Chapter 1. The Phase-Equilibrium Problem
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Figure 1-2 Statement of problem.
Homogeneous phase: a region where the intensive properties are everywhere the same.
Intensive property: a property that is independent of the size
temperature, pressure, and composition, density(?)
Gibbs phase rule  ( no reaction)

Number of independent intensive properties = Number of components — Number of phases + 2

e.g. for a two-component, two-phase system No. of intensive properties = 2



1.2 Application of Thermodynamics to Phase-Equilibrium Problem

Chemical potential : Gibbs (1875)
At equilibrium the chemical potential of each component must be the same in every phase.

u= ﬂiﬂ

how u® is related to T, P, and x{'.x5 ., 7
Fugacity, Activity: more convenient auxiliary functions

@ YiP = 7% in

fugacity coefficient  activity cohy at the standard state

For ideal gas mixture, ¢, =1
For ideal liquid mixture at low pressures, y, =1, f° =P,

In the general case

¢ = F (T, 1y, vy,...) ;o (1-3)

'r';'=FTfT.P1I1,Iz.m} (1-4)



Chapter 2. Classical Thermodynamics of Phase Equilibria

For simplicity, we exclude surface effect, acceleration, gravitational or electromagnetic field, and
chemical and nuclear reactions.

2.1 Homogeneous Closed Systems
A closed system is one that does not exchange matter, but it may exchange energy.

dn; =0 i=12,...m (2-1)
A combined statement of the first and second laws of thermodynamics
dU < TgdS — PedV (2-2)

U, S,V are state functions (whose value is independent of the previous history of the system).
Ts temperature of thermal bath, Pe external pressure

Equality holds for reversible process with T = T, Pe =P

dU = TdS —PdV (2-3)

and TdS = @rev, PdV = éVVrev

U(S,V) is state function.

The group of U, S, V is a fundamental group.



Integrating over a reversible path,
- S E
AU =Uy U, = L] T4S JV. Pdv (2-5)
AU is independent of the path of integration, and also independent of whether the system is maintained

in a state of internal equilibrium or not during the actual process.
It requires only that the initial and final states be equilibrium states.

For irreversible process (spontaneous changes)
dUgs, <0 or dS,, =0
If the entropy of a system is unchanged at constant volume, the energy of the system decreases as

energy flows out as heat
In an isolated system at constant volume, entropy increases for spontaneous change



Enthalpy is defined by
H=U-(-PV)=U+PV 2-7)

Differentiation of (2-7) and substitution for dU gives

dH =TdS +VdP

(2-8)

For spontaneous changes

dHgp <0 (2-9)

Helmholtz energy is defined by
A=U-TS (2-10)

giving

dA = —-SdT - PdV

(2-11)

The minimum of Helmholtz energy at const. T and V
dAry <0 (2-12)
Gibbs energy is defined by

G=U-TS-(-PV)=H-TS (2-13)

giving

dG = -5dT +VdP

(2-14)

The minimum of Gibbs energy at const. T and P

dGr.p <0 (2-15)



Table 2-1 Some important thermodynamic relations for a homogeneous closed system.

Definition of H, A, and G
H=U+#FV
A=0U-T8
G=U+PV-TS=H-TS=4+FV
Fundamental Equations
dl = Td§ - Pav dd =541 - PdV
dff = TdS + VdP dG =-5dT + VdP

Extensive Functions as Thermodynamic Potentials

dlf; =0 dAr <0
dHgp sl dG.m,Eﬂ
Maxwell Relations Resulting from the Fundameanta! Eqguations
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2.2. Homogeneous Open Systems

An open system can exchange matter as well as energy with its surroundings.
U=US,V,ny, fgy ooy i) (2-17)

The total differentials is

dU:(EiU] d5+[£J d‘v’+2(§£{J dn; (2-18)
os V. oV S i on 5.V,
We define the chemical potential as
U
= (%—] (2-19)
on; S,V‘n;-
Rewritting

dU =TdS—PdV + ) pdn; (2-20)

which is the fundamental equation for an open system



Substituting the definition of H, A, and G

dH =TdS + Vdp+ ) udn;

!

dA = -SdT - PdV + ) ndn;

dG = ~SdT + VdP + ) pdn;

I
oy oH OA
Hi=|—— = |0 = |=- =
oh S,V.nj o S,P,:IJ- a”’ T.Vn;

