
CH.7 Fugacities in Liquid Mixtures: Models and Theories of Solutions 

 

The aim of solution theory is to express the properties of liquid mixture in terms of intermolecular 

forces and liquid structure. 

The simplest theory of liquid solutions: Raoult’s law 

 s
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Its failure for real solutions is due to differences in molecular size, shape, and intermolecular forces. 

 

7.1 The Theory of van Laar   

 

Consider a mixture of two liquids at constant temperature and pressure 

In mixing the two pure components, Van Laar assumed that 

 

1. No volume change, 0Ev  

2. The entropy of mixing is ideal, 0Es   

 

Since at constant pressure and temperature 

 

Van Laar’s assumptions corresponds to 

 



A three-step isothermal thermodynamic cycle 

 

 

u is given by the sum of the three energy changes 

 

Step I. Pure liquids are vaporized to the ideal-gas state at constant T. 

 

The energy change is given by the thermodynamic equation,  

 

 

Van Laar assumed the van der Waals equation for the volumetric properties of the pure liquids 
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For one mole of mixture with x1 moles of liquid 1 and x2 moles of liquids 

 

According to the VDW theory, the molar volume of a liquid well below the critical temperature is 

approximated by the constant b. Thus 

 

 

Step II. Mixing of gases at very low pressure (i.e., ideal gases) 

 

There is no change in energy 

 

 

Step III. The ideal gas mixture is compressed isothermally to the original pressure. 

 

As in the step I, the change in energy is given by the VDW EOS. 

 

Constant amixt and bmixt in terms of those of the pure components 

 

 



Adding up for u 
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The activity coefficients are obtained by differentiation   

 

 

where 

 

 

  ln  is proportional to T –1  because 0Es  

    

 independent of T 



  The activity coefficients are always greater than unity (positive deviation from Raoult’s law) 

           A >0 ,  B >0   ln  > 0 

    If it were assumed that 

 

    Then we would have 

 

    The rules to express the constants for a mixture have a large influence. 

 

  Quantitative agreement between van Laar’s equations and experimental results is not good because 

of VDW equation and the mixing rules used 

 

  Van Laar equations are useful empirical relations if we regard A and B as adjustable parameters. 

 

 

7.2 The Schtchard-Hildebrand Theory 

 

Hildebrand (1929) defined a regular solution as one with no excess entropy of mixing at constant 

temperature and at constant volume. 

 

The cohesive energy density is defined by 

 

where vapu is the energy change on the vaporization of the saturated liquid to the ideal-gas state. 

 



Hildebrand and Scatchard generalized (7-23) to a binary liquid mixture, 

 

 

The energy of a liquid mixture is assumed to be a quadratic function of the volume fraction 

The volume of a liquid mixture is assumed to be given by the mole fraction average.  

c11 and c22 are for pure saturated liquids, which are functions only of temperature. 

 

To simplify notation, volume fractions defined by 

 

Then (7-24) becomes 

 

 

The molar energy change of mixing (= excess energy of mixing ) is 

 

noting that  
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As suggested by London’s formula, it is assumed that 

 

(7-30) becomes 

 

where  is called the solubility parameter. 

 

As in the van Laar theory, we assume there are no excess entropy and no excess volume 

 

The activity coefficients are given by 

 
that are the regular-solution equations. 

The regular-solution equations always predicts i  1  (positive deviation from Raoult’s law), 

which is a consequence of the geometric-mean assumption. 



 

The difference in solubility parameters provides a measure of solution nonideality. 

For example, mixtures of aliphatic hydrocarbons with aromatics show appreciable nonideality. 

 



 

 



 

 

To relax the geometric-mean assumption 

 

The resulting activity coefficients are 

 

 

if the solubility parameters are close to each other, a small value of l12 can significantly affect activity 

coefficients. 



 

The l12 is an essentially empirical parameter, and efforts to correlate l12 are of little success. 

 

 



Effect of l12 on VLE 

 

 

Extensions to hydrogen-bonded components are of little theoretical sense. 

 

The multicomponent case 

 

 

The volume fraction is 

 



The excess energy of mixing is defined by 

 
The cohesive-energy density is given by the geometric mean 

 

Assuming  

 

Then 

 

The activity coefficients are 

 

 

 is a volume-fraction average of the solubility parameter of all the components. 

 

The regular-solution theory is attractive because of its simplicity, and it can correlate liquid-phase 

activity coefficients suing only one adjustable parameter. 

 

7.4 The Lattice Model 

 

The liquid state is in some sense intermediate between the gaseous state and the crystalline state.  

