
CH.8 Polymers: Solutions, Blends, Membranes, and Gels 

 

8.1 Properties of Polymers 

 

Polymers are chain-like molecules. 

  Linear polymer 

  Branched polymer 

  Cross-linked polymer 

 

Polymers show little tendency to crystallize. 

 Semi-crystalline polymer 

  the extent of crystallinity in the range 30-80% 

  melts over a range of temperature 10-20 C 

 Amorphous polymer 

  The lower the temperature, the stiffer the polymers 

  Glass transition temperature Tg   

(freezing without positional order, the second-order transition) 

  



At T < Tg , amorphous polymers are hard, stiff, glassy materials. 

At T > Tg , amorphous polymers are in a rubbery or plastic state. 

 

The formation of synthetic polymers is governed by random events, and thus the chains 

obtained vary in length. 

The number average molecular weight is 

 

The number average molecular weight is 

 

nw MM   

Polydispersity (or heterogeneity index) 

nw MM /    in the range 1.5 ~ 2.0 for many polymers 

 



8.2 Lattice Models: The Flory-Huggins Theory 

 

We consider athermal solutions consisting of solvent and polymer. 

Thermodynamic mixing properties is written as the sum of two parts: 

(1) Combinatorial contribution ( Entropy change ) 

(2) Residual contribution due to differences in intermolecular forces and in free volume 

 

For the entropy of mixing 

 

The combinatorial entropy of mixing was independently derived by Flory and by Huggins 

for flexible chains. 

 

Consider a mixture of two liquids 1 and 2. 

N1 molecules of type 1 (solvent) are single spheres. 

N2 molecules of type 2 (polymer) are flexible chains consisting of r segments, each having 

the same size as that of a solvent molecule. 

Flory and Huggins showed that if the amorphous polymer and the solvent in athermal 

condition, the change in Gibbs energy and entropy of mixing is given by 

 

where 

 



(Derivation) 

Assumptions 

  No vacant sites 

  Each polymer molecule occupies r consequent sites 

  Solvent molecule occupies a single site 

  Total number of sites M = N1 + r N2 

 

Configurational degeneracy : the number of possible arrangements 

 21,ln NNkS   

     Entropy change of mixing is 

 
 

   21

21

,00,

,
ln

NN

NN
kSmix




  

  10,1  N  for pure solvent 

 2,0 N    for pure polymer 

 

  



2

12

21
!

1
,

N

i

i
N

NN   

where i is the number of ways of placing i-th polymer provided that the previous i1 

polymers are already placed. 

N2! is taken into account because polymers are indistinguishable. 

 

To obtain i+1 

Let the fraction of sites occupied at present 
M

ir
f i   

No. ways of placing 1st segment:   irM    

No. ways of placing 2nd segment:   ifz 1  

No. ways of placing 3rd segment:    ifz  11  



No. ways of placing 4th segment:    ifz  11  

 

Thus  

        

 
1

1

112

1

1

111
















 









 


r

r

r

rr

i

r

i

M

z
irM

M

riM
zriMfzzirM

 

  













 


22

1

1

1

1
1lnln

N

i

r

r
N

i

i
M

z
irM  

   irMr
M

z
rN

N

i








 
 





1

0

2

2

ln
1

ln1  

 

     MN
M

N

rNM

M

N
N

i

uuu
r

duu
r

duu
r

diirMirM
1

1

22
2

ln
1

ln
1

ln
1

lnln
0

1

0

 






 

 111 lnln
1

NNNMMM
r

  
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For the special case of r = 1, (8-5) reduces to  

 ( ideal entropy of mixing) 

Eq (8-5) always gives a combinatorial entropy larger than Eq (7-80). 

 

Various modifications have been suggested by Huggins, Guggenheim, Staverman, Tompa, 

and Lichtenthaler. 

 

The excess entropy per mole of mixture is  

 

 

SE is positive for all r > 1. Therefore, the Flory-Huggins theory predicts negative deviation 

from Raoult’s law: 

 

The activity of solvent is 

 

The activity coefficient of solvent based on mole fractions is 

 

 



The activity coefficient of solvent 

 

The solvent activity coefficient 1 is a strong function of r for small values, 

But for r > 100, it is essentially independent of r. 

 

For real polymer solutions, we add a term given by the enthalpy of mixing similar as in the 

regular solution theory. 

 

where  is the Flory-Huggins interaction parameter (dimensionless). 

