CH.8 Polymers: Solutions, Blends, Membranes, and Gels
8.1 Properties of Polymers

Polymers are chain-like molecules.
Linear polymer
Branched polymer
Cross-linked polymer

Polymers show little tendency to crystallize.
Semi-crystalline polymer
the extent of crystallinity in the range 30-80%
melts over a range of temperature 10-20 °C
Amorphous polymer
The lower the temperature, the stiffer the polymers
Glass transition temperature Tg
(freezing without positional order, the second-order transition)
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Figure 8-1 Schematic illustration of the variation of the specific volume of polymers
with temperature.



At T < Ty, amorphous polymers are hard, stiff, glassy materials.
At T > Ty, amorphous polymers are in a rubbery or plastic state.

The formation of synthetic polymers is governed by random events, and thus the chains
obtained vary in length.

The number average molecular weight is
M. = ZNEM.E
n ZN]
The number average molecular weight is
. Y NM}

YO NM,

(8-1)

(8-2)
M, >M,
Polydispersity (or heterogeneity index)

M, /M, in the range 1.5 ~ 2.0 for many polymers



8.2 Lattice Models: The Flory-Huggins Theory

We consider athermal solutions consisting of solvent and polymer.

Thermodynamic mixing properties is written as the sum of two parts:

(1) Combinatorial contribution ( Entropy change )

(2) Residual contribution due to differences in intermolecular forces and in free volume

For the entropy of mixing
AmixS = ASC + SR (8-3)

The combinatorial entropy of mixing was independently derived by Flory and by Huggins
for flexible chains.

Consider a mixture of two liquids 1 and 2.

N1 molecules of type 1 (solvent) are single spheres.

N2 molecules of type 2 (polymer) are flexible chains consisting of r segments, each having
the same size as that of a solvent molecule.

Flory and Huggins showed that if the amorphous polymer and the solvent in athermal
condition, the change in Gibbs energy and entropy of mixing is given by

AGE _ ASC .
—W‘=T=—(N1 lnCI);+N21n(D?_) (8-5)
where
* N N
1= . and @)= 2 (8-4)
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(Derivation)
Assumptions
No vacant sites
Each polymer molecule occupies r consequent sites
Solvent molecule occupies a single site
Total number of sites M = N1 +r N2

Configurational degeneracy Q: the number of possible arrangements
S=k InQ(N,,N,)

Entropy change of mixing is
Q(N,.N,)

Q(N,,0)2(0,N,)

Q(N,,0)=1 for pure solvent

Q(0,N,)  for pure polymer

AS =kKIn

Q(N;,N,) Ha)

2 i=1
where @ is the number of ways of placing i-th polymer provided that the previous i-1
polymers are already placed.
N2! is taken into account because polymers are indistinguishable.

To obtain @i+

Let the fraction of sites occupied at present f =—

No. ways of placing 1stsegment: M —ri
No. ways of placing 2nd segment:  z(1- f,)
No. ways of placing 3rd segment:  (z-1)L- f,)



No. ways of placing 4thsegment:  (z-1)(1- f,)

Thus

o, =M=ri)z(z-1)*@-f)" =(M —ri)(Z—]_)r_l(M _rijr—l

M

"t A (N2 A - 1 M-, 1m 1 M
i;In(M —H):L In(M —ri)di :_FIM Inudu = FINllnudu = F[u Inu—uly
=%(M INM—~M =N, InN, +N,)
Substituting

1 N, N,
InQ(N,,N,)= Iana)i =-N,InN, +N, +In] [,

27 i i=1

=—N,InN, +N,+MInM -M =N, InN, + N1+N2(r—1)|n(zv_1j

for pure polymer M =rN,
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Entropy change of mixing is

Q(N,,N,)
A STk =1 == =InQ(N,,N, )-InQ(0,N
mix nQ(Nl,O)gZ(O,NZ) n ( 1 2) n ( 2)
=-N,In N, N, In M,
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For the special case of r = 1, (8-5) reduces to

A i 1 aAmixa)
Xt | MXT ) — _ylnx;—x,Ilnx
R R( T ), 11X — X3 InXxp (7-80)

(ideal entropy of mixing)
Eq (8-5) always gives a combinatorial entropy larger than Eq (7-80).

