CH.7 Fugacities in Liquid Mixtures: Models and Theories of Solutions

The aim of solution theory is to express the properties of liquid mixture in terms of intermolecular
forces and liquid structure.
The simplest theory of liquid solutions: Raoult’s law

Its failure for real solutions is due to differences in molecular size, shape, and intermolecular forces.

7.1 The Theory of van Laar

Consider a mixture of two liquids at constant temperature and pressure
In mixing the two pure components, Van Laar assumed that

1. No volume change, v® =0
2. The entropy of mixing is ideal, s* =0

Since at constant pressure and temperature

g‘E =uf + PvE -TsE (7-1)

Van Laar’s assumptions corresponds to

gE =uf (7-2)



A three-step isothermal thermodynamic cycle
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Figure 7-1 Thermodynamic cycle for forming a liquid mixture from the pure liquids at
constant temperature.

Au is given by the sum of the three energy changes

Au= uE = Aul + A“Il + AulII (7-3)

Step 1. Pure liquids are vaporized to the ideal-gas state at constant T.

The energy change is given by the thermodynamic equation,
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Van Laar assumed the van der Waals equation for the volumetric properties of the pure liquids
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For one mole of mixture with x; moles of liquid 1 and x> moles of liquids
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According to the VDW theory, the molar volume of a liquid well below the critical temperature is
approximated by the constant b. Thus

Auy= 251, 2522 (7-8)

b b

Step I1. Mixing of gases at very low pressure (i.e., ideal gases)
There is no change in energy
Au n= 0 (7-9)
Step 111. The ideal gas mixture is compressed isothermally to the original pressure.
As in the step I, the change in energy is given by the VDW EOS.

A= - 2t (7-10)

mixt

Constant amixt and bmixt in terms of those of the pure components

Amixt = X34y + x3ay + 2x1 X @y (7-11)

bmixt = x1b1 + Xzbz (7- 1 2)



Adding up for Au
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The activity coefficients are obtained by differentiation
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e The activity coefficients are always greater than unity (positive deviation from Raoult’s law)
A'>0, B> =Iny>0
If it were assumed that

Amixt = X14) + X207 (7-21)

Then we would have
_Y.l =y, = 17 for all x (7-22)

The rules to express the constants for a mixture have a large influence.

e Quantitative agreement between van Laar’s equations and experimental results is not good because
of VDW equation and the mixing rules used

e \an Laar equations are useful empirical relations if we regard A’ and B’ as adjustable parameters.

7.2 The Schtchard-Hildebrand Theory

Hildebrand (1929) defined a regular solution as one with no excess entropy of mixing at constant
temperature and at constant volume.

The cohesive energy density is defined by

Ayaptt
vl (7-23)

c=

where Avspu 1S the energy change on the vaporization of the saturated liquid to the ideal-gas state.



Hildebrand and Scatchard generalized (7-23) to a binary liquid mixture,

c U212+2C12U1U211X7 +C27U%x2
HYi R (7-24)

(Ui iy — U Yeixt =
liquid ~ *ideal gas/mixt X|U| + X2Us

The energy of a liquid mixture is assumed to be a quadratic function of the volume fraction
The volume of a liquid mixture is assumed to be given by the mole fraction average.
cu1 and cz. are for pure saturated liquids, which are functions only of temperature.

To simplify notation, volume fractions defined by

X1

.\ - (7-25)
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XU + XU

Then (7-24) becomes
~(Uiiquid — Uideal gas)mixt = (X171 +X202)[¢) 10F +20,® 1D, + @3] (7-27)
The molar energy change of mixing (= excess energy of mixing ) is

Amixtt = uE = upig — Xy — xou (7-28)

A pixlt = ”iEdeal =0 (7-29)

noting that
ut = (X1V1 + szz) [(:11CI)12 + 2C12(D1(Dz + szq)g ]_ XU, — XU,

since XU, =XC vy = (X1V1 + XV, )cllq)l
ut = (X1V1 + szz) [Cuq)lz + 2C12CI)1(I)2 + szq)g —C,; D, — szq)z]



uE = (C“ + 2 —2C[2)¢’1¢2(X1'U1 + x2U2)

(7-30)

As suggested by London’s formula, it is assumed that

_ 1
c1p = (c1e)1?

(7-30) becomes

ME = (x1'01 +x2'U2)(D1(D2(8[ —62)2

where § is called the solubility parameter.
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(7-33)

(7-34)

As in the van Laar theory, we assume there are no excess entropy and no excess volume

The activity coefficients are given by

RTIny; =v;®3(5, - 5,)2

that are the regular-solution equations.