 

c.f.) the enthalpy of mixing from the regular solution theory 

 

 



The activity of solvent and the corresponding activity coefficient of solvent based on mole 

fractions are  

 

 

 

The parameter  is assumed to be independent of composition. In terms of the interchange 

energy, 

  > 0 for nonpolar systems 

recalling that  

 

Assuming w is constant, Flory parameter  is inversely proportional to temperature. 

 



 

 is small as the components are chemically similar. The negative deviations from ideal-

solution behavior are mainly from differences in molecular size. 

 



Another example 

 

 



Experimental determination of  parameter using Eq (8-11) 

 

 

 

But for many other systems,  varies with polymer concentration! 

Calorimetric enthalpy-of-mixing often give a value of  significantly different from that 

obtained from activities.  

The temperature dependence of  is not a simple proportionality to inverse temperature. 

 



Connection with Scatchard-Hildebrand (regular solution) theory 

 

In terms of solubility parameter,  is given by  

 

where v1 is the molar volume of the solvent, and 1 are 2 the solubility parameters of 

solvent and polymer. 

Not an accurate description, but a good guide for a qualitative consideration of polymer 

solubility. 

A criterion of a good solvent for a given polymer is 

 

 

For example, polyisobutylene (=16.8) should be readily soluble in cyclohexane (=16.4), but 

only sparingly soluble in carbon disulfide (=20.5) 



Liquid-liquid equilibria 

 

Flory-Huggins theory can represent partial miscibility of polymer/solvent systems at low 

temperatures. 

From the stability analysis (sec. 6.12) 

 condition for instability 

The condition for complete miscibility for polymer solution is given by 

 

At critical condition (UCST) 
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 temperature: the limiting UCST for a polymer of infinite molecular weight 

 

As  is inversely proportional to temperature, 

 

Measured  temperature for a polymer/solvent system gives (T) 

 

 



LCST of polymer/solvent systems 

 

 

 



The empirically extended Flory-Huggins model can represent these complicated phase 

behaviors but with no theoretical basis. 

 

   (T,) 

 

 

 



8.3 Equation of State for Polymer Solutions 

 

Prigogine-Flory-Patterson theory 

 

A statistical-thermodynamic model 

 

 

It uses Prigogine’s suggestion for external degrees of freedom although this approximation 

is incorrect at low densities. 

 

Equation of state in reduced form is given by 

 

The residual part of the activity of solvent is  

 

Comparing with the Flory-Huggins theory 

 



 

 is identified as the reduced residual chemical potential. 

 now varies with composition, as found experimentally. 

 

 

 



 

 

 

The Prigogine-Flory-Patterson EOS should be used in liquid-like density as it does not 

reduce to the equation of state for an ideal gas. 

 

 

 

 



Lattice-Fluid Theory 

 

Sanchez and Lacombe included empty lattice sites (holes) to account for volume changes on 

mixing. 

 

For a pure component, the total number of lattice sites is 

 

where N0 is the number of vacancies, N the number of molecules each with r segments. 

The total volume of the system is  

 

where v* is the volume of a segment, equal to the volume of a lattice site. 

The reduced density and the reduced volume are defined as 

 

 

 

The energy of the lattice is contributed by nearest-neighbor interactions.  Assuming 

random mixing of vacancies and segments 
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The configurational partition function is 

 



 

The combinatorial factor Qc is identical to the Flory-Huggins theory, but with the solvent 

replaced by a vacancy. Therefore, Qc contributes to the equation of state. 

 

Differentiating the partition function with respect to volume gives the Sanchez-Lacombe 

lattice-fluid equation of state. 

 

where the reduced(~) and characteristic (*) temperature are 

 

 

A real fluid is characterized by three parameters, z, v* and r. 



For polymer, the 1/r term becomes insignificant, and Eq (8-84) suggests a corresponding-

state behavior in the limit r   

 

0
~
P  for atmospheric pressure 

25.0
~
P is a pressure of the order 1,000 bar. 
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8.4 Nonporous Polymeric Membranes and Polymer Gels 

 

[  Nonporous Membranes  ] 

 

The driving force for any permeating component i = μi(feed) – μi(permeate) 

 

The chemical potential of a liquid mixture in equilibrium with its vapor 

 

  μi
0G = the st-st (1bar) chemical potential of the pure gas 

  φi = the fugacity coefficient 

  Pi = partial pressure 

  μi0L = the chemical potential of the pure liquid  

at the same temp. and press. as those of the mixture. 