Various modifications have been suggested by Huggins, Guggenheim, Staverman, Tompa,
and Lichtenthaler.

The excess entropy per mole of mixture is

E i, 1 "
iR_= g ln[l—(bz(l—-r—ﬂ—xzln[r—¢2(r—l)] (8-6)

SE is positive for all r > 1. Therefore, the Flory-Huggins theory predicts negative deviation
from Raoult’s law:
E pE SE sE

g_=___—:0———<0 (8'7)
RT RT R R

The activity of solvent is

. ) [
=In(1-® 1-—|®
Ing; = In( 2)+( r) 2 (8-8)

The activity coefficient of solvent based on mole fractions is

1 * 1 *
lnyl =ln|:1——[1—;)d>2:,+(l—;)<b2 (8-9)




The activity coefficient of solvent
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Figure 8-3 Solvent activity coefficient in an athermal polymer solution according to
the equation of Flory and Huggins. Parameter r gives the number of segments in the
polymer molecule.

The solvent activity coefficient y1 is a strong function of r for small values,
But for r > 100, it is essentially independent of r.

For real polymer solutions, we add a term given by the enthalpy of mixing similar as in the
regular solution theory.
AmixG _ AGE GR

+——=N;In®] + N, In®5 + yD1®5(N; +rN 8-10
RT ®T T RT 1In®; + Ny In®; + YD Dy (Ny +7N3) (8-10)

where g is the Flory-Huggins interaction parameter (dimensionless).

c.f.) the enthalpy of mixing from the regular solution theory

uF = (11 +cp = 2012)® @, (x7 + X30,) (7-30)



The activity of solvent and the corresponding activity coefficient of solvent based on mole
fractions are

* 1), « *
Ing =ln(l-(D2)+(l——JCD2 + 1D 8-11)
r

1 l *
Iny, =1n[1-(1——)¢§]+(1——)¢2+x<1>;2 (8-12)
' & r

The parameter y is assumed to be independent of composition. In terms of the interchange

energy,
¥ = (8-13)
kT > 0 for nonpolar systems
E
a w
2 _a X 7-79
RT kT 2 (=79)

recalling that

Assuming w is constant, Flory parameter y is inversely proportional to temperature.
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Figure 8-5 Activity coefficients at infinite dilution for n-butane and n-octane in
n-alkane solvents near 100°C. Negative deviations from Raoult’s law are due to the
difference in molecular size.

x 1S small as the components are chemically similar. The negative deviations from ideal-
solution behavior are mainly from differences in molecular size.



Another example
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Figure 8-6 Activity coefficients of heptane in the n-heptane (1)/polyethylene (2)
system at 109°C.



Experimental determination of x parameter using Eq (8-11)
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Figure 8-7 Data reduction using the equation of Flory and Huggins. Data are for so-
lutions of rubber near room temperature. Interaction parameters y are given by the

slopes of the lines.

But for many other systems, y varies with polymer concentration!
Calorimetric enthalpy-of-mixing often give a value of yx significantly different from that

obtained from activities.

The temperature dependence of y is not a simple proportionality to inverse temperature.



Connection with Scatchard-Hildebrand (regular solution) theory

In terms of solubility parameter, y is given by
Y1 2
=—L(8,-8 8-14
X RT( 1—92) (8-14)
where vi is the molar volume of the solvent, and 81 are &2 the solubility parameters of
solvent and polymer.
Not an accurate description, but a good guide for a qualitative consideration of polymer

solubility.
A criterion of a good solvent for a given polymer is

8y (8-15)

Table 8-1 Solubility parameters for some amorphous polymers near 25°C (Grulke, 1989

Polymer § (Jem?)12
Teflon 12.7
Poly(dimethyl siloxane) 14.9
Polyethylene 16.2
Polyisobutylene 16.4
Polybutadiene 17.4
Polystyrene 18.6
Poly(methyl methacrylate) 19.4
Poly(vinyl chloride) 19.8
Cellulose diacetate 22.3
Poly(vinylidene chloride) 25.0
Polyacrylonitrile 25.3

