
Chapter 1.  The Phase-Equilibrium Problem 

 

 

Homogeneous phase: a region where the intensive properties are everywhere the same. 

Intensive property: a property that is independent of the size 

temperature, pressure, and composition,  density(?) 

 

Gibbs phase rule   ( no reaction)  

 

Number of independent intensive properties = Number of components – Number of phases + 2 

 

e.g. for a two-component, two-phase system  No. of intensive properties = 2 

 

 

 



 

1.2 Application of Thermodynamics to Phase-Equilibrium Problem 

 

Chemical potential : Gibbs (1875) 

 At equilibrium the chemical potential of each component must be the same in every phase. 

    ii   

  ? 

Fugacity, Activity: more convenient auxiliary functions 

   0

iiiii fxPy    

 

fugacity coefficient   activity coefficient  fugacity at the standard state 

For ideal gas mixture, 1i  

For ideal liquid mixture at low pressures, satii Pf  0,1   

In the general case 

   

    



Chapter 2. Classical Thermodynamics of Phase Equilibria 

 

For simplicity, we exclude surface effect, acceleration, gravitational or electromagnetic field, and 

chemical and nuclear reactions. 

 

2.1 Homogeneous Closed Systems 

A closed system is one that does not exchange matter, but it may exchange energy. 

 

A combined statement of the first and second laws of thermodynamics 

 

   dU  TBdS – PEdV      (2-2) 

 

U, S, V are state functions (whose value is independent of the previous history of the system). 

TB temperature of thermal bath, PE external pressure 

 

Equality holds for reversible process with TB = T, PE =P 

 

   dU = TdS –PdV      (2-3) 

 

and  TdS = Qrev, PdV = Wrev 

 

U(S,V) is state function.  

 

The group of U, S, V is a fundamental group. 



 

Integrating over a reversible path, 

  

 U is independent of the path of integration, and also independent of whether the system is maintained 

in a state of internal equilibrium or not during the actual process. 

It requires only that the initial and final states be equilibrium states. 

 

For irreversible process (spontaneous changes) 

0, VSdU  or 0, VUdS  

If the entropy of a system is unchanged at constant volume, the energy of the system decreases as 

energy flows out as heat 

In an isolated system at constant volume, entropy increases for spontaneous change 



Enthalpy is defined by 

  

Differentiation of (2-7) and substitution for dU gives 

  
For spontaneous changes 

 

Helmholtz energy is defined by 

  

giving 

  

The minimum of Helmholtz energy at const. T and V 

 

Gibbs energy is defined by 

 

giving 

  

The minimum of Gibbs energy at const. T and P 

 



 

 



 

2.2. Homogeneous Open Systems 

 

An open system can exchange matter as well as energy with its surroundings. 

   

The total differentials is 

 

We define the chemical potential as 

 

 

Rewritting 

 

which is the fundamental equation for an open system 

 



Substituting the definition of H, A, and G 

 

 
 

                Partial molar Gibbs energy 

For pure substance 

 
n

G
   (very simple!) 



2.3 Equilibrium in a Heterogeneous Closed System 

 

 

For a closed, heterogeneous system consisting of  phases and m component at equilibrium with respect 

to the processes of heat transfer, boundary displacement, and mass transfer 

 
 

2.4 The Gibbs-Duhem Equation 

 

A total of m+2 variables for a phase in a heterogeneous system are not all independent. 

 

Integrating from a state of zero mass to a state of finite mast constant T, P, and composition 

(note: integrating variables are extensive properties, and on the integration, all coefficients are kept 

constant) 



 

Differentiation of (2-29) gives 

 

Comparing the two equations 

 

Gibbs-Duhem equation (an inherent constraint). 

 Only m+1 intensive variables are independent 

 

2.5 The Phase Rule 

 

The number of independent variables =  (m+1) 

The number of equilibrium relations = (-1) (m+2) 

The number of degree of freedom 

 

 

 



2.6 The Chemical Potential  

 

It is difficult to calculate an absolute value of the chemical potential, so we must content ourselves with 

computing changes in the chemical potential. (in engineering calculation) 

// Stat Mech can give rigorous expressions for absolute value of the chemical potential for ideal gases // 

      PkTTPT ln, 0   ,       neqqkTkT
h

mkT
kTT ln

2
ln

2/3

20 






















  

For a pure substance i, 

 

In integrating from some reference state to the state of interest 

 

The standard state = the reference state 

Successful application of thermodynamics to real systems frequently is based on a judicious choice of 

standard states. 

 



2.7 Fugacity and Activity 

 

From (2-33)  

 

Consider ideal gas 

 
Integrating at constant temperature 

 chemical potential of an ideal gas 

The abstract quantity  is a simple logarithmic function of the physically real quantity, P. 

 

Lewis defined fugacity as  

isothermal change at const. T 

 

 

Ideal gas,  f = P 

Ideal gas mixture, fi = yi P  (fugacity = partial pressure) 

All real systems approach ideal-gas behavior at very low pressures (e.g. P < 1 bar). 

 



 

The temperature of the standard state must be the same as that of the state of interest,  

but compositions and pressures need not be the same. 

Fugacity is a “corrected pressure”, and these corrections are due to nonidealities resulting from 

intermolecular forces 

 

For phases  and  

 

 

Equating the chemical potentials 

 

Case I, the standard states for the two phases are the same 

 

Then 

 

(2-42) becomes 

 

 



Case II, the standard states are at the same T, but not at the same P, y. 