RTIny, = v,®%(3; -58,)°

(7-37)

The regular-solution equations always predicts yi > 1 (positive deviation from Raoult’s law),
which is a consequence of the geometric-mean assumption.



Table 7-1  Molar liquid volumes and solubility parameters of some nonpolar liquids.*

v (cm® mol™) § (J cmd)1”2
Liquefied gases at 90 K
Nitrogen 38.1 10.8
Carbon monoxide 37.1 11.7
Argon 29.0 139
Oxygen 28.0 14.7
Methane 353 15.1
Carbon tetrafluoride 46.0 17.0
Ethane 45.7 19.4
Liquid solvents at 25 °C

Perfluoro-n-heptane 226 12.3
Neopentane 122 12.7
Isopentane 117 13.9
n-Pentane 116 14.5
n-Hexane 132 14.9
1-Hexene 126 14.9
n-Octane 164 15.3
n-Hexadecane 294 16.3
Cyclohexane 109 16.8
Carbon tetrachloride 97 17.6
Ethyl benzene 123 18.0
Toluene 107 18.2
Benzene 89 18.8
Styrene 116 19.0
Tetrachloroethylene 103 19.0
Carbon disulfide 61 20.5
Bromine 51 23.5

The difference in solubility parameters provides a measure of solution nonideality.
For example, mixtures of aliphatic hydrocarbons with aromatics show appreciable nonideality.
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Figure 7-2  Vapor-liquid equilibria for CO (1)/CH, (2) mixtures at 90.7 K.
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Figure 7-3 Vapor-liquid equilibria for CgHg (1)/n-C;H g (2) at 70°C.
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Figure 7-4 Vapor-liquid equilibria for neo-C¢H,, (1)/CCl, (2) at 0°C.

To relax the geometric-mean assumption
cpa = (I=Ip)epen)'? (7-42)
The resulting activity coefficients are
(7-43)

(DZ
lnyl = U‘;—Tz[(ﬁl —52)2 +21128I82]
(7-44)

v, 2
Iny, = }Zi'Tl [(51 -8,)? +21125152]
if the solubility parameters are close to each other, a small value of |2 can significantly affect activity

coefficients.



The 112 is an essentially empirical parameter, and efforts to correlate 112 are of little success.
0.02

1 I 1 I
O Aromatic Component: benzens
® Aromatic Component: toluene

0.0l

(o]

2

= .0.01

-0.02

number of CHS groups in saturated component

rs
-0.03 total number of carbon atoms in saturated component

] ] ] ] 1 1 1 20
[0} 0.1 02 03 04 05 06 07 08

DEGREE OF BRANCHING 7

Figure 7-6 Binary parameter /,, for aromatic-saturated hydrocarbon mixtures at
50°C. Binary systems shown are: 1. Benzene (2)/Pentane (1); 2. Benzene (2)/Neopen-
tane (1); 3. Benzene (2)/Cyclopentane (1); 4. Benzene (2)/Hexane (1); 5. Benzene (2)/
2-Methylpentane (1); 6. Benzene (2)/2,2-Dimethylbutane (1); 7. Benzene (2)/2,3-Dime-
thylbutane (1); 8. Benzene (2)/ Cyclohexane (1); 9. Benzene (2)/Methylcyclopentane
(1); 10. Benzene (2)/ Heptane (1); 11. Benzene (2)/3-Methylhexane (1); 12. Benzene
(2)/2,4-Dimethylpentane (1); 13. Benzene (2)/2,2,3-Trimethylbutane (1); 14. Benzene
(2)/Methylcyclohexane (1); 15. Benzene (2)/Octane (1); 16. Benzene (2)/2,2,4-Trime-
thylpentane (1); 17. Toluene (2)/Hexane (1); 18. Toluene (2)/3-Methylpentane (1);

19. Toluene (2)/Cyclohexane (1); 20. Toluene (2)/Methylcyclopentane (1); 21. Toluene
(2)/Heptane (1); 22. Toluene (2)/Methylcyclohexane (1); 23. Toluene (2)/2,2,4-
Trimethylpentane (1).



Effect of 112 on VLE
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Figure 7-7 Comparison of experimental volatilities with volatilities calculated by
Scatchard-Hildebrand theory for 2,2-dimethylbutane (1)/benzene (2).