For example, polyisobutylene (6=16.8) should be readily soluble in cyclohexane (6=16.4), but
only sparingly soluble in carbon disulfide (6=20.5)



Liquid-liquid equilibria

Flory-Huggins theory can represent partial miscibility of polymer/solvent systems at low
temperatures.
From the stability analysis (sec. 6.12)

O*A i
[—a;;‘ﬁJ <0 (6-129)
T condition for instability

The condition for complete miscibility for polymer solution is given by

2
xs%{lﬁ-%] (8-16)

At critical condition (UCST)
c_Af, 1)
g ‘z(“ﬂ

As r—oo, Zczg and @°>0 cf)when r=1, ;=2 and @, =x,=05 (Sec.7.6)
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Figure 8-8 Calculated phase diagrams (cloud-point curves) for a binary mixture ac-

cording to the Flory-Huggins theory. The dotted line shows the locus of upper critical
solution temperatures.

0 temperature: the limiting UCST for a polymer of infinite molecular weight

As y is inversely proportional to temperature,

x(T) 0 is
—A =)= — 8-18
(T =0) X7 == (8-18)

Measured 6 temperature for a polymer/solvent system gives x(T)



LCST of polymer/solvent systems
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Figure 8-9 Schematic representation of phase stability in three binary polymer solu-
tions. (a) UCST is below LCST; (b) hourglass; (c) closed loop, where LCST is below
UCST.



The empirically extended Flory-Huggins model can represent these complicated phase
behaviors but with no theoretical basis.

300

250

200

Temperature, °C

150

100 1 1 I
0 0.2 0.4 0.6

Weight Fraction PEG

Figure 8-10 Phase diagrams for three PEG/water systems showing cli
temperatures as functions of PEG weight fractions. The molecular weig}
3,350 g mol"! (e); 8,000 g mol™! (1), and 15,000 g mol™! (0). Solid lines
(Bae et al., 1993).
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8.3 Equation of State for Polymer Solutions
Prigogine-Flory-Patterson theory

A statistical-thermodynamic model

(v )Y ENY

= 2| f Np, N —Ly

oT,V,N)= N!(AJ [Gext V™ [Gine (T)] {exp( AT )J (8-39)
V V rc

A_ngex‘ = (_A%J forrc>1 (8-40)

It uses Prigogine’s suggestion for external degrees of freedom although this approximation
is incorrect at low densities.

Equation of state in reduced form is given by

ﬁ.('j pl/3 1

T -1 T

(8-45)

The residual part of the activity of solvent is

~1/3 _

—udHR R pv*| ~ ©l5-1
o Rl |:3T11n——1 +@1 -5

RT  RT  RT

(X Yga , P (i
RT\ © RT\ Ny Jrpy,

Comparing with the Flory-Huggins theory

Ina)R =
(Inay) 13 _1

(8-74)

(Ina)R = x @32 (8-75)



Auf
-l 8-76
x RT®3? (676
x is identified as the reduced residual chemical potential.

% now varies with composition, as found experimentally.

1.4 ~ Experiment: ® 10°C
0 25°C
@ 40°C

| | | |
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Figure 8-13 Reduced residual chemical potential x [Eq. (8-76)] of benzene (1) in
polyisobutylene (2) at 25°C. Solid curve calculated from Eq. (8-74) with s,/s; = 0.58
and X;, =41.8J cm3 (Eichinger and Flory, 1968). The experimental x was obtained

from solvent-activity data using Eq. (8-11).
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Figure 8-17 Phase diagram (temperature-volume fraction) for the polystyrene/aceto-
ne system for indicated polymer weight-average molecular weight (Siow et al., 1972).

The Prigogine-Flory-Patterson EOS should be used in liquid-like density as it does not
reduce to the equation of state for an ideal gas.



Lattice-Fluid Theory

Sanchez and Lacombe included empty lattice sites (holes) to account for volume changes on

mixing.

For a pure component, the total number of lattice sites is
N, =Ny+rN (8-78)

where No is the number of vacancies, N the number of molecules each with r segments.

