CH.6 Fugacities in Liquid Mixtures: Excess Functions

Calculation of fugacities from volumetric properties for condensed phases is often not practical
because it requires volumetric data for the entire density range including tipbas®e region.

For ligud solutions, usual practice is to describe deviations from ideal behavior in terms of excess
function, which yield the activity coefficient.

fE=yix 0 (6-1)

The activity coefficientg has no significance unles§® the fugacity at the standard stais

specified.

The solution ideality § =1) is not complete without the choice of standard state.
Idealsolutionin the sense of Raodtlaw

Idealsolutionin the sense of Hen@y law

6.1 The Ideal Solution
In an ideal solution, fugaty is proportional to some suitable measure of its concentration, usually
the mole fraction.

ffL = G{ixi (6-13)

where A, is dependent on T and P, mtlependendf composition.
Idealsolutionin the sense of Raoditlaw

)‘;0=9’i,,1hen yi=1

Idealsolutionin the sens of Henrys law



If i is near zero, it is still possible to have an ideal solution without referring to the fugacity of
pure liquidi.

For an ideal solution in the sense of Rasulw

Fi(T,P,x)= foure i (T, P)x; (6-2)

We use exact thermodynamic relations
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h;* is the enthalpy of pure i in the ideal-gas state,

Substituting (62) into (6-3) (6-4) we have
Ef — hi (6'l .
for ideal sofn

R ( I for ideal sofn
The formation of an ideal solution occurs without evolution or absorption of heat and without
change of volume.



6.2 Fundamental Relations of Excess Functions

Excess functions are correction terthat relate the properties of real solutions to those of ideal
solutions.

Excess functions are thermodynamic properties of solutions that are in excess of those of an ideal
(or ideal dilute) solution at the same T, P and x.

The excess Gibbs energy is itheid by

E =
G™ = G(actual solution at TP and x)~ G(ideal solution at same 7',P, and x) (6-7)

Relations between the excess functions are the same as those between the total functions.

HE =UE + pvE (6-8)
GE =HE -1sE (6-9)
AS =yE 155 (6-10)

Partial derivative of excess functions are the same as those between the total functions.
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Partial molar propertis defined by



2
o (6-14)

Similarly, partial moar excess properig defined by

E
mE s[aM ] (6-15)
an,-
T.P,n}

From Eulefs theorem

M = n,- ;H_i (6' 1 6)

E —E
M® =3 nimi (6-17)

6.3 Activity and Activity Coefficients

The activity ofi is defined as the ratio of the fugacityi @b that ofi in the standard state

L(T,P,x)

ai(T,P,.X)Ef;-(T'PO,xO) (6-18)

The standat state is at the same T as that of mixture, and pres8umedP? at some specified
condtion.
The activity coefficient

a
Yi=E— (6-19)
Xj



Relation between partial molar excess Gibbs energy and activity coefficient

From definition of fugacity at constant T and P

Zi(real) — &i(ideal) = RTIN fitreat) = In fiigear ) (6-20)
8E = Bireal) — Biideal) (6-21)
gE = RT In Jitesh) (6-22)

(ideal)

substituting (61a) of ideal solution

g = RTIn-ti (6-23)
9‘1’xt~
a4 =Y = g (6-24)
R, ideal solution, y; =1 and @ = x;

substituting (624) into (623)

gE =RTny; (6-25

) . .
partial molar excess Gibbs energy

E
g~ =RTY xiIny; (6-26)

molar excess Gibbs energy



The temperature and pressure derivative of the activity coefficient

Casewhere the excess Gibbs energy is definddtix® to an ideal solution in the sense of
Raoults law

R, = f; (pure liquid i at T and P of solution) (6-27)
Iny; =Inf; —Inx; —In fure ; (6-28) _
g' - XI f pur
i i
Differentiation with respect to T gives
(alny, J _ hpurei _hi' - E,‘E’) (6-29)
o Jp, RT? RT?

Differentiation with respect to P gives

QE‘_Y_:; = M{E - Vﬁ (6-30)
oP )r RT RT

Casewherethe excess Gibbs energy is defined relative to an ideal dilute solntibe sense of
Henry& law

For example, consider a liquid mixture containingageousolute (2).

