkL

Py = [8.10. 26]
k coshklL
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8.10 Shear Lag

Substituting this back into the above expressions for P,, Py, and g, we get

[8.10.30]

[8.10.31]

o e i [8.10. 27]
>~ "k coshkL e
P, — gn sinh kx A
"7k coshkL o
e, cosh kx fbidd
q = dh cosh EL ¥ 4 29]
These loads must be superimposed on those obtained from elementary beam theory, Equation 8.10.12 and 8.10.14,
pure bending shear lag
e [ AT +—f (Q Ay 1\ sinhkx
e PATEA G L s\ ) L) Coshi
pure bending shear lag
o 0A, X Al 2 As l sinh kx
| 2A1+Aza | \2a2A, + A, k /) coshkL
pure bending shear lag
e _g Ay e g As cosh kx
1= 12424, + 4, 2a2A, + A, ) coshkL
P 0 Al x Ay 1 sinhkx ¢ -
1 =—Q0—— | — + — Op corner stringers
or 2A; + Az \a A, 2ka coshkL P -
As s 1 sinhkx .
Ph=—Q—rr-——|—-————— top center stringer
2A1 + A> \a kacoshkL
O .
horizontal webs

1= 2494,

Ar 1 cosh kx
+ Aj -« ‘coshkL

[8.10.32]



8.10 Shear Lag

Example 8.10.3

Let the following numerical data apply to the box beam in Figure
8.10.9: G=0.4E, A, = A, =1in.%2,t=0.1lin., L = 40in., a = 2in., b = 4in., and
Q = 1000 Ib. Plot the flange loads and web shear flow versus span for the
shear lag solution just obtained and compare them with elementary beam

theory.

-

b b Area of corner flanges = A,
Area of center flanges = A,

Figure 8.10.9  Idealized, cantilevered box beam of uni-
form, symmetrical cross section.
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8.10 Shear Lag

Example 8.10.3

For the given data, the shear lag parameter, Equation 8.10.21b. is.

2= (L 2) C04x0025(1+2) =003
— | =U.4 x U, ( + )— Sl OO0 Lo

T Eb\A; ' A,

Substituting the numbers into Equation 8.10.30, 8.10.31, and 8.10.32, —4000 =~ 5

Py = -166.7 [x + 0.005657 sinh (0.1732.x)] B
o - . ; B9 1)y TR e SHRRUSAR Te—
P; =-166.7 [x-0.01131 sinh (0.1732x)] g g

q = 83.33[1-0.001960 cosh (0.1732x)]
Figure 8.10.16 Corner stringer load distribution.

These are plotted in Figures 8.10.16. 17. and 18.

s : x(in.) g (Ibfin.) o = %A

10 20 30 40 ) =2
—2000 L L SR, 100 |- :

30 F e ST mmem s 8.3
—4000 | : : 60 | : : : :
KL= 3.464 .o 0007 mgi]
—8000 N R o | :
£, (Ib) 10 20 30 40

Figure 8.10.17 Center stringer load distribution.  Figure 8.10.18 Shear flow in the horizontal webs.
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