The total volume of the system is
V =(Ny +rNy* (8-79)

where v* is the volume of a segment, equal to the volume of a lattice site.
The reduced density and the reduced volume are defined as
. U rN

=PV =—=
P v N0+I'N

(8-80)

[SHIES

B

vyhere p= Nr/V is the density of segments, v=V/Nr

The energy of the lattice is contributed by nearest-neighbor interactions.

random mixing of vacancies and segments

2
N .
E=—£N,,a[ 4 J = ,p2525- (8-81)

The configurational partition function is

Q= QF exp(-E/ kT) (8-82)

Assuming



N, !
¢ = (constant)N( g Hr) :

No!N!  (Ny+rN)NC-D (8-83)

The combinatorial factor Q° is identical to the Flory-Huggins theory, but with the solvent
replaced by a vacancy. Therefore, Q¢ contributes to the equation of state.

Differentiating the partition function with respect to volume gives the Sanchez-Lacombe

lattice-fluid equation of state.

PG _1 1+17ln(1—l) o
Ty 5)| T (8-84)
where the reduced(~) and characteristic (*) temperature are
- 3 T
P* =/t T /2
Pv* =kT"

Areal fluid is characterized by three parameters, zg, v* and r.



For polymer, the 1/r term becomes insignificant, and Eq (8-84) suggests a corresponding-
state behavior in the limitr -» o
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Figure 8-21 Corresponding-states behavior of polymer P-V-T data according to the
Sanchez-Lacombe equation of state Points are experimental data and lines are cal-
culated from Eq. (8-84) in the limit r —» «. PS, polystyrene; PoMS, poly(o-methyl sty-
rene); PcHMA, poly(cyclohexyl methacrylate); PMMA, poly(methyl methacrylate);
PnBMA, poly(n-butyl methacrylate); LDPE, low-density polyethylene; PIB, polyisobu-
tylene; PVAc, poly(vinyl acetate); PDMS, poly(dimethyl siloxane); PPO, poly(propylene
oxide) (Sanchez and Lacombe, 1978).

P~0 for atmospheric pressure
P=0.25isa pressure of the order 1,000 bar.
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Figure 8-23 Comparison of experimental phase separation temperatures (@) ob-
tained by differential scanning calorimetry with the spinodal curve (—) predicted
by the lattice-fluid model (Kim and Paul, 1992).
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Figure 8-26 Compositions of coexisting phases for PEG/supercritical CO, mi
at 323 K as a function of pressure. —— Calculated from the Panayiotou-Vera v
of the lattice-fluid equation of state; ®, © experiment (Daneshvar et al., 1990).
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Figure 8-27 Solubilities of methane and nitrogen in polyethylene at 461.4 K. @, 0 ex-
periment. —— Calculated from SAFT equation of state. The binary parameter is cal-
culated from a temperature-dependent correlation (Wu and Chen, 1994).



8.4 Nonporous Polymeric Membranes and Polymer Gels

[ Nonporous Membranes ]

Feed

Nonporous Top La;?’i;
o

Porous Support

Figure 8-31 Schematic representation of a membrane-separation process using a
composite membrane with a thin dense nonporous top layer and a thick porous sup-
port layer.

The driving force for any permeating component i = pi(feed) — pi(permeate)

The chemical potential of a liquid mixture in equilibrium with its vapor
G =% + RTIn(p;R) = pf = pPk + RTn(y Fxf) (8-99)

1i%@ = the st-st (1bar) chemical potential of the pure gas
oi = the fugacity coefficient
Pi = partial pressure
wioL = the chemical potential of the pure liquid
at the same temp. and press. as those of the mixture.
yit = the activity coefficient

xi- = the mole fraction of i in the liquid mixture



The liquid mixture in equilibrium with the swollen polymer
wf=pM (8-100)

M = uOM 4 RT In(yMx}) (8-101)

where superscript M indicates the membrane phase.