If the critical temperature of solute 2 is lower than theperatureof mixture, a liquid phase
cannot exist asx, - 1. (a hypotheticastandard state is needed in the Ra@sugiw)

Instead, the proportionality constant is determined from the condition of infinitely dilute solution.
For solute 2

9{2 = lim f—2 =H2.l (6'31)
20 X Henryés constant

For solvent



. h 6
R li . ( -32
1= Py mO x| fpuve liquid 1 )

The activity coefficient of solute is g

f
p— . (6-33)
xH;,

The temperature demtive is

(M) = E (6-34)
T )p,  RT?

but has a different meaning
hf =hy—hs (6-35)

where hs° is the partial molar enthalpy of solute 2 in an infinitely dilute solution.
The pressure derivative

(a]nyz _T,-Ty
8P Jp,  RT

(6-36a)

6.4 Normalization of Activity Coefficients

If activity coefficients are defined in the sense of Rabudiw, then
Yi—>1 a x; —1 (6-3"

called symmetric convention for normalization



If activity coefficients are defined with reference to an ideal dilute solution, then

y1—>1 as x;—>1 (solvent)

Yo—>1 as x; -0 (solute) o

called unsymmetric conventidar normalization

To distinguish, use * for solute

Yp—>1 as x;—1 (solvent)

. (6-38a)
Yo—>1 as x,—>0 (solute)
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Figure 6-1 Normalization of activity coefficients.
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Figure 6-2 Symmetric and unsymmetric activity coefficient conventions. Experimen-
tal data at 25°C for the activity coefficients of methanol in water and sodium chloride in
water (Ragal et al., 1994). Solid lines are smooth data and dashed lines are extrapola-
tions.

Idealbehaviorof NaCl solution is approached at infinitely dilution.

Relation betweensymmetric and unsymmetric conventions
For binary mixture,

f
yp=—32 (6-39)
2 x2 foure 2
. f
ja=—%— (6-40)
27 xpHy,
H
Y2 2l (6-41)
Y2 fpure 2
Because
lim y3 =1 (6-42)



We have

lim vy, =
x—0 b pure 2

(6-43)

(6-44)
physical situation

(6-45)
physically unrealistic situation



6.5 Activity Coefficients from Excess Functions in Binary Mixtures

At a fixed temperature, the molar excess Gibbs ggnef of a mixture depends on the
composition.
The effect of pressure is negligible away from critical conditions.

For binary mixture (for which the standard state is pure liquid at the same T, P)
The molar excess Gibbs energy must obey the two boundadjtions

Two-suffix Margules Equations
The simplest expression

E _ ¥ . ..
gk = Axx (6-46) " Ais an empirical constant

To get activity coefficient

— ong gt
RTIny; =gf = [T (6-47)
t JT,Pn

e

substituting (646) into (647)

Inyy =23 (6-48)
RT

A
Inyy =—""x (6-49)
RT




A good representation for mixtures of molecules that are similar in size and chemical nature

At infinite dilution, the activity coefficients are equal.
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Over a small temperature ranges nearly constardar a weak function of.
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Figure 6-3 Applicability of two-suffix Margules equation to simple binary mixtures.
A usuallyfalls with rising temperature for nonpolar solutions.
In general case,
8F = x1x3[A+ B(x; — X3) + C(x; = %) + D(x; — x)3 +...] (6-52)" _ _ _
RedlichKister expansion

givesactivity coefficient as



RTInyy =aWx3 +5Wx3 +cWxd +d W3 +... (6-53)

RTIny; =a@x? +6@x} +c@xft +dDxf +... (6-54)
where

aV = A+3B+5C+7D a® = A-3B-5C-1D

b®D = —4(B+4C+9D) b? = 4(B-4C+9D)

¢ =12(C+5D) ¢@ =12(C-5D)

dW =-32D d?® =32D

Evenpowered term to flatten or sharpen the parabola (A, C..)
Odd-powered term to skew the parabola (B, D..)



