CH.5 Fugacities in Gas Mixtures

Fugacity from volumetric data: (exact relations)
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where the fugacity coefficient is defined by
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P=Fp(T,V.ny,...) (5-5)'
Most forms of the equation of state are pressure explicit.



5.1 The Lewis Fugacity Rule

Fugacity of component i in a gas mixture is related to that of pure gas at the same
temperature and pressure by

RT1In i _ P(v-~v-)dP (5-6)
- i 1
YiJpure i

assuming Amagat’s law V.

=V, over the entire pressure range

fi= yifpurei Qi = Ppure i

or

Lewis rule assumes that ¢ is a function only of temperature and pressure but not of
composition

e A good approximation at low pressures where the gas phase is nearly ideal.

e A good approximation whenever i is present in excess (say, yi>0.9). Exact in the limit as
yi >1

e A fair approximation whenever physical properties of all the components are nearly the
same.



5.2 The Virial Equation of State

The problem of calculating fugacities for components in a gaseous mixture is equivalent

to the problem of establishing a reliable equation of state for the mixture.

Parameters in the virial equation of state are directly related to intermolecular forces. (a
sound theoretical foundation!)

I=—=l+—+—+—+... (5-9)

B is the second virial coefficient, C is the third virial coefficient..
Virial coefficients are independent of pressure and density. They depends on temperature.
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Figure 5-1 Compressibility factors for helium, methane and three water/methane
mixtures as a function of density at 498.15 K (Joffrion and Eubank, 1988).



As a power series in the pressure
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Two sets of coefficients are related by

B
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Eq (5-9) is better than (5-10) when truncated after the third term.
Experimentally, B is obtained from low-pressure PVT data by the definition

B= lim [a—ZJ (5-14)
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Similarly,
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Reduction of PVT data to yield second and third virial coefficients
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Figure 5-2 Reduction of P-V-T data for methane to yield second and third virial coef-
ficients (data from various sources).

B from the intercept, C from the limiting slope



Figure 5-3 Reduction of P-V-T data for methanol/methyl acetate to yield second
third virial coefficients of approximately equimolar mixtures (OlIf et al., 1989).
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Figure 5-4 Compressibility factor for argon at -70°C.
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Figure 5-5 Compressibility factor for argon at 25°C.

The density series, Eq. (5-9) is more successful, and gives a good representation of the
compressibility factor to about one half the critical density for many gases.



The second virial coefficient takes into account deviations from ideal behavior that result
from interactions between two molecules.

The virial coefficients are given as an integral of intermolecular potential. For simple,
spherical molecules

0 A
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derived by Mayor

The third virial coefficient takes into account .... . from interactions of three molecules.
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where called May f-function

B and C are functions of temperature.

For complex molecules, the intermolecular potential depends not only on the distance but
also on the relative orientation, and expressions for B and C become more complicated.
(Monte Carlo calculations are often used.)



5.3 Extension to Mixtures

The composition dependence of virial coefficients are given by a generalization of the
statistical-mechanical derivation.

The second virial coefficient corresponding to the i-j interaction is given by

_ . ~T; (/KT ] 2
Blj ——ZTINAJ.O [1—6’ J ]r dr (5_19)

Bii and Bij are those of pure components.
For a binary mixture, the second virial coefficient is
Bmixt = ¥7Bii +2y,y,B; + ¥}Bjj (5-20) _ »
depending on compositions
For a mixture of m component, from a rigorous generalization

m m
Bixt = Z Eyfijg (5-21)
i=1 j=1

proof in advanced text
For the third virial coefficient for mixture
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In a binary mixture, there are four Cijx coefficients.

Crnixt = ¥; Ciii +3¥77,Ciij + 3y,y3Cy; + YiCi; (5-22) 1
For a mixture of m component
m m m .
Crixt = 2, 2, 2. %Y i¥Cijk (5-23)
i=1 j=1k=1 :




If experimental data are available for several compositions, the cross coefficients can be
Obtained from
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Figure 5-6 Experimental second virial coefficients for the CO,/H,0 system as a
function of the mole fraction of water, for various temperatures (Patel et al., 1987).
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Figure 5-7 Experimental third virial coefficients for the CO./H,0O system as a function
of temperature, for several mole fractions (Patel et al., 1987).

In contrast, constants in empirical equation of state cannot be easily extended to mixtures
with somewhat arbitrary mixing rules.