At st-st chemical potential of the liquid phase and the membrane phase are identical.
yExl = yMxM (8-102)

Eq. (8-102) rewrite as follow, (use molar concentration ci™)

phxf =y MM - (8-103)
M_ Y L1
— 1 —
¢ T yeM X =5 (8-104)
i

where Si- = the liquid solubility coefficient of component i



Phase equilibrium between the gaseous (vapor) phase and the membrane phase.
pe =pM (8-105)

from Eqgs. (8-99) and (8-103) we obtain

1{C + RT In(p;B) = ™ + RTIn(y &M cM) (8-106)
or
0 OM
B~ —H;
reMcM =P, axp[——’ o ] (8-107)
or
M _ ol
¢ '51‘ i (8-108)
where the gas solubility coefficient of component is
oG oM
S 3109
[} T::'M m-

This equation is useful for the description of transmembrane fluxes of the solution-diffusion model.

In this model, the transport of each component i is divide into three steps.

1. The components of the liquid or gaseous feed mixture are absorbed in the membrane. There is
thermodynamic solubility equilibrium at the phase boundary.

2. The absorbed components diffuse across the membrane from the feed side to the permeate side according
to Fick’s first law of diffusion.

3. The components are desorbed at the phase boundary between the membrane and the liquid or gaseous

permeate.



The case of pervaporation.

Inside the membrane, flux Ji of component i is given by Fick’s law,

deM
J; ==D ?{ (8-110)

where Dj = the diffusion coefficient, and | = the length coordinate perpendicular to the top layer of the
membrane with thickness m(0 <1 < 8m).
Integration of Eq.(8-110) ( Heinz and Stephan, 1994) gives

D
J; =EL{CI.-';;-C;};; (8-111)
M

where cie™ and cip™ are the concentration in the membrane boundaries at the feed side(index F) and the

permeate side(index P), respectively.

The solubility equilibrium conditions at both phase boundaries justifies substitution of cie™ from Eq. (8-104)
and cie™ from Eq.(8-108) into Eq. (8-111).

Do _cc
JI—EM[SI,XJ_ §7F) (-112)

At steady state, the mole fraction yi of the gaseous permeate is obtained from

Ji R

ﬁ=§=“ (8-113)



For binary mixture, substitution of Eq.(8-112) into (8-113) gives

S T Di(Sfx - S7R) 116
A+Py Dy(S{xf -SPR)+Dy(SExf - ST Py)
If the pressure P in the permeate side is about P = 0, EQ.(8-114) then simplifies to
DISL.XL
7 — (8-115)

DyS{xf + DySkxk

A plot of the permeate mole fraction y: against L-L feed mole fraction x:" is called a separation diagram.

The separation factor is defined as follow.

L
o= (8-116)

x.f' ! ys
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Figure 8-32 Separation diagram in pervaporation calculated from Eq. (8-115) for
different values of the separation factor «.

a > 1, component 2 is enriched in the permeate.
o =1, no separation effect is observed.

a <1, component 1 is enriched in the permeate.



In gas separation, the flux Ji inside the membrane is also given by Eq.(8-111), with Cie™ and Cie™ from Eq.
(8-108);

D
Ji = ﬁ-:s.-%ﬂﬁ - S Rp) (8-118)

where Pir and Pip are the partial pressure of component i in the pressurized gaseous feed mixture(index F)
and in the permeate mixture(index P), respectively.
Assume that, Sir® = Sip® = S, Eq. (8-118) simplifies to

D;Sf
Ji N (Bg —Fp) (8-119)
At binary mixture, (Pie << Pif),
5P,
L L i L (8-120)
DySyRip + DyS3 Pop
The separation factor is
5G
a=t2 (8-121)

DS



The case of reverse osmosis

The high pressures are applied to the liquid feed side, so the pressure dependence add in the chemical

potential.

i) _s5 .
[ = ]M =7, (8-122)

where \7, = the partial molar volume of component i in the mixture.
Integration of Eq.(8-122) from the standard pressure(P° = 1bar) to Pr and assuming that

v, is independent pressure.

uk = pk (PO =1 bar) + G (Pr - PY)

(8-123)
=l + RTIn(yLxk) + Gip (Pp - PO)
The chemical potential of membrane,
pM = p0M 4 RTIn(yEMeM) + oM (P - PO) (8-124)

In reverse osmosis, equality of the chemical potentials requires
M -
RTIn(y ™M) + oM (Pp - PO) = RTIn(yhxk) + T;(Pp - P©) (8-1259

or

Ui(Pg - Pp) M
I—'ET— =T:-" L‘F (8-126)