Following the definition of fugacity 

 

we again have 

 

In either case, the fugacities must be the same in all phases. 

 

The fundamental equations of phase equilibrium 

 

 

 

 

 



2.8 A Simple Application: Raoult’s law 

 

Consider a binary system containing a liquid and vapor phase 

 

Assuming ideal solution behavior 

 

 

Substituting into (2-47) 

  

 



Assuming ideal gas for the vapor, and incompressible liquid 

 

 

We obtain Raoult’s law 

 



CH.3 Thermodynamic Properties from Volumetric Data 

 

Most thermodynamic properties of interest in phase equilibria can be calculated from thermal and 

volumetric measurements. 

Thermal measurement (heat capacity) 

 How thermodynamic properties vary with temperature 

Volumetric measurement (PVT data) 

 How properties vary with pressure or density at constant temperature 

 

3.1 Thermodynamic Properties with Independent Variable P and T 

 

Thermodynamic Properties as functions of T, P 

 

We use Maxwell’s relations 

 



First, obtain H, S and then U, A, G, i, fi, from definitions 

 

Extensive properties for nT moles by capital letters (V, U, H, S, A, G) 

Properties on a molar basis by lowercase letters (v, u, h, s, a, g) 

 

 

 

 



 

Pressure P is in bars.  

  

Fugacity coefficient 

       



We can compute all the thermodynamic properties relative to the ideal-gas state at 1 bat and at the same 

temperature and composition, provided that we have volumetric information 

 Volume explicit equation of state 

For a pure component,   

(3-14) simplifies to 

 

Equivalently 

 

where the compressibility factor z is defined by 

 



Ideal gas mixture 

The equation of state for an ideal gas mixture is 

  

The partial molar volume is 

  

substituting into (3-14) 

 equal to its partial pressure 

Lewis fugacity rule 

Assume that the gas mixture follows Amagat’s law (additivity of volume ) which is 

  

There is no volume change in mixing at const. T and P ,  

and the partial molar volume is equal to that in the pure state 

 

substituting into (3-14) 

 

comparing with (3-16)   



 

Lewis fugacity rule assumes the additivity of volume for the entire pressure range 0 to P. 

 

 

At const P, T, the molar volume is linear to the composition only at high pressures, not over the entire 

pressure range. Thus, Lewis fugacity rule should not be valid.



3.2 Fugacity of a Component in a Mixture at Moderate Pressures 

 

Consider a truncated form of the van der Waals equation of state 

  

Rewriting on a total basis using  

 

Partial molar volume is obtained as 

 

Mixing rule (relation of a, b for the mixture on the compositon) 

 by van der Waals 

Rewriting 

 

The partial molar volume for component 1 is 

with n2 held constant, not with nT  



Substitution into (3-14) gives 

 

Consider the boundary condition 

 

Thus 

  

                correction to the Lewis fugacity rule 

 

 

Lewis is poor for butane as the difference in intermolecular forces between butane and nitrogen is large. 



3.3 Fugacity of a Pure Liquid and Solid 

 

condensed phase  saturated vapor 

 

 

      fugacity of the saturated vapor 

 

Rearrangement gives 

 

         Poynting correction 

At conditions remote from critical, a condensed phase (liquid or solid) is nearly incompressible, and the 

correction term becomes 

 

 

 



Fugacity coefficient of saturated liquids (without Poyning correction) 

 

s

i  differs from unity as the critical temperature is approached. 

 

The Poynting correction may become large at high pressures 

 

 



Fugacity of compressed liquid water 

 

PfPf csc ~  

The fugacity of condensed phase is close to the saturation pressure rather than the total pressure. 

 

 

 

 



3.4 Thermodynamic Properties with Independent Variable V and T 

 

Maxwell’s relations 

 

Other properties are given by 

 

Integrating 

 

 



 

 

 

 

 

No addition term for the change of phase (e.g., enthalpy of vaporization) need be added. 

 



For a pure component 

  
 

We can compute all the thermodynamic properties relative to the ideal-gas state at 1 bat and at the same 

temperature and composition, provided that we have volumetric information 

 Pressure explicit equation of state 

 

For example, EOS in the form of the compressibility factor 

 

then, molar residual Helmholtz energy is 

  

where Ar = A(real) – A(ideal mixture), ,  

 

The fugacity is obtained by differentiation rather than by integration of equation of state. 

More convenient when we have model for A.



3.5 Fugacity of a Component in a Mixture According to van der Waals’ Equation 

 

van der Waals equation of state 

 

On a total basis 

 

Differentiating with respect to ni  

 

Substituting in (3-53)     

 

 
 



Mixing rules for a and b 

(volume of molecule) 

(strength of attraction) 

geometric-mean assumption 

       (some theoretical justification by London) 

Adopting these mixing rules, the fugacity is given by 

 

 

 

 

 

 

 

 

 

 

 

 

 



3.6 Phase Equilibria from Volumetric Properties 

 

 

 

We often do not have a satisfactory equation of state applicable to mixtures over a density range from 

zero density to liquid densities. 

 

Phase-equilibrium calculations based on volumetric data alone are often doubtful. 

 

It is practical for vapor mixtures, but may not be practical for condensed mixtures. 

 

Promising equations of state based on statistical mechanical derivations are now available. 