Partial molar Gibbs energy
For pure substance

7, :% (very simple!)

|
/

oG

on;

(2-21)
(2-22)

(2-23)

]T.P,nj

(2-24)



2.3 Equilibrium in a Heterogeneous Closed System

For a closed, heterogeneous system consisting of © phases and m component at equilibrium with respect
to the processes of heat transfer, boundary displacement, and mass transfer

7O 7@~ o7 | (2-25)
ph _p@ _ ... pm (2-26)
1 2
0 = ==l
Mm_,@_..._,m
P A (2-27)
2
D = ==

2.4 The Gibbs-Duhem Equation

A total of m+2 variables for a phase in a heterogeneous system are not all independent.

dU =TdS—PdV + ) pdn; (2-28)
[
Integrating from a state of zero mass to a state of finite mast constant T, P, and composition

(note: integrating variables are extensive properties, and on the integration, all coefficients are kept
constant)



U=TS-PV+) un; (2-29)

L

Differentiation of (2-29) gives

dU =TdS +SdT - PdV —VdP + ) wdn; + > nidy, (2-30)
i i

Comparing the two equations

SdTnvcfPu,\:n,.dp,. =0 (231
Gibbs-Duhem equation (an inherent constraint).
Only m+1 intensive variables are independent
2.5 The Phase Rule
The number of independent variables = & (m+1)
The number of equilibrium relations = (n-1) (m+2)
The number of degree of freedom
F=n(m+1)—(n—-1)(m+2)
( (2-32)

=m+2-7



2.6 The Chemical Potential

It is difficult to calculate an absolute value of the chemical potential, so we must content ourselves with
computing changes in the chemical potential. (in engineering calculation)
/I Stat Mech can give rigorous expressions for absolute value of the chemical potential for ideal gases //

272mkTY"'?
u(T,P) = 1(T) +kTInP, 1,(T) = —kTInH = j kT} —kTIng,q,
For a pure substance i,
d}.li = —SidT'f"UidP (2-33)

In integrating from some reference state to the state of interest

I P
w;(T,P)=pu;(T",P") - jT, s;dT + [, v; dP (2-34)

The standard state = the reference state

Successful application of thermodynamics to real systems frequently is based on a judicious choice of

standard states.



2.7 Fugacity and Activity

From (2_33) d}l, = ﬁfdeﬁ"U!‘dP

i) _, 2-35
[aP)T vi (2-35)

Consider ideal gas

_RT

2-36
b (2-36)

Ui

Integrating at constant temperature

p—pl = Mlni0 (2-37)
d chemical potential of an ideal gas
The abstract quantity u is a simple logarithmic function of the physically real quantity, P.

Lewis defined fugacity as

p-pf = ern% (2-38)

isothermal change at const. T

the ratio f/f“ the activity,

Ideal gas, f=P
Ideal gas mixture, fi=y; P (fugacity = partial pressure)
All real systems approach ideal-gas behavior at very low pressures (e.g. P < 1 bar).

i

y-P_yl as P—0 (2-39)
1



The temperature of the standard state must be the same as that of the state of interest,

but compositions and pressures need not be the same.

Fugacity is a “corrected pressure”, and these corrections are due to nonidealities resulting from
intermolecular forces

For phases o and 3

(& %% = RTIn T
B —H; = n P (2-40)
i
p
T er--f’a}- (2-41)
fi

Equating the chemical potentials

i

B
0t | 0B f;
K '.'RTIH—V():-—-],[[ +RT In

1 f‘TB (2-42)

Case I, the standard states for the two phases are the same
pde =% (2-43)
Then

ina — f;O'B (2-44)

(2-42) becomes

;=5 (2-45)




Case 11, the standard states are at the same T, but not at the same P, y.
Following the definition of fugacity

Ou _, Op £
THE T Ii’?"lnf’Tﬁ (2-46)

i

we again have

=P

In either case, the fugacities must be the same in all phases.

The fundamental equations of phase equilibrium
7O 7@ .. = T™ (2-25)

pO = p@ ... p® (2-26)

=1 (2-45)




2.8 A Simple Application: Raoult’s law

Consider a binary system containing a liquid and vapor phase
= (2-47)
Assuming ideal solution behavior

Assumption 1. The fugacity f,v, at constant temperature and pressure, is
proportional to the mole fraction y,. That is, we assume

A =S pure (2-48)

where fp‘:lrel is the fugacity of pure component | as a vapor at the tem-
perature and pressure of the mixture.