Extensions to hydrogen-bonded components are of little theoretical sense.

The multicomponent case
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The excess energy of mixing is defined by

m
uf =u i~ Z_x,-u,- (7-51)

The cohesive-energy density is given by the geometric mean

¢ = (e jp)'"? (7-52)
Assuming

sE=vE=0 (7-53)
Then

gt =uf (7-54)

The activity coefficients are

RTIny; =v;(5;-8)2 (7-55)

5= @3 (7-56)
- _

o is a volume-fraction average of the solubility parameter of all the components.

The regular-solution theory is attractive because of its simplicity, and it can correlate liquid-phase
activity coefficients suing only one adjustable parameter.

7.4 The Lattice Model

The liquid state is in some sense intermediate between the gaseous state and the crystalline state.
The lattice model considers a liquid to be solid-like or quasicrystalline.
It supposes molecules to sit in a regular array in space, called a lattice.



Deviations from ideal behavior in liquid solutions are due to
Attractive forces between unlike molecules different from those between like molecules, which
gives rises to nonvanishing enthalpy of mixing

If the unlike molecules differ significantly in size or shape, giving rise to a nonideal entropy of
mixing.

Consider of a mixture of simple liquids 1 and 2
Molecules are spherical, and the ratio of their sizes is close to unity.
All the molecules are situated on lattice points.

There are no vacant holes, and the lattice spacings for pure liquids and for the mixture are the same
(vF=0)
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Figure 7-8 Physical significance of interchange energy. The energy absorbed in the
process above is 2w. [See Eq. (7-71)].

z pairs of type 11, z pairs of type 22 — 2z pairs of type 12
zl, + 21, 22l°,



We assume that the potential energy is pairwise additive and

that only nearest neighbors need be considered (short-range interaction)
Consider N1 molecules of type 1 and N2 molecules of type 2.
Each molecule has z nearest neighbors; empirically, z is close to 10 for liquids.

The total number of nearest neighbors = 2(y 1 N,) (avoiding double counting)
2

Three types of nearest neighbors: 11, 22, and 12
N1 is the number of nearest-neighbor pairs of type 11.
N2z, N1z

They are related by
ZN[ = 2N“ +N12

(7-68)
ZN2 = 2N22 +N}2

z
E(Nl + Nz): N+ Ny + Ny,
The total potential energy is given by

Uy = Njlyp + Ny + Ny Ty (7-69)

J

Eliminating N1 and N2 using (7-68)

U ='§N1Fn +§N21‘22 +"2“1N12
(7-70)
The last term of (7-70) is the energy of mixing
w is the interchange energy defined by

1
WEZ[F]Q—E(T‘“ +F22)J

is energy change accompanied when z pairs of type 12 are formed.



The canonical partition function of the lattice is given by

U
Olattice = Zg(Nl,Nz,le)exP(——’J (7-72)
Ny kT

g is the combinatorial factor (degeneracy), the number of ways of arranging N1 and N2 molecules each
giving the potential energy Ut (or giving N1z pairs, equivalently).

g = 1 for a pure component

We retain only the maximum term (p771, maximum term method).

The Helmholtz energy change of mixing is
AmixA = Amixt "(Apure 1+ Apure 2) (7-73)

Since A=-kTInQ

WN]2
AmixA=—len g(Nl,Nz,le)CXp ——m (7_74)

w/z is energy change per each pair of type 12.

We assume a completely random mixture for which all possible arrangement of the molecules are
equally probable.
The number of dissimilar pairs is

* ZN]NZ
2= Ni+N P
1TH2 * indicate a completely random arrangement
= zZN1 x N,
N, +N,

(' No. of neighbor sites of molecules of type 1)
x  ( Probability of randomly placing molecules of type 2 on the site)
and



(N + Np)!
Ny IN,!

g(Ny, Ny, Nip) = (7-76)

Using Stirling’s formula InN!=NInN—-N, for N >>1

: N;N
BilaA - 7 g DL g I D2 B2 (7-17)
kT Ny +Ny Ni+Ny kT N +N, z disappeared!
In molar unit
—A;‘;‘a =xpInx; +xInxy +—kw?xlx2 (7-78)
The molar excess Helmholtz energy is
E
a w
— = 7-79
RT kT 12 W=03)
Since w is assumed to be independent of temperature
Amixs 1 aAmixa)
X - | —EX | =—x;lnx;—xpInx _
R R(@TU PR G-80)

is the entropy of mixing for an ideal solution. (We assumed a completely random arrangments)
s£=0

We assumed also that
vE=0

The mixture we considered is a regular solution:

E = gE = hE = yE = Njwxyx (7-81)
§ Sl Na Avogadro’s number

The activity coefficients are given by



Iny; =2 (7-82)
kT

Iny, = ixlz (7-83)
kT

The same form as with the two-suffix Margules equation.