  γi
L = the activity coefficient 

  xi
L = the mole fraction of i in the liquid mixture 



The liquid mixture in equilibrium with the swollen polymer 

 

 

where superscript M indicates the membrane phase.  

 

At st-st chemical potential of the liquid phase and the membrane phase are identical. 

 

Eq. (8-102) rewrite as follow, (use molar concentration ci
M) 

 

 

where Si
L = the liquid solubility coefficient of component i 



Phase equilibrium between the gaseous (vapor) phase and the membrane phase. 

 

from Eqs. (8-99) and (8-103) we obtain 

 

where the gas solubility coefficient of component is 

 

This equation is useful for the description of transmembrane fluxes of the solution-diffusion model.  

In this model, the transport of each component i is divide into three steps. 

1.  The components of the liquid or gaseous feed mixture are absorbed in the membrane. There is 

thermodynamic solubility equilibrium at the phase boundary. 

2.  The absorbed components diffuse across the membrane from the feed side to the permeate side according 

to Fick’s first law of diffusion. 

3. The components are desorbed at the phase boundary between the membrane and the liquid or gaseous 

permeate. 



 

The case of pervaporation. 

 

Inside the membrane, flux Ji of component i is given by Fick’s law, 

 

where Di = the diffusion coefficient, and l = the length coordinate perpendicular to the top layer of the 

membrane with thickness δM(0 ≤ l ≤ δM). 

Integration of Eq.(8-110) ( Heinz and Stephan, 1994) gives 

 

where ciF
M and ciP

M are the concentration in the membrane boundaries at the feed side(index F) and the 

permeate side(index P), respectively. 

 

The solubility equilibrium conditions at both phase boundaries justifies substitution of ciF
M from Eq. (8-104) 

and ciP
M from Eq.(8-108) into Eq. (8-111). 

 

At steady state, the mole fraction yi of the gaseous permeate is obtained from 

 



 

For binary mixture, substitution of Eq.(8-112) into (8-113) gives 

 

If the pressure P in the permeate side is about P ≈ 0, Eq.(8-114) then simplifies to 

 

A plot of the permeate mole fraction y1 against L-L feed mole fraction x1
L is called a separation diagram. 

The separation factor is defined as follow. 

 



 

α > 1, component 2 is enriched in the permeate. 

α = 1, no separation effect is observed. 

α < 1, component 1 is enriched in the permeate. 

 



In gas separation, the flux Ji inside the membrane is also given by Eq.(8-111), with CiF
M and CiP

M from Eq. 

(8-108); 

 

where PiF and PiP are the partial pressure of component i in the pressurized gaseous feed mixture(index F) 

and in the permeate mixture(index P), respectively. 

Assume that, SiF
G ≈ SiP

G = Si
G, Eq. (8-118) simplifies to 

 

At binary mixture, (PiP << PiF), 

 

The separation factor is 

 



 

The case of reverse osmosis 

 

 

The high pressures are applied to the liquid feed side, so the pressure dependence add in the chemical 

potential. 

 

where iv  = the partial molar volume of component i in the mixture.  

Integration of Eq.(8-122) from the standard pressure(P0 = 1bar) to PF and assuming that 

iv is independent pressure.  

 

The chemical potential of membrane, 

 

In reverse osmosis, equality of the chemical potentials requires 

 



where PP is the pressure in the liquid permeate (usually 1bar) and subscript P denotes the permeate. Again, 

assuming that Fick’s law is valid inside the membrane, 

 

If SiF
L ≈ SiP

L = Si
L,  

 

Reverse osmosis is applied mostly to dilute aqueous solutions. For solvent water, assuming that iv ≈ wv  Eq. 

(8-128) can be rewritten as 

 

▪ (PF - PP) > ∆π, Jw > 0 

▪ (PF - PP) = ∆π, Jw = 0 

▪ (PF - PP) < ∆π, Jw < 0 

  



The binary mixture outside the membrane. 

 

Vapor sorption and the solubilities of liquids and liquids mixtures can be described well with the UNIQUAC model.  

 

The solubility curve for 2-propanol has a maximum, indicating a higher solubility for propanol in the mixture than 

for pure alcohol. Synergistic solubility effects are evident. 