Assumption 2. The fugacit L, at constant temperature and pressure, is
P gacity fy P p
proportional to the mole fraction x;. That is, we assume

fi =x;f Iﬁure 1 (2-49)

where prure] is the fugacity of pure component 1 as a liquid at the tem-
perature and pressure of the mixture.

Substituting into (2-47)

1f pure 1= X1f pure 1 (2-50)



Assuming ideal gas for the vapor, and incompressible liquid

Assumption 3. Pure component 1 vapor at temperature 7 and pressure P is
an ideal gas. It follows that

T =P (2-51)

Assumption 4. The effect of pressure on the fugacity of a condensed phase
is negligible at moderate pressures. Further, we assume that the vapor in
equilibrium with pure liquid 1 at temperature T is an ideal gas. It follows
that

Fpure 1= B (2-52)
where P’ is the saturation (vapor) pressure of pure liquid 1 at temperature 7.

We obtain Raoult’s law

wP=xh

(2-53)




CH.3 Thermodynamic Properties from Volumetric Data

Most thermodynamic properties of interest in phase equilibria can be calculated from thermal and
volumetric measurements.
Thermal measurement (heat capacity)
How thermodynamic properties vary with temperature
\Volumetric measurement (PVT data)
How properties vary with pressure or density at constant temperature

3.1 Thermodynamic Properties with Independent Variable Pand T
Thermodynamic Properties as functions of T, P

We use Maxwell’s relations

dH = V—T(a—v) dP 3-1)
or Py

das = —(ﬂ) dP (3-2)
or Pn



First, obtain H, S and then U, A, G, 4, fi, from definitions

U=H-PV
A=H-PV-TS

G=H-TS

i _(aGJ
g | e
On; T.Pn,

RTInLi = -

(3-3)
(3-4)

(3-5)

(3-6)

(3-7)

Extensive properties for nt moles by capital letters (V, U, H, S, A, G)
Properties on a molar basis by lowercase letters (v, u, h, s, a, g)

=
=}
]

n; = number of moles of i;

ny = total number of moles;
y; =n; [ ny = mole fraction of i.

molar enthalpy of pure i as an ideal gas at temperature T

s? = molar entropy of pure i as an ideal gas at temperature T and(1 bar;

ul =h?-7s? and £°=1 bar;

T



1

P[
U= j V- T(Q!) dP-PV +Y nh? (3-8)
o Jpp, .

o P ov
H= v-r(—) dP+Y n;h! (3-9)
aT .
J0 P,y i
PlngR (ov
S=J TT_(EF) dP-RY nIny,P+Y ns? (3-10)
0 Py i i
Pl npRT
A=J‘ (v- TP )dP+RTZn,.1nyiP-PV+Zn,-(h?-Ts?) (3-11)
0 i i
Pl npRT
G=J‘ (v— Tp )dP+RTZn,-1ny,-P+Zn,.(hP—Ts,.o) (3-12)
0 i i
P
. BT o w0
Wi = | |@i-— |dP+RTInyP+h) - Ts (3-13)
0
P
B fi [ (-~ RT
RTln(pi—RTlnyi—P— . 'Ui—?' dP (3_14)

Pressure P is in bars.

T; E(@V/an,-)r,p,,,i is the partial molar volume of i.'

Fugacity coefficient

Ji ! yiP =@, 1s called the}‘ugacity coefficient. For a mixture of ideal gases, ¢; =1,



We can compute all the thermodynamic properties relative to the ideal-gas state at 1 bat and at the same
temperature and composition, provided that we have volumetric information

V=FT,P,n,ny,...) (3-15)
Volume explicit equation of state
For a pure component, Ui =i
(3-14) simplifies to
i Pe Rr
RTln(—) ='[ (v,» ——)dP (3-16)
p pure i 0 P
Equivalently
P
f) J z-1
m(_ .| =g _
p pure i 0 P @17

where the compressibility factor z is defined by

PU
= (3-18)

Z



Ideal gas mixture
The equation of state for an ideal gas mixture is

V= (m +ny+-)RT (3-19)
P
The partial molar volume is
7 = [_az] _RT (3-20)
on; T.Pn, P
substituting into (3-14)
fi=xP (3-21)

equal to its partial pressure

Lewis fugacity rule
Assume that the gas mixture follows Amagat’s law (additivity of volume ) which is