The lattice model considers a liquid to be solid-like or quasicrystalline. 

It supposes molecules to sit in a regular array in space, called a lattice. 



 

Deviations from ideal behavior in liquid solutions are due to  

 Attractive forces between unlike molecules different from those between like molecules, which 

gives rises to nonvanishing enthalpy of mixing 

 If the unlike molecules differ significantly in size or shape, giving rise to a nonideal entropy of 

mixing. 

 

Consider of a mixture of simple liquids 1 and 2 

Molecules are spherical, and the ratio of their sizes is close to unity. 

All the molecules are situated on lattice points. 

There are no vacant holes, and the lattice spacings for pure liquids and for the mixture are the same  

( vE = 0 )  

 

z pairs of type 11, z pairs of type 22     2z pairs of type 12 

2211  zz               122 z  

 



We assume that the potential energy is pairwise additive and  

that only nearest neighbors need be considered (short-range interaction) 

Consider N1 molecules of type 1 and N2 molecules of type 2. 

Each molecule has z nearest neighbors; empirically, z is close to 10 for liquids. 

The total number of nearest neighbors =  21
2

NN
z

          (avoiding double counting) 

Three types of nearest neighbors: 11, 22, and 12 

 N11 is the number of nearest-neighbor pairs of type 11.   

 N22,  N12 

They are related by 
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The total potential energy is given by 

 

Eliminating N11 and N22 using (7-68) 

   (7-70) 

The last term of (7-70) is the energy of mixing 

w is the interchange energy defined by 

 

is energy change accompanied when z pairs of type 12 are formed. 

 



The canonical partition function of the lattice is given by 

 

g is the combinatorial factor (degeneracy), the number of ways of arranging N1 and N2 molecules each 

giving the potential energy Ut (or giving N12 pairs, equivalently).  

g = 1 for a pure component 

We retain only the maximum term (p771, maximum term method). 

 

The Helmholtz energy change of mixing is 

 
 

Since QkTA ln  

 

w/z is energy change per each pair of type 12. 

 

We assume a completely random mixture for which all possible arrangement of the molecules are 

equally probable. 

The number of dissimilar pairs is 

    * indicate a completely random arrangement 
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=    ( No. of neighbor sites of molecules of type 1 )  

  ( Probability of randomly placing molecules of type 2 on the site) 

and 



 

Using Stirling’s formula 1,ln!ln  NforNNNN   

 z disappeared! 

In molar unit 

 

The molar excess Helmholtz energy is 

 

Since w is assumed to be independent of temperature 

 

is the entropy of mixing for an ideal solution. (We assumed a completely random arrangments) 

sE = 0 

We assumed also that 

 vE = 0 

The mixture we considered is a regular solution: 

  NA Avogadro’s number 

The activity coefficients are given by 



 

The same form as with the two-suffix Margules equation. 
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    w = 0     = 0 

But for nonpolar molecules 
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Positive deviations in agreement with experiment. 

 

7.6 Nonrandom Mixtures of Simple Molecules 

 

A completely random mixture can only result if intermolecular forces are the same for all the possible 

molecular pairs 11, 22, and 12. 

Strictly, only an ideal mixture can be completely random. 

 

Guggenheim constructed a lattice theory that is not necessarily random, which is called  

the quasichemical approximation. 

 



Consider the reaction 

 

The equilibrium constant K is defined by 

 

The energy change for the reaction is  2w / z by (7-71) 

The temperature derivative of ln K is 

 

Assuming that the energy change of reaction is given by 

 

Integrating (7-93) 

 

When w = 0, mixing is completely random 

 * designates random mixing 

using (7-68) and (7-75) 
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The equilibrium constant K becomes 

 

 

 

Introducing a parameter  

 

 

determined from (7-68) and (7-97) 

For random case,  = 1. 

The excess energy of mixing is 

 

where 
21
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To obtain the excess Helmholtz energy 

 

Integrating 

 

 



To simplify further, we expand  zkTw2exp  in power series.  

The molar excess functions are 

 

The excess entropy is negative for any positive or negative w. 



 

The Gibbs energy with quasichemical approximation becomes lower. 

 

 

Partial Miscibility 

 

The criteria for instability is 

 

 



As in chapter 6, the upper consolute temperature is 

 

For the quasichemical approximation 

 

When z = 10, 

 

Tc is 10% lower than in the case of random mixing. 

 



Methane / CF4 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 



7.7 The Two-Liquid Theory 

 

One-fluid theory: a mixture is considered to be a hypothetical pure fluid  

(in microscopic view) whose characteristic molecular size and potential energy are composition 

averages of those of its components  

(in macroscopic view) whose effective critical properties are composition averages of 

component critical properties  

 

Two-fluid theory uses two pure reference fluids. 

