
CH. 9 Electrolyte Solutions 
 

9.1 Activity Coefficient of a Nonvolatile Solute in Solution and Osmotic 

Coefficient for the Solvent 

 

As shown in Ch. 6, the chemical potential is 

 
where i

0 is the chemical potential in the standard state and  is a measure 

of concentration. 

For a nonvolatile solute, its pure liquid is often not a convenient standard 

state because      a pure nonvolatile solute cannot exist as a liquid. 

 

For the dissolved solute, 

 
i

* is the chemical potential of i in a hypothetical ideal solution at unit 

concentration (i = 1). 

In the ideal solution i = 1 for all compositions 

In real solution, i  1 as i  0 

 

A common misconception: 

The standard state for the solute is the solute at infinite dilution. () 

At infinite dilution, the chemical potential of the solute approaches  . 

Thus, the standard state should be at some non-zero concentration.   

A standard state need not be physically realizable, but it must be well-

defined. 

For convenience, unit concentration i = 1 is used as the standard state. 

 

 



Three composition scales: 

 
Molarity (moles of solute per liter of solution, ci) 

 
The standard state of the solute is a hypothetical ideal 1-molar solution of 

i.  
In real solution, i(c)  1 as ci  0 

 

Molality (moles of solute per kg of solvent, mi)       

            // commonly used for 

electrolytes 

// density of solution not 

needed 

 
The standard state is hypothetical ideal 1-molal solution of i.  
In real solution, i(m)

  1 as mi  0 

 

Mole fraction xi 

Molality is an inconvenient scale for concentrated solution, and the mole 

fraction is a more convenient scale.  

 
The standard state is hypothetical ideal solution of xi = 1.  
In real solution, i(x)  1 as xi  0 

 

For the solvent, the pure liquid is used as the standard state. 

 



 

The activity and the activity coefficient are affected by the choice of 

standard state and also by the choice of concentration scale. 



Relationships to convert activity coefficients: 

 

 
where d is the mass density (g cm-3) of the solution, ds the mass density of 

pure solvent, M2 the molar mass of the solute, and Ms the molar mass of 

the solvent. 

 

At constant temperature and pressure, the activity of the solvent is 

obtained by the Gibbs-Duhem equation. 
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For 1 kg of solvent, ns = 1000/MS,  ni = mi 

Integrating from pure solvent to solution at constant T, P 
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The osmotic pressure  of the solution is  

           Eq (4-41) 

The osmotic coefficient is defined by 
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Experimentally, the osmotic coefficient is often obtained from vapor-

pressure measurement. 

The activity of the solvent at modest pressure is 

 



Ps is the partial pressure of the solvent, and Ps
sat is the vapor pressure of 

the pure solvent. 

From (9-10) and (9-12), 
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9.2 Solution of an Electrolyte. Electroneutrality 

 

Cations and anions are not independent components because of 

electroneutrality. 

The electroneutrality imposes the condition that the number of moles of the 

individual ionic species cannot be varied independently. 

In aqueous NaCl, there are three species but only two components. 

 

Electrolyte dissociation is represented by 

 
Electroneutrality requires that 

 
For example, 

 

 
 

The criterion for chemical equilibrium is 

 
 

Using the molality scale, Eq (9-4), we have 

 
and 

 
Rewriting (9-16) in a more convenient form 

 
The mean ionic molality m and the mean ionic activity coefficient  are 



defined by 

 

 

 
 is a measurable quantity while + and - are not independently measurable. 
// We cannot vary moles of cations alone due to electroneutrality 

 

Eq (9-16a) becomes 

 
with 

 the mean ionic activity 



For strong electrolyte, dissociation is essentially complete 

  
The mean ionic activity coefficient is 

 
 

For NaCl (1-1 electrolyte) 

 
For 2-1 (or 1-2) electrolyte (e.g. CaCl2) 

  
 

 



 

Activity coefficient as a function of concentration 

 
 

In dilute solution, (m) decreases rapidly with increasing concentration. 