V= Zrli—’ut— (3-22)
i

There is no volume change in mixing at const. T and P,
and the partial molar volume is equal to that in the pure state

|4
v = [2—) =, (3-23)
" T,Pn;

substituting into (3-14)

P
RTIn-Li = j ('u, - E]arP (3-24)
ny 0 P

P
ern[i] =J. (v,- —E)dP
P pure i 0 p

comparing with (3-16)



fi= )’jfpurei (3-25)

Lewis fugacity rule assumes the additivity of volume for the entire pressure range 0 to P.
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Figure 3-1 Compressibility factors for nitrogen/butane mixtures at 171°C
(Evans and Watson, 1956).

At const P, T, the molar volume is linear to the composition only at high pressures, not over the entire
pressure range. Thus, Lewis fugacity rule should not be valid.



3.2 Fugacity of a Component in a Mixture at Moderate Pressures

Consider a truncated form of the van der Waals equation of state

Pu= RT+(b—RiT)P+ .. terms in P2, P3, etc. (3-26)

Rewriting on a total basis using ¥ ="

- "rRT +nTb—% 3-27)

%

Partial molar volume is obtained as

Th = [ ov ) _ ﬂ'_+ o(nrb) 1 O(nra) (3-28)
T.P;

on, P om RT on

Mixing rule (relation of a, b for the mixture on the compositon)

a=yfa;+2yy,{ma; +y3a (3-29)

b= y\b + y,b 3-30

TR S by van der Waals
Rewriting
n12a1 +2nny 4Jayay +n%a2
nra= (3-31)
nr
nTb = nlbl + Il2b2 (3-32)

The partial molar volume for component 1 is

. (av] RT b 1 npQmay +2ny,laja, )—n72-a
1= m, = =
TP

s 3-33
anl P ) RT }172. ( )

with nz held constant, not with nt



Substitution into (3-14) gives

fl a P (all/2 _ a%/2)2ygp
=l - .y hoci NS :
9135 exv[( = == e T (3-34)

Consider the boundary condition

a P
asy; >0, fi> foue1=P exp[(bl _E%)EJ (3-35)

Thus

(3-36)

(a1/2 . 1/2)2y2P
fi = Nfpure 1 exp{#

(RT)?

correction to the Lewis fugacity rule

08

07 LEWIS RULE |
CaHio
Mole Fraction of Np= 0.9

06 Mole Fraction of the Hydrocarbon
1s 0.1 in each case,

05 1 1 1
0 10 20 30 40

TOTAL PRESSURE , bar

FUGACITY COEFFICIENT OF HYDROCARBON

Figure 3-2 Fugacity coefficients of light hydrocarbons in binary mixtures with nitro-
gen at 343 K. Calculations based on simplified form of van der Waals’ equation.

Lewis is poor for butane as the difference in intermolecular forces between butane and nitrogen is large.



3.3 Fugacity of a Pure Liquid and Solid

condensed phase saturated vapor

\

c (R P . RT
RTlnf—I‘)—=J' (vi —%)dP+J‘ [vf —T)dP (3-37)
0 P

%_/
fugacity of the saturated vapor

c s P
RTlnI;;—=RTlni"?+j vfdP-RTln£s- (3-38)

i i i

Rearrangement gives

P
f£ =Fojexp /L 3-39
I i 1 ps RT ( = )

where ¢ = f* /P’ .

——
Poynting correction

At conditions remote from critical, a condensed phase (liquid or solid) is nearly incompressible, and the
correction term becomes

vi(P-F’)
*P| TRy



Fugacity coefficient of saturated liquids (without Poyning correction)
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Figure 3-3 Fugacity coefficients from vapor-phase volumetric data for four
saturated liquids.

@; differs from unity as the critical temperature is approached.

The Poynting correction may become large at high pressures

Table 3-1 The Poynting correction: effect of pressure on fugacity of a pure, condensed
and incompressible substance whose molar volume is 100 cm? mol™ (T = 300 K).

Pressure in excess of Poynting correction
saturation pressure (bar)
1 1.00405
10 1.0405
100 1.499

1000 57.0




Fugacity of compressed liquid water
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Figure 3-4 Fugacity of liquid water at three temperatures from saturation pressure to
414 bar. The critical temperature of water is 374°C.