1
If T, =§(r11+r22) - w=0 — y=0
But for nonpolar molecules

1 . . .
0| = 0| < —ZQF11| +|1"22|) ( geometric mean < arithmetic mean )
1

r, > E(FllJerz) - w>0—-> y>0
Positive deviations in agreement with experiment.
7.6 Nonrandom Mixtures of Simple Molecules
A completely random mixture can only result if intermolecular forces are the same for all the possible
molecular pairs 11, 22, and 12.

Strictly, only an ideal mixture can be completely random.

Guggenheim constructed a lattice theory that is not necessarily random, which is called
the quasichemical approximation.



Consider the reaction
(1-D+(2-2) == 2:(1-2) (7-91)

The equilibrium constant K is defined by

~ (Npp)?

e
NNy

(7-92)

The energy change for the reactionis 2w/ z by (7-71)
The temperature derivative of In K is

aan] _ A (7-93)
a1/ T) |, R

Assuming that the energy change of reaction is given by

% - i—’; (7-94)
Integrating (7-93)
K= Cexp[— %J (7-95)
When w = 0, mixing is completely random
k=W (7-96)
NNz

* designates random mixing
using (7-68) and (7-75)
N, Ny o _ NN,

I——=2—""+1
N12 N12 NZ

then C=4

iN,
2N,



The equilibrium constant K becomes

2
M:z;exp _Z_W];i
NyiNop kT ) n?

where n=exp(w/zkT).

Introducing a parameter 3

* 2 ZN1N2 2
Nip =Ny =
B+1) Ny +Ny B+l

B =[1+4xx5(n2 - 1]V2
determined from (7-68) and (7-97)
For random case, § = 1.

The excess energy of mixing is

uf =1¢E‘ MZ
B+1

E*
where u® =N ,wxx,

To obtain the excess Helmholtz energy
aaf /Ty JE
ouITy |

Integrating

E - -1+2
a Z x]lnﬁ 1+2X1+x21n|3 1+ X2
xB+1) xB+1)

|

(7-97)

(7-98)

(7-99)

(7-100)

(7-101)

(7-102)



To simplify further, we expand exp(2w/zkT) in power series.
The molar excess functions are

E
g w 1 2w
L L1 KBy N 7-103
RT (krjx‘xz{ 2[sz) 1%2 ] (7-10%)
hE (w 2w ]
A | 2 (OB, (.8 (R 7-104
RT (kr)x‘xz{ (sz) DRgE= ik
sE w 1{ 2w |
Bl M Lo | ) W s s 7-105
PRV P77 i W

The excess entropy is negative for any positive or negative w.
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Figure 7-9 Effect of nonrandomness on excess Gibbs energies of binary mixtures.

The Gibbs energy with quasichemical approximation becomes lower.

Partial Miscibility

The criteria for instability is

O*Amix8 _ 0*Am;
=0 (7-106)

Apmix8 = RT(x;Inx; + x5 Inxy) + gE (7-107)



As in chapter 6, the upper consolute temperature is

w
6 =
re= 2k (7-108)

For the quasichemical approximation

w

y PR . — (7-109)
kz[lnz-In(z-2)]
When z = 10,
w
T = (7-110)

T¢is 10% lower than in the case of random mixing.
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Figure 7-10 Effect of nonrandomness on Gibbs energy of mixing.
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Figure 7-11  Excess Gibbs energy of methane/carbon tetrafluoride system.
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Figure 7-12 Liquid-liquid coexistence curve for the methane/carbon tetrafluoride
system.



7.7 The Two-Liquid Theory

One-fluid theory: a mixture is considered to be a hypothetical pure fluid
(in microscopic view) whose characteristic molecular size and potential energy are composition
averages of those of its components
(in macroscopic view) whose effective critical properties are composition averages of
component critical properties

Two-fluid theory uses two pure reference fluids.

Consider a binary mixture

Molecule Molecule

% Com;:onem O Compzonent
@ @
o _ O @ O
O ° @ O © O
O @

Hypothetical Fluid (1)

Hypothetical Fluid (2)

Figure 7-13 Essential idea of the two-fluid theory of binary mixtures. Hypothetical
fluid (1) has a molecule 1 at the center. Hypothetical fluid (2) has a molecule 2 at the

center.