 

Consider a binary mixture 

 

 

A cell is referred to as an immediate region around any molecule. 

There are two types of cells: One type contains molecule 1 at its center and the other contains 

molecule 2 at its center. 



The two-fluid theory assumes that the property M of the mixture is given by 

 

where M(1) is the property M of a hypothetical fluid consisting only of cells of type 1, 

M(2) is the property M of a hypothetical fluid consisting only of cells of type 2. 

 

For example, let M stand for the (configurational) enthalpy hconf, 

 

For reference fluid 1, the same form is assumed that 

 

 

(1) and (1) are composition averages for cells of type 1 

 

ij
 and ij are for i-j interactions 

 

Similarly, 

 

 

 

Then, the molar enthalpy of the mixture is given by 



   (Two-fluid theory) 

 

The UNIQUAC equation is a two-fluid theory. 

 

We consider a process in which one molecule of component 1 is vaporized from its pure liquid (0), 

and then condensed into the center of cell [ hypothetical fluid (1) ] 

The energy of vaporization per molecule is )0(

11
2

1
Uz     (factor 1/2 considering double counting) 

)0(

11U  is the potential energy of two neighbors in pure liquid 1 

      simple case with r = q = 1 

Surface fractions: 

 11 the local surface fraction of component 1 about central molecule 1 

21 the local surface fraction of component 2 about central molecule 1 

 11 + 21 = 1 

The central molecule in hypothetical fluid (1) is surrounded by z 11 molecules of component 1 and 

z 22 molecules of component 2. 

The energy released by the condensation process around a central molecule in hypothetical fluid (1) 
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The energy released by the condensation process around a central molecule in hypothetical fluid (2) 
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For a mixture consisting of x1 moles of hypothetical fluid (1) and x2 moles of hypothetical fluid (2) 

 

for any q in general 

Conservation equation for the local surface fractions 

 

 

 

 

 

where  is surface fraction 

 

note that  



  for random mixture 

 

Rewriting (7-122) 

 

  local compositions 

where 

 

 

To obtain the molar excess Helmholtz energy,  

 at const volume and composition 

Integration gives 

 

 

At very high temperature 1/T0 0, we have athermal mixture for which 



Guggenheim (1952) 

where 

segment fraction or volume fraction 

 

Assuming that u21 and u12 are independent of temperature 

and that  aE  gE 

 

Eq (7-131) gives 

 

 

where 

 

 

 

The UNIQUAC equation is a good empirical representation for a large variety of liquid mixtures. 

Molecular simulation suggests that the nonrandomness factors in (7-123) and (7-124) is too large. 



7.8 Activity Coefficients from Group-Contribution Methods 

 

Often necessary to estimate activity coefficients for mixtures 

Group-contribution method 

 A molecule is divided into functional groups. 

The number of possible distinct functional groups is much smaller than the number of distinct 

molecules 

Each functional group is assumed to be independent entity. 

 

 

 

UNIFAC (UNIquac Functional Activity Coefficient) method 

Numerous modifications and extensions have appeared since the work of Fredenslund, Jones, and 

Prausnitz (1975).                              (one of the most cited chem. eng. papers ) 



 

 

(Homework) 

 

1. Use the UNIFAC model to predict the activity coefficients of benzene and 2,2,4-trimethyl pentane in 

their mixtures at 55C. Predict activity coefficients as functions of compositions and Pressure-

composition curves. 

 

2. Use the UNIFAC model to predict the activity coefficients of water and acetone in their mixtures at 

298K. Predict activity coefficients as functions of compositions and Pressure-composition curves. 

 

Note: The program is based on the modified version of UNIFAC (Gmehling et al., 1993) 



7.9 Chemical Theory  (Dolezalek, 1908) 

 

Molecules in a liquid solution interact with each other to form new chemical species and solution 

nonideality, therefore, is a consequence of chemical reactions. 

  

Association 

 

dimerization of acetic acid 

 

 

Solvation 

 

solvation of chloroform an diethyl ether due to hydrogen bonding 

   

 

charge-transfer complex between nitrobenzene and mesitylene 

 



A weak chemical bond is formed because mesitylene is a good electron donor (Lewis base) and 

nitrobenzene is a good electron acceptor (Lewis acid). 

 

The chemical theory of solutions has little predictive value. 

Inability to assign equilibrium constants without experimental data.  

It cannot give quantitative predictions of solution behavior from pure-component data alone. 