¥ipxh exp|:—



where Pe is the pressure in the liquid permeate (usually 1bar) and subscript P denotes the permeate. Again,

assuming that Fick’s law is valid inside the membrane,

D, D, _
J; = ﬁ{c&f —ci)= Ef {Sipxf — Shxl exp[~T;(Pr — Pp)/RT]}  (8-127)

If Siet = Sipt = Sit,
Dy SE _
Ji= _a.;f_{x;} — xk exp[-T; (Pr - Pp)/ RT]} (8-128)

Reverse osmosis is applied mostly to dilute aqueous solutions. For solvent water, assuming that v, =V, Eq.

(8-128) can be rewritten as

_Dy a1
J, = -E;Sw.rw  {1-exp[-v,,(Pr - Pp — AT)/ RT]} (8-130)
where Am is given by
RT, xE
'U“,. wa

* (Pe-Pp) > Am, Jw>0
* (Pr-Pp) =Am, Jw=0
* (Pr- Pp) <Am, Jw<0



The binary mixture outside the membrane.

Vapor sorption and the solubilities of liquids and liquids mixtures can be described well with the UNIQUAC model.
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Figure 8-34 Experimental and calculated solubilities for the 2-propancliwater mixture
in cross-linked poly(vinyl alcohol} at 333 K. (Heintz and Stephan, 1994). Calculations
based on binary data only.

The solubility curve for 2-propanol has a maximum, indicating a higher solubility for propanol in the mixture than

for pure alcohol. Synergistic solubility effects are evident.



The mixture 2-propanol/water with the poly(vinyl alcohol) membrane (VLE) system.
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Figure 8-35 Separation diagram for the system 2-propanol/water/poly(vinyl alcohol) at
333 K. o, @ Pervaporation data (Wesslein et al., 1990) at two permeate pressures; ——
--- extended solution-diffusion (SD) model (Heintz and Stephan, 1994); - - - . - vapor-
liquid equilibrium (VLE) for 2-propanocl/water.

= These data are calculated from UNIQUAC, and using the Maxwell-Stefan theory to account for coupling of the

diffusion of the two components.
= Water can be removed with high selectivity at fee weight fractions of 0.8-0.9. Within this composition range, the

VLE curve shows the azeotropic point, i.e. pervaporation is effective where distillation is not.

= The lower permeate pressure increase the selectivity for water.



[ Polymer Gels ]

Polymer gels are three-dimensional elastic-network materials. The heterogeneous system containing a gel consist of
three different homogeneous phase.

= The fluid surrounding the gel.

= The elastic structure forming the gel.

*» The fluid inside the gel.
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Figure 8-36 Effect of temperature on the volume of a poly{N-isopropylacrylamide)
hydrogel in pure water. The expanded graph shows that, when the direction of transi-
tion is reversed, some hysteresis may be cbserved (Hirokawa and Tanaka, 1984).

This figure illustrates a hydrogel undergoing such a phase transition.
= The temperature below 35°C : The hydrogel coexists with pure water in swollen state.
= The temperature upper 35°C : Collapses the hydrogel.
= The temperature about 33°C: A phase transition between the shrunken (collapsed) and

the swollen state associated with a discontinuous change in volume.
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Figure 8-37 Swelling isotherms for the MMA/DMA copolymers of various comonomer
composition, determined as a function of pH at 25°C and a total ionic strength of 0.1
M. m 70/30 mol/mol, o 78/22 mol/mol, 4 86/14 mol/mol, 0 93/7 mol/mol (Siegel and
Firestone, 1988). MMA = methy! methacrylate (no charge); DMA = dimethylaminoethyl
methacrylate (positive charge at low pH).
= pH > 6.6 : All gels studied here are collapsed, i.e. compact and hydrophobic, regardless of comonomer composition.
» pH < 6.6 : Acritical value of pH is reached where the equilibrium content of water abruptly increases, giving rise to
a highly swollen gel. At still lower pH values, the water content continues to increase but at a more gradual rate.
= The water content in th low-pH range changes from about 90 to 40 weight%o.