A cell is referred to as an immediate region around any molecule.
There are two types of cells: One type contains molecule 1 at its center and the other contains
molecule 2 at its center.



The two-fluid theory assumes that the property M of the mixture is given by

Mpixe = MO + x, M (7-111)

where M® is the property M of a hypothetical fluid consisting only of cells of type 1,
M® is the property M of a hypothetical fluid consisting only of cells of type 2.

For example, let M stand for the (configurational) enthalpy h<™,

conf 3
W _f KL Po” (7-112)
RT € €

For reference fluid 1, the same form is assumed that

peonf(l) kT ‘D,c,-(l)‘1
= F —,—‘
RT g g

(7-113)

e®and oY are composition averages for cells of type 1

e = x.6,, + x589 (7-114)

oW = x,6,; +x,0¢5 (7-115)

&ijand ojj are for i-j interactions

Similarly,
conf(2) . (2)3
Lt .. 5. nd (7-116)
RT @’ @
8% = x50 #ii85 (7-117)
6@ =x,6,,+%0p (7-118)

Then, the molar enthalpy of the mixture is given by



conf _ conf(1l) conf(2) & .
hedwt = xih M + xah 719 (Two-fluid theory)

The UNIQUAC equation is a two-fluid theory.

We consider a process in which one molecule of component 1 is vaporized from its pure liquid (0),
and then condensed into the center of cell [ hypothetical fluid (1) ]

1

The energy of vaporization per molecule is > zU9 (factor 1/2 considering double counting)

U2 is the potential energy of two neighbors in pure liquid 1

Molecule

% Com;:onem
@

o O
@

o @
O

Hypothetical Fluid (1) Simple case Wlth r= q =1

Surface fractions:
011 the local surface fraction of component 1 about central molecule 1
021 the local surface fraction of component 2 about central molecule 1
O +021=1
The central molecule in hypothetical fluid (1) is surrounded by z 611 molecules of component 1 and
z 622 molecules of component 2.
The energy released by the condensation process around a central molecule in hypothetical fluid (1)

1
E z (ellul(i) +921U2(11))

The energy released by the condensation process around a central molecule in hypothetical fluid (2)



1
E z (912U1(§) ‘ngzug))

For a mixture consisting of x; moles of hypothetical fluid (1) and x. moles of hypothetical fluid (2)

1 0
uE = 220 Nalg OnUfY +62,U3) ~Ui)]
(7-120)

1 () (2) (0)
+52XN4[q202U37" +015Uy’ ~U3))))] i
52X N ala2(922U5; 12 7722 for any q in general

Conservation equation for the local surface fractions

f21+5n =1 (7-121)
B12+6 =1

assuming that Uﬂ) = Uf?) and U%) = Uég)

1
uF = 22N \[%05,9 Uy ~Uy )+ %8154, (U5 =Upy)] (7-122)

1 .
0 -=2(Uy =Uyy)

O 9 | 272 I (7-123)

0, 6 kT

1 -
-—z(U,, = U,,)
_ B_ICXP _2°712 T227 (7-124)

8, kT

5

[

D

22

where 0 is surface fraction
49 9, =—292 (7-125)

0, = 5 =
X149y + X249, X149y + X24n

1=

note that



% = 6—2 e—lz'* = e_l
0 0 8 0 i
1 9 2 "2 for random mixture
Rewriting (7-122)
uk = X410, AUy +X,G,0,,Au;, (7-126)

08, exp(-Au,, / RT)

- (7-127)
Ak 8, +6, exp(-Au,, / RT)
0, exp(-Auy, / RT) (7-128)
12~
0,+6 ~Auy, | RT .
2 ¥ Oy exp(-Ai, IRT) local compositions
where
1
Au21 =%Z(U21—U”)NA Au12=5z(U12—U22)NA (7-129)
To obtain the molar excess Helmholtz energy,
d@® IT) _ k (7-130)
d1/T) at const volume and composition
Integration gives
E ur
L. J uEd(1/T) + constant of integration (7-131)
T T,