 

 



The mixture 2-propanol/water with the poly(vinyl alcohol) membrane (VLE) system. 

 

▪ These data are calculated from UNIQUAC, and using the Maxwell-Stefan theory to account for coupling of the 

diffusion of the two components. 

▪ Water can be removed with high selectivity at fee weight fractions of 0.8-0.9. Within this composition range, the 

VLE curve shows the azeotropic point, i.e. pervaporation is effective where distillation is not. 

▪ The lower permeate pressure increase the selectivity for water. 



 

[  Polymer Gels  ] 

 

Polymer gels are three-dimensional elastic-network materials. The heterogeneous system containing a gel consist of 

three different homogeneous phase. 

▪ The fluid surrounding the gel. 

▪ The elastic structure forming the gel. 

▪ The fluid inside the gel. 

 

This figure illustrates a hydrogel undergoing such a phase transition. 

▪ The temperature below 35°C : The hydrogel coexists with pure water in swollen state. 

▪ The temperature upper 35°C : Collapses the hydrogel. 

▪ The temperature about 33°C: A phase transition between the shrunken (collapsed) and 

 the swollen state associated with a discontinuous change in volume. 



 

 

▪ pH > 6.6 : All gels studied here are collapsed, i.e. compact and hydrophobic, regardless of comonomer composition. 

▪ pH ≤ 6.6 : A critical value of pH is reached where the equilibrium content of water abruptly increases, giving rise to 

a highly swollen gel. At still lower pH values, the water content continues to increase but at a more gradual rate. 

▪ The water content in th low-pH range changes from about 90 to 40 weight%.  

▪ The 93/7 mol/mol gel remains compact at all pH ; no volume transition occurs.



Hino’s semi-empirical model 

 Consider a binary polymer solution : solvent (component 1, represent by sphere) and linear polymer (component 2, 

polymer molecules by freely-jointed chains) 

 

 Use extened Flory-Huggins lattice theory to calculate the Helmholtz energy of mixing ∆mixA : 

 

where k is Boltzmann’s constant, T is the absolute temperature, Ni is the number of molecules of component i, Φ2 is 

the volume fraction of the polymer, and g(T, Φ2) is an empirical function that replaces the customary Flory segmental 

interaction parameter. 

 

Next, a polymer gel containing solvent (component 1) and a large cross-linked polymer molecule (component 2) 

having a small number of ionizable segments.  

The Helmholtz energy of swelling is given by, 

 

where ∆mixA, ∆Aelas and ∆Aion represent mixing, elastic, and electrostatic contributions. 

The mixing contribution is, 

 

For the Helmholtz energy change due to elastic deformation, Hino uses an expression given by Birshtein and 

Pryamitsyn and Grosberg and Kuznetsov : 

 

where α is the expansion factor and v is the total number of chains.  

The expansion factor is given by :  



 

where Φ0 is usually approximated by the volume fraction of polymer at preparation of the gel. 

Finally, for a small charge density, Hino expresses the electrostatic effect using the van’t Hoff equation : 

 

where m is the number of charged segments per network chain between points of cross-linking and rn is the number 

of segments per network chain.  

For phase equilibrium calculations, the Flory χ parameter, defined by the product of two empirical functions :  

 

where B(Φ) is a function of composition and D(T) is a function of temperature. 

The reduced temperature and interchange energy ε is defined as follows, 

 

where εij(i, j = 1, 2) is the segmental interaction energy for non-spectific interactions between components i and j. 



The B(Φ) and D(T) is, 

 

where z is the lattice coordination number, δε12 is the difference between the segmental interaction energy for specific 

interactions and that for non-specific interactions, s12 is the ratio of degeneracy of non-spectific interactions to that of 

specific interactions and b is an empirical parameter, all obtained from independent polymer-solution data. 

 

At equilibrium, μ1 (surrounding pure solvent) is equal to μ1 (in the gel). The chemical potential of the solvent in the 

gel is found from differentiation of ∆Aswe with respect to N1. 

 

where ∆μ1 is the change in chemical potential of solvent upon mixing, and V is the volume of the gel. 



Under the specific conditions where two gel phases can coexist at one temperature, a polymer gel exhibits a 

discontinuous volume change. The conditions for coexistence of the two gel phases are 

 

 

where superscripts ‘ and “ denote coexisting phase. 

 

From the Gibbs-Duhem equation, Eq. (8-1510 can be replaced by 

 



 

 

 