= The 93/7 mol/mol gel remains compact at all pH ; no volume transition occurs.



Hino's semi-empirical model

Consider a binary polymer solution : solvent (component 1, represent by sphere) and linear polymer (component 2,

polymer molecules by freely-jointed chains)

Use extened Flory-Huggins lattice theory to calculate the Helmholtz energy of mixing AmixA :

A iz A
E: =Ny In(1-D,)+ Ny In(®y) + NyD, g(T, @) (8-138)

where k is Boltzmann’s constant, T is the absolute temperature, Ni is the number of molecules of component i, @2 is

the volume fraction of the polymer, and g(T, ®) is an empirical function that replaces the customary Flory segmental

interaction parameter.

Next, a polymer gel containing solvent (component 1) and a large cross-linked polymer molecule (component 2)
having a small number of ionizable segments.

The Helmholtz energy of swelling is given by,
MS‘W& - ﬁmﬂ+ ME[H 4 Miﬂl‘l [3_139}

where AmixA, AA®® and AA" represent mixing, elastic, and electrostatic contributions.

The mixing contribution is,

A

A
E: = Ny In(1-®,)+ Ny ©, g(T,D,) (8-140)

For the Helmholtz energy change due to elastic deformation, Hino uses an expression given by Birshtein and
Pryamitsyn and Grosberg and Kuznetsov :
AAdls 3 1 1
==vla?+—-2|+=vlna? (8-141)
kT 2 ol 2

where a is the expansion factor and v is the total number of chains.

The expansion factor is given by :



173
_| @0 ]
o -(%) (8-142)

where @ is usually approximated by the volume fraction of polymer at preparation of the gel.
Finally, for a small charge density, Hino expresses the electrostatic effect using the van’t Hoff equation :
AAlon
kT
where m is the number of charged segments per network chain between points of cross-linking and rn is the number

= —mvIn{N; +vr,) (8-143)

of segments per network chain.

For phase equilibrium calculations, the Flory y parameter, defined by the product of two empirical functions :

dg J T
=g-| —2 | = D(TB(®) (8-144)
L=g [5‘1‘1 i IXT)B(

where B(®) is a function of composition and D(T) is a function of temperature.

The reduced temperature and interchange energy ¢ is defined as follows,

L (8-145)
E
552512—5” —Ea7 {E'lqﬁ]

where &ij(i, j = 1, 2) is the segmental interaction energy for non-spectific interactions between components i and j.



The B(®) and D(T) is,

D{T)== (1+zaeufs](.l.]+zm Sl (8-147)
2 T I+s [.5512,]
12 EXp| —=
el
B(®) = — (8-148)
T 1-bD,

where z is the lattice coordination number, 812 is the difference between the segmental interaction energy for specific
interactions and that for non-specific interactions, su2 is the ratio of degeneracy of non-spectific interactions to that of

specific interactions and b is an empirical parameter, all obtained from independent polymer-solution data.

At equilibrium, p1 (surrounding pure solvent) is equal to pi (in the gel). The chemical potential of the solvent in the

gel is found from differentiation of AAS"® with respect to Nu.

aAA™e
éN,

1/3 513
, %o [E_] _[ﬂ} _(m,_l_Iﬂ} -0
J"H ‘bﬂ. ¢‘u 2 “I}D

where Apl is the change in chemical potential of solvent upon mixing, and V is the volume of the gel.

.ﬁp](d},}:{ ] =In(l-®,) + O, + D2
TV, Ny=1

(3;149)



Under the specific conditions where two gel phases can coexist at one temperature, a polymer gel exhibits a

discontinuous volume change. The conditions for coexistence of the two gel phases are

1y (@e) = Py (D) (8-150)

and
(@) = o (@) (8-151)

where superscripts ¢ and “ denote coexisting phase.

From the Gibbs-Duhem equation, Eq. (8-1510 can be replaced by

o
_L,“ Ap,@52d®; = 0 (8-152)
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Figure 8-38 Swelling-ratio curve for neutral PNIPAAm gel in water calculated with

the model of Hino (1998). Experimental transition temperature range is 32.5-33.8°C
(Hirotsu et al., 1987).