At very high temperature 1/To— 0, we have athermal mixture for which



RT athermal R combinatorial

(7-132)
@) @ 1 0 0
=X ln——]+x21n 2 +52(q|x1 lngl*+q2len %
X .
o o 1 2 Guggenheim (1952)
where
ol =—1 _ and @)-—22 (7-133)
.xlrl + x2r2 xlrl + x2r2

segment fraction or volume fraction

Assuming that Auz1 and Auz. are independent of temperature
and that af ~gF

Eq (7-131) gives

E E E E
=) - &) - [ 0134
T,V T.P combinatorial residual

where

E * *
g @, O 1 6, 0
= =xIn—+xIn—=+—z|x1q; In—-+ x5q; In— 5
(RT) ’ s 1 X1 - X3 2 [ 191 d)l 2% (Dz (7 135)
combinatorial

E
g _A”ZI ‘A"IZ
c-1 =— In|6; +6 - In[ 6, + 0, ex 7-136
[RTJ . X191 n[l 2eXP( BT )J X242 [2 1 P( RT )] ( )
residual

The UNIQUAC equation is a good empirical representation for a large variety of liquid mixtures.
Molecular simulation suggests that the nonrandomness factors in (7-123) and (7-124) is too large.




7.8 Activity Coefficients from Group-Contribution Methods

Often necessary to estimate activity coefficients for mixtures

Group-contribution method
A molecule is divided into functional groups.
The number of possible distinct functional groups is much smaller than the number of distinct
molecules

Each functional group is assumed to be independent entity.

ACETONE TOLUENE
c R
Inr.l = |n A + Inyi
In yC (AS IN UNIQUAC) = FC(x,®, 8)
InyR= FR(X, Q. T, omp)
X = GROUP MOLE FRACTION; Q=GROUP EXTERNAL SURFACE AREA

Omn = INTERACTION ENERGY BETWEEN GROUPS m AND n

Figure 7-14  Activity coefficients from group contribution illustrated for a mixture of
acetone and toluene. Acetone has two groups and toluene has six, as shown. For a
component i, activity coefficient y; consists of two contributions, v¢ and yF where su-
perscript C stands for configurational and superscript A stands for residual. Here FCis
a specified function of molecular composition and structure: mole fraction x, volume
fraction ® and surface fraction 8; F7 is a specified function of group composition,
structure and interaction energies: X, Qand a,,,. Both functions F~ and Ff are ob-
tained from the UNIQUAC model. The key parameters are the group-group interaction
parameters for all pairs of groups (n,m) in the solution. In UNIFAC, for each pair, we
use two parameters: a,,, and a, .

UNIFAC (UNIquac Functional Activity Coefficient) method
Numerous modifications and extensions have appeared since the work of Fredenslund, Jones, and
Prausnitz (1975). (one of the most cited chem. eng. papers )



(Homework)
1. Use the UNIFAC model to predict the activity coefficients of benzene and 2,2,4-trimethyl pentane in
their mixtures at 55°C. Predict activity coefficients as functions of compositions and Pressure-

composition curves.

2. Use the UNIFAC model to predict the activity coefficients of water and acetone in their mixtures at
298K. Predict activity coefficients as functions of compositions and Pressure-composition curves.

Note: The program is based on the modified version of UNIFAC (Gmehling et al., 1993)



7.9 Chemical Theory (Dolezalek, 1908)

Molecules in a liquid solution interact with each other to form new chemical species and solution
nonideality, therefore, is a consequence of chemical reactions.

Association
nB = B,

dimerization of acetic acid

Solvation

nA + mB = Aan

solvation of chloroform an diethyl ether due to hydrogen bonding

L CaHs L CaHs
a;—C—H + O = 03—C—H----0
3 N 3 N
GHs CoHs

charge-transfer complex between nitrobenzene and mesitylene

3 3
O [ = O
CH, CH, CH, CH,



A weak chemical bond is formed because mesitylene is a good electron donor (Lewis base) and
nitrobenzene is a good electron acceptor (Lewis acid).

The chemical theory of solutions has little predictive value.
Inability to assign equilibrium constants without experimental data.
It cannot give quantitative predictions of solution behavior from pure-component data alone.



7.15 The Generalized van der Waals Partition Function
An approximate theory based on the canonical partition function

For a binary mixture, the equation of state is related to the partition function Q through
aanJ
ov T,N,,N;

and the chemical potentials are

P= kT[ (7-209)

ty = kT(aanJ (7-210)
ON) T,V,N,

By = k’r[alﬂj (7-211)
ON3 T,V,N,

The partition function is approximated by
N
1 V 31
Q(T,V,N)= m(ﬁ) (Grep)™ (Ga)Y (@r )Y (7-212)

where

A =hQ2xmkD)'?  de Broglie wavlength

Orep  Molecular partition function contributed from repulsive intermolecular forces
Qat  contributed from attractive intermolecular forces

Orv  contributed from rotational and vibrational degrees of freedom

1%
Grep = (7-213)
Vv Vi < V

Vt is the free volume available to the center of mass of a molecule as it moves, holding the other
molecules fixed.