5.4 Fugacities from the Virial Equation

The viral equation for a mixture, truncated after the third term, is

Pu + Bmixt + Cmixt
v 'uz

Zmixt = o 1

(5-27)

Substituting into
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For a binary mixture
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But (5-28) is limited to moderate densities.
Theoretical calculation of B and C is restricted to relatively simple substances.



Omitting the third virial coefficient

2 m
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Zmixt = 1+"B_mﬂ (5-32)
where ki

When the volume-explicit form of the virial equation is used

m P
Ing; =23 y;B; — Bmixt |57 (5-33)
pr RT

which is more convenient because it uses pressure.
Both are valid only at low densities not exceeding (about) one-half the critical density.



5.5 Calculation of Virial Coefficients from Potential Functions

Ideal-Gas Potential
r=0
virial coefficients =0
ideal gas law

Hard-Sphere Potential

0 for r>c
= (5-34)
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Figure 5-8 Potential functions with zero, one, or two adjustable parameters.



Substituting into (5-19)

B= 2-.-:NAc;3 (5-35)
3 pure component

3
2 G,-+Gj
B:=%aN g
=3 ,{ i J (5-36)

mixture

The hard-sphere model is a highly oversimplified picture of real molecules because its
second virial coefficient is independent of temperature.

Sutherland Potential (two parameter)

) for r<o

(5-37)
for r>o

=1-x

6

reasonably successful in fitting experimental second virial coefficient data
Lennard-Jones Potential ~ (the best known two parameter model)

S GRG

where o is size parameter (or the collision diameter) and
g is energy parameter (the depth of the energy well).

B is obtained from numerical integration.

w0 !
B= 21tNAJ [] - efr(r]"”]rzdr
0




Figure 5-10 Second virial coefficients calculated from Lennard-Jones 6-12 potential.
reduced

(dimensionless)
LJ potential is only an approximate model.
One set of parameters (o,€) obtained from the second virial coefficient are not the same as
another set of parameters (o,g) from viscosity data.



Table 5-1 Parameters for the Lennard-Jones potential obtained from second-virial

coefficient data.$

o (A) e/k (K)
Ar 3.499 118.13
Kr 3.846 162.74
Xe 4.100 222.32
CH, 4.010 142.87
N, 3.694 96.26
C,H, 4.433 202.52
C,H, 5.220 194.14
C;H, 5.711 233.28
C(CHy), 7.420 233.66
n-C,H,q 7.152 223.74
CgHy 8.443 247.50
co, 4416 192.25
n-CH,, 8.540 217.69

§L. S. Tee, S. Gotoh, and W. E. Stewart, 1966, Ind. Eng. Chem. Fundam., 5: 356.

e/k in units of temperature



The Square-Well Potential (three parameters)

o for r<oc
I'=<-¢ for o<r<Ro (5-39)
0 for r>Ro
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for example, R~ 1.5 for argon, methane
The second virial coefficient is analytically obtained as

R3-1 £
B=hyR3|1- —
0 [ R3 EkaTJ

Good agreement can often be obtained between calculated and experimental second virial
coefficients.

Exp-6 Potential (three parameters)
€ 6 r I 6
'=————exp|y|1- ] —(ﬂ) (5-40)
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v determines the steepness of the repulsive wall.
Table 5-2 Ratio o/, for the exp-6 potential as a function of the repulsive steepness

parameter y.
Y c/rmin
15 0.894170
18 0.906096
20 0.912249
24 0.921911
30 0.932341
40 0.943914
100 0.970041
300 0.986692
© 1.000000
Kihara potential (three parameters)
0 for r<2a
1= 12 6 5-41
c-2a c-2 (5-41)
4¢ - 2 for r>2a
r-2a r—2a

where a is the radius of the spherical molecular core.