 



7.15 The Generalized van der Waals Partition Function 

 

An approximate theory based on the canonical partition function 

 

For a binary mixture, the equation of state is related to the partition function Q through 

 

and the chemical potentials are 

 

The partition function is approximated by 

 

where 

  de Broglie wavlength 

qrep  molecular partition function contributed from repulsive intermolecular forces 

qatt   contributed from attractive intermolecular forces 

qr,v   contributed from rotational and vibrational degrees of freedom 

 

         Vf  <  V 

Vf is the free volume available to the center of mass of a molecule as it moves, holding the other 

molecules fixed.      



       Eo  <   0 

Eo is the intermolecular potential energy experienced by one molecule due to the attractive forces 

from all other molecules. 

 

The generalized van der Waals partition function is 

 

 

 

The rough approximation used by van der Waals 

 

    4 times the volume of sphere 

     
V

N
  

a is a constant representing the strength of attraction 

assuming qr,v is independent of volume 

substituting into the partition function and using (7-209)  

 

We obtain the well-known van der Waals equation of state 

 

 



 

For large, polyatomic molecules, qr,v is assumed to be factored into 

 

 
‘ext’ represents contributions from external rotations and vibrations, which depends on density. 

 

Following Prigogine’s idea 

3c is “effective” external degrees of freedom per molecule ( 1 < c < r ) 

r is the number of segments in a molecule 

 

 
but it does not obey the ideal-gas limit.   

To remedy this defect, some other forms were proposed 

    by Beret 

 by Donohue 



 

7.16 Perturbed-Hard-Chain Theory 

 

The free volume valid at low and at high densities (verified by computer simulation) is 

 

where     

   ‘cp’ for closed packing, vo is the closed-packed volume.  

or 
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The potential energy Eo is from molecular simulation of Alder (1972) for square-well fluids 

 

Anm’s are fitting constants of simulation data. 
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The perturbed-hard-chain equation of state is 

 



 

 

 



 

7.17 Hard-Sphere-Chain Models 

 

Hard-sphere-chain (HSC) models take into account significant features of real fluids including 

excluded volume effects and chain connectivity. 

    Freely-jointed tangent hard-sphere chains 

 

HSC can be used as the reference system in the perturbation theory. 

The equation of state is written as 

 

 

,   

  

The reference equation of state can be extended to mixtures without using mixing rules. 

Only attractive terms require mixing rules. 

 



Statistical Associated-Fluid Theory  (SAFT) 

 

The SAFT is based on the first-order thermodynamic perturbation theory (TPT) of Wertheim (1987). 

 

 

The residual (or excess) molar Helmholtz energy aR has contributions from hard spheres, from 

chain connnectivity, from dispersion (attraction), and from association 

 

 

 

 

The hard-sphere Helmholtz energy (in excess of that of ideal gas) is 



 

for a hard-sphere chain containing r hard spheres. 

 

 is the molar density of chain molecules 
VN

N

A

chain  

d is the temperature-dependent effective segment diameter 

semiempirical relation with C = 0.12 

 

The Helmholtz energy for chain formation is 

 

 

    gr ln1      g(r) is the radial distribution function of hard sphere fluid 

 = [ The number of bonds in a molecule ] [ Reversible work to form each bond ] 

 

For the dispersion term, an expression obtained by Alder et al. for the square-well fluid is used  

 

 

 semiempirical, e/k = 0 for small molecules like argon 

 

 



The association contribution aassoc is obtained from Wertheim’s theory.  

 

 

 

 

 

S represents association site (e.g., A or B), 

M is the number association sites on each molecule (e.g., M=2)  

XS is the mole fraction of molecules not bonded at site S, given by   

 

where summation is over all association sites, A, B, .... 

SY and SY are the association energy and the association volume between sites S and Y. 

 

 



From the residual molar Helmholtz energy aR, the compressibility factor of a real fluid is obtained 

by  
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Adjustable parameters for pure chain fluids 

 

r is the number of segments per molecule 

vo is the segment (sphere) molar volume at closest packing  

equivalent to specifying  

 the depth of the square-well potential for segment-segment interactions 

two additional parameters SY and SY for associating fluids. 



For mixtures 

 

The equation of states for hard-sphere mixtures 

 

with 

 
for pure fluids d23    

 

The contribution accounting for the formation of chains is  

 

 

No mixing rules are necessary for the hard-sphere-chain reference system. 

 

The contribution for the association is 

 

 



 

where  

 

For dispersion term for mixtures, mixing rules are necessary. 

See Huang and Radoz (1990, 1991). 

  



 

 

 



 

 

 

 

 

 