-E,
= 7-214
Gatt exp[ AT ) ( )

Ec < O
Eo is the intermolecular potential energy experienced by one molecule due to the attractive forces
from all other molecules.

The generalized van der Waals partition function is

N N N
LTy Vs -E, N
Q(T’V'N)zﬁ(ﬁ) [7) {eXp ( 2AT )} el t-elo)
The rough approximation used by van der Waals
N
V,=V-—b (7-216)
f N,
b = (2/3)nN4o3 4 times the volume of sphere
Ey =2 (7-217) N
VN3 oo —~
\

a is a constant representing the strength of attraction
assuming gr is independent of volume
substituting into the partition function and using (7-209)

. kT(aan]
ov T,N\,N,

We obtain the well-known van der Waals equation of state

Pu v a

———— (7-218)
RT v-b RTv



For large, polyatomic molecules, gry is assumed to be factored into

drv = Gext V) Gine (T) (7-219)
‘ext’ represents contributions from external rotations and vibrations, which depends on density.

Following Prigogine’s idea
3c is “effective” external degrees of freedom per molecule (1 <c<r)
r is the number of segments in a molecule

v c-1

but it does not obey the ideal-gas limit.
To remedy this defect, some other forms were proposed

c-1
i
Goxt (V) = [7] (7-221)
by Beret
Vf _E c-1
qexl(v’T) = -"Tcxp[ Zk;'J (7-222)

by Donohue



7.16 Perturbed-Hard-Chain Theory

The free volume valid at low and at high densities (verified by computer simulation) is

In—4
V= Vexp[%—?—):! (7-223)

where M = Nep(®s/¥) and o = (03/VZN,  The upper limit of 1 is N, = V2 /6 = 0.7405,

‘cp’ for closed packing, vo is the closed-packed volume.
or _aNe® _aN,o® b
=" T v v

V i .
Vf Probability of inserting a molecule into a system without overlap with existing ones

- e {_ Reversible Work}_e _A%/N A" n(3n-4)
P KT R NkT  (L-7)

The potential energy Eo is from molecular simulation of Alder (1972) for square-well fluids

2” = Z Z (7-224)

FRs~m
n=lm=1T"0U

Anm’s are fitting constants of simulation data.

kT - v 2v .
=—— V=—=—71—, risthe number of segments per molecule

T = ;
& rv ro°N,

The perturbed-hard-chain equation of state is



(7-225)



7.17 Hard-Sphere-Chain Models

Hard-sphere-chain (HSC) models take into account significant features of real fluids including
excluded volume effects and chain connectivity.

QC%%OQ

o B

Freely-jointed tangent hard-sphere chains

HSC can be used as the reference system in the perturbation theory.
The equation of state is written as

2= -p_% = Zpeg + Zpert = (p’%)mf . {p—%—Ln (7-226)
p=NI(VN,)
Zref = ZHsC
The reference equation of state can be extended to mixtures without using mixing rules.
Only attractive terms require mixing rules.



Statistical Associated-Fluid Theory (SAFT)

The SAFT is based on the first-order thermodynamic perturbation theory (TPT) of Wertheim (1987).

“ The literature on SAFT is complex and confusing. The original article by Wertheim, while brilliant, is essen-
tially incomprehensible. Much patience is required to understand what SAFT is, what it can and what it cannot do.

The residual (or excess) molar Helmholtz energy a® has contributions from hard spheres, from
chain connnectivity, from dispersion (attraction), and from association

ak = s *+Achain + Agisp *+ Tassoc {7-227"
(& © @
e °® @ 00®
p_—
® o g Ot
e ®g 04 © ®

"Sticky"|Chain Sites (*)

@ @
Association O i
Sites (9 o
&
Association Complexes Chain Molecules
Are Formed Are Formed

Figure 7-30 Three steps to form chain molecules and association complexes from
hard spheres in the SAFT model.

The hard-sphere Helmholtz energy (in excess of that of ideal gas) is



Gns _ Ohs _ 4n=3n’
RT  RT (1-m)?