I

o KIHARA

0 I - (Spherical Core)
b= 20-.

€

hard billiard ball with foam-rubber

Because it is a three-parameter function, Kihara’s potential is successful in fitting
thermodynamic data for a large number of nonpolar fluids.



spherical core of radius a.
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Figure 5-12 Second virial coefficients calculated from Kihara’s potential with a
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Figure 5-14 Second virial coefficients for krypton. Predictions at low temperatures
based on Lennard-Jones potential (a* = 0) and on Kihara potential.
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Table 5-3 Parameters for the Kihara potential (spherical core) obtained from second-
virial-coefficient data.$

a* o (A) etk (K)
Ar 0.121 3317 146.52
Kr 0.144 3.533 213.73
Xe 0.173 3.880 298.15
CH, 0.283 3.565 227.13
N, 0.250 3.526 139.2
0, 0.308 3.109 194.3%
CH, 0.359 3.504 496.69
C;Hg 0.470 4.611 501.89
€, 0.500 4319 289.7¢
C(CH,), 0.551 5.762 557.75
n-CgH,o 0.661 4.717 701.15
CeHg 0.750 5.335 832.0°
Co, 0.615 3.760 424.16
n-CsHy, 0.818 5.029 837.82

8. S. Tee, S. Gotoh, and W. E. Stewart, 1966, Ind. Eng. Chem. Fundam., 5: 363.
t A. E. Sherwood and J. M. Prausnitz, 1964, J. Chem. Phys., 41: 429.

#C. E. Hunt, unpublished results.



The difficulty of determining “true” potential

150 T T T T
100 -
50— —
4
-0 t t t }
e
e
_sol- / i
Sw
-100— |
Ly
-ISOF— Kiharo i
exp-6
-200 | | | |
3 4 5 6 7
r, A

Figure 5-15 Potential functions for argon as determined from second-virial-coefficient
data.
for argon
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Figure 5-16 Potential functions for neopentane as determined from second-virial-

coefficient data.
for neopentane

The various potential functions differ very much from one another.



Stockmayer Potential
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Figure 5-17 Second virial coefficients calculated from Stockmayer’s potential
for polar molecules.

The effect of polarity is to lower the second virial coefficient due to increased attractions.



Table 5-4 Parameters for Sockmayer's potential for polar fluids.*

11 (debye) a (A) e/k (K)
Acetonitrile 3.94 4.38 219
Nitromethane 3.54 4.16 290
Acetaldehyde 2.70 3.68 270
Acetone 2.88 3.67 479
Ethanol 1.70 245 620
Chloroform 1.05 2.98 1060
n-Butanol 1.66 2.47 1125
n-Butyl amine 0.85 1.58 1020
Methyl formate 1.77 2.90 684
n-Propyl formate 1.92 3.06 877
Methyl acetate 1.67 2.83 895
Ethyl acetate 1.76 2.99 956
Ethyl ether 1.16 3.10 935
Diethyl amine 1.01 2.99 1180

+ R_F. Blanks and J. M. Prausnitz, 1962, AIChE J., 8: 86.

Table 5-5 Second virial coefficients of trifluoromethane. Calculated values from Stock-
mayer potential with e/k = 188 K, o = 4.83 A, and p = 1.65 debye.

Temperature -B (cm® mol™)

(°C) Experimental* Calculated
0 233 215
25 187 185
50 154 150
75 127 127
100 107 108
150 76 76
200 53 53

* J. L. Belzile, S. Kaliaguine, and R. S. Ramalho, 1976, Can.
J. Chem. Eng., 54: 446.



5.6 Third Virial Coefficients
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In the derivation, pairwise additivity of potential was assumed such that

l"l;,-k = FU + I",k + ij (5-43)

because little is known about three (or higher) body forces.
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Figure 5-18 Third virial coefficient from Kihara potential assuming pairwise additivity.
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For a"=0, the results are those obtained from LJ potential.



Nonadditive correction
The first-order correction (Axilrod-Teller correction)

Fijkzrij+rik+rjk+Arijk

3
9 la”(1+3cos6; cosO ; cosby)
Arijk(f.j,rjk,rik)=1—

(5-47)
6 (4ney) (ryram)’
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Figure 5-19 Calculated and observed third virial coefficients for argon. Solid lines
include Axilrod-Teller nonadditivity corrections. Dashed lines show a portion of calcu-
lated results assuming additivity. Circles represent experimental data of Michels
(1958).

with parameters determined from the second virial coefficient
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Figure 5-20 Third virial coefficients for argon (Barker and Henderson, 1976).

using unique two-body potential determined both from second virial coefficient and gas-
phase transport properties.



Little work has been done on the third virial coefficient of mixture.

Experimental data of the third virial coefficient are scarce and of low accuracy, so it is
difficult to

Make meaningful comparison between calculated and experimental results.