The fugacity of condensed phase is close to the saturation pressure rather than the total pressure.



3.4 Thermodynamic Properties with Independent Variable Vand T

Maxwell’s relations

dU = T(@) —-P|av (3-40)
ar )y,

ds=(a_”) av (3-41)
ar )y,

Other properties are given by

H=U+PV (3-42)
A=U-TS (3-43)
G=U+PV-TS (3-44)
b = (;—A) (3-45)
" )TV n;
RTInLe = ;- (3-46)
fi
Integrating
U = J. {P = T(a—PJ }dv +3 (3-47)
'\T -
v o V.nr i
& oP 0
H= P-T| — dV+PV+Y nuy; (3-48)
oT -
vV V.ny i

00
S=J. ﬂ-—(a—P-) dV+RZn,-ln . +Zn,-s,~0
vl V or Vip , nRT 5

1

(3-49)



0 -
nTRT 174 5 p
A = J‘ (P - V )dV—RT; ni ]n__n.RT +2i:n,- (u,. _Tsi ) (3_50)

Vv 1
*(  nrRT 4
G=J. (p- Tv )dV—RTZn,-ln 'RT+PV+Zn,~(u,.O—Tsi°) (3-51)
Vv i i i
“I( ap RT 14
pi=J‘ [—J ~=——|dV-RTIn +RT +ul - T5? (3-52)
v an,- T,V,nj \% n; 1
o0
RTIng; —RTIIL = d BT | v _RTInz 3.53
y"P v an,- TV %4 ( g )

u,-O = hi0 — RT = molar energy of pure / as an ideal gas at temperature 7.

the units of V/m;RT are bar!
No addition term for the change of phase (e.g., enthalpy of vaporization) need be added.



For a pure component

RTln(i) =J. (—F—,—EJdV-—RTInz+RT(z—l) (3-54)
pure i

v\

We can compute all the thermodynamic properties relative to the ideal-gas state at 1 bat and at the same
temperature and composition, provided that we have volumetric information

P=F(T,V,n,n,,...) (3-55) .. .
Pressure explicit equation of state

For example, EOS in the form of the compressibility factor

o= POT.%) (3-561
pRT

then, molar residual Helmholtz energy is

~ (Pz(p,T,x;)-1
A= J‘O%dp (3-57)
T
where A" = Areat) — Alideal mixture), Am A Sl '
A
Ing; = [%} +(z-1)-Inz (3-58)
g P.T 0

The fugacity is obtained by differentiation rather than by integration of equation of state.
More convenient when we have model for A.



3.5 Fugacity of a Component in a Mixture According to van der Waals’ Equation

van der Waals equation of state

p-_RT__a (3-60)

v-b vl

On a total basis
__"RT "_TZ‘E (3-61)

V-nrb V2

Differentiating with respect to n;
6(nTb)
RT
nr ( on; J 1 a(n%a) (3-62)

(6P) _RT .\ )
oni Jrya, V-rrb (V-npb)? V% On

)
RTln(p,-=RT1ni=J‘ [6_}’) —B~T— dV-RTInz
y“P v an,- T,V,nj \%

Substituting in (3-53)

: d(nrb 1
RTIn—-=RTIn .4 +npRT By L.
y;P V-nrb on; |(V—=nrb)

d 2
{24 prin,
on; |V

(3-65)




Mixing rules foraand b

m
b= b (3-67)
i=1 (volume of molecule)
a= Z Z Yi¥jaij (3-68)
=k (strength of attraction)
a; = (ajaj)uz (3-69)
geometric-mean assumption

(some theoretical justification by London)

Adopting these mixing rules, the fugacity is given by

m

2a; 3y \a;
fi _ v + b,' j=1

In-Ji = - ~Inz
WP u—b v-b URT (3-70)




3.6 Phase Equilibria from Volumetric Properties

Equality of temperatures: T® =TP
Equality of pressures: p* =pB
For each component i,

equality of fugacities: f* = fiB

%)
RTIng; =RT1ni=J‘ (G_P) —E dV-RTInz
yiP v 5n,~ T.V,nj %

We often do not have a satisfactory equation of state applicable to mixtures over a density range from
zero density to liquid densities.

Phase-equilibrium calculations based on volumetric data alone are often doubtful.
It is practical for vapor mixtures, but may not be practical for condensed mixtures.

Promising equations of state based on statistical mechanical derivations are now available.