(7-228)

for a hard-sphere chain containing r hard spheres.

N

n=—Aprd’ (7-229)"

p is the molar density of chain molecules %
A

d is the temperature-dependent effective segment diameter

d = ofl-Cexp(-38/kT)] (7-230) semiempirical relation with C = 0.12

The Helmholtz energy for chain formation is

Sehain _ (1_r)In

.
7-232
RT 2(1-n) Shad

=—(r-1)Ing(o) g(r) is the radial distribution function of hard sphere fluid
= [ The number of bonds in a molecule ] [ Reversible work to form each bond ]

For the dispersion term, an expression obtained by Alder et al. for the square-well fluid is used

m
Adisp u " n
... Dl = | | === -
= r§§ nm(kTJ {HCPJ (7-233)
rlcp:ﬂﬁ/é

W=/ B ) semiempirical, e/k = 0 for small molecules like argon



The association contribution aassoc is Obtained from Wertheim’s theory.
A

@ Hard Sphere (Monomer)

B

A
m @ Chain Molecule (rmer)
B

Figure 7-31 Models for a hard-sphere (monomer) and a hard-chain molecule (r-
mer; e are chemical bonds), with two association sites A and B. The chain model can
represent nonspherical molecules. For example, if sites A and B attract each other,
various associated complexes can be formed. This picture is not altered by converting
hard spheres to soft spheres according to Eq. (7-230).

S
aaSS{)C - Z lnXS _ X_ +_Ai (7-235)47
RT % 2] 2

S represents association site (e.g., A or B),
M is the number association sites on each molecule (e.g., M=2)

XS is the mole fraction of molecules not bonded at site S, given by

1
X5 ={14 Ny Y pxY —2“—“(03K5Y) exp e =1 (7-236)
Y 2(1-n)3 kT

where summation is over all association sites, A, B, ....
&Y and x5 are the association energy and the association volume between sites S and Y.



From the residual molar Helmholtz energy a®, the compressibility factor of a real fluid is obtained

by - 5aj
Yo pap(RTT

P .
= pR_T = zid *Zps + Zchain T Zdisp T Zassoc (7-237)
. __4n-2n? “
Zn SPZh. =1 7-238
hs hs (1= T])3 ( )
5n-2n2
Zehain = (1-1)———— 7-239
can (1-m@2-n) 7
n m
Zaisp =12, 2, My = | | == Cieiall)
P nm kT Nep
e =B3[R L |EEL 7-241

Adjustable parameters for pure chain fluids

r is the number of segments per molecule
Vo IS the segment (sphere) molar volume at closest packing
- ;INA 53
Mep equivalent to specifying o
¢ the depth of the square-well potential for segment-segment interactions

two additional parameters > and x> for associating fluids.



For mixtures

The equation of states for hard-sphere mixtures

6 | %8s, 38 +(3‘§3)§%

Zhs = (7-242)
MU RNgp|1-E3  (1-E5)%  (1-E3)3
with
T[NApm X
& == L) k=0,1,23 (7-243)
i=l

for pure fluids n=¢&,=¢&,d

The contribution accounting for the formation of chains is

Zchain = 2, %i(1=r)L(d;) (7-244)

i=1

_ 283 +3d;8, — 483 +2d783 + 263 +d2ETE 5 - 3d,E 83

L(d‘) 5 EPE)
(1-E3)(2-483 +3d;E5 +2E3 +dE5 —3d;E 8

No mixing rules are necessary for the hard-sphere-chain reference system.

The contribution for the association is

L 1 1)ax5i
Zagsos =P .| Y| —==|—— 7-245
assoc E l[szi(xsi 2 60 ( )
m ¥ -1
XS = 1+ Nay 2, Do x;pX I W; (7-246)
j=1Y;



2
1 M4, & dd; | & sr [
Wy = g i) Lo
ij [1_§3 +di +d, (1-¢,)? + d+d) U-ts) (O'UK ) exp) o 1

where %ij = (0; + 0))/2

For dispersion term for mixtures, mixing rules are necessary.
See Huang and Radoz (1990, 1991).
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Figure 7-32 Vapor-liquid equilibria at 323 K for the mixture propanol/n-heptane (Fu
and Sandler, 1995).
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Figure 7-33 Vapor-liquid equilibria at 298 K and 394 K for the system CO,/2-propa-
nol. SAFT calculations were performed with the volume-fraction mixing rule (Huang
and Radosz, 1991).