For a given valence type, (m) at low concentrations (m < 0.01) is 

independent of its chemical nature of the ions. (explained by the Debye-

Hückel theory) 

 

Activity data for electrolytes are obtained from measurements of the 

potentials of electrochemical cells, from solubility and colligative-property 

measurements and from vapor-pressure measurements. 

 



The standard state for dissociating solute is at m = 1 (unit molality),  

not at mMX = 1. 

 m = 4 1/3 m CaCl2 

 

9.3 Osmotic Coefficient in an Electrolyte Solution 

 

The chemical potential of the solvent using the molality scale is 

 

(m) is the osmotic coefficient.  
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If MX dissociates into  ions, the ideal-solution activity of the solvent is 

 
For real solution, substitution of (9-12) into (9-23) gives 

 

 
 

In the mole fraction scale, the chemical potential of the solvent is 

 
The mole fraction of the electrolyte is defined as 

 taking ionic species into 

account 



 
 



9.4 Relation of Osmotic Coefficient to Mean Ionic Activity Coefficient 

 

The mean ionic activity coefficient of the solute and the osmotic coefficient 

of the solvent are related to each other through the Gibbs-Duhem equation. 

 

At constant temperature and pressure, 

 
where xi  is the mole fraction in accord to Eq (9-26). 

 

Rewriting 

 
Substituting (9-21) 

 
We obtain 

 
Note that    since m =const*mMX 

From (9-22) and (9-25)  

 
Integration from pure solvent to the solution of interest gives 

 

 

 

 
The integrand approaches (-A) as m0, the Debye-Hückel coefficient of 

the osmotic coefficient.  

 

In summary, 

The experimental activity of solvent gives osmotic coefficient  by Eq (9-

25). 

  
The activity coefficient of the solute is then calculated from Eq (9-34). 



  
 

 

 



9.7 Debye-Hückel Limiting Law 

 

The ionic strength of the solution, I is defined by 

a measure of concentration of ions 

For seawater, I = 0.72 mol kg-1 

 
 

Solutions of electrolytes depend on both long-range electrostatic 

interactions and on short-range interactions between ions and between ions 

and solvent molecules. 

 

At infinite dilution, the ions are too far apart to exert any influence on 

each other.  

The mean ionic activity coefficient is unity. 

 

For dilute solutions, Coulombic forces become important; the local 

concentration of positive ions is slightly higher than that for the bulk 

solution (ionic atmosphere). 

The Debye-Hückel theory shows that the Coulomb’s potential is shielded by 

the ionic atmosphere, which is 

 
where -1 is called the Debye length  (a characteristic distance of 

interaction). 



 
 

The Debye length is defined by 

 

    
r the relative permittivity or dielectric constant, ds the solvent density 

 

The Debye length decreases with increasing concentration. 

E.g., for a 1-molal solution of 1-1 electrolyte at 25C, -1 =0.03 nm 

When m = 0.001 mol kg-1, -1 =9.64 nm. 

 

Electrolyte solutions are nonideal even at low concentration because of long-

range Coulombic forces. 

From the Debye-Hückel theory, the activity coefficient i of an ion with 

charge zi in a dilute solution of ionic strength I is 

 
(For further details, see McQuarrie’s book, Statistical Mechanics) 

 

There is no significant difference between molality and molarity for dilute 

aqueous solution near ambient temperature.  (density of water 1.0 kg/L)    

activity coefficient of ions 

where 

 



Substituting into the definition of the mean ionic activity coefficient (9-19), 

we obtain 

 Debye-Hückel limiting law 

The osmotic coefficient is 

   

 
 

For aqueous solution at 25C, 

 log10 

The Debye-Hückel limiting law is exact at low concentrations. 

 
(m)  depends on the valence but not on the chemical nature of the 

electrolyte. 

 

The Debye-Hückel equation is applicable only at low concentration ( I < 

0.01 mol kg-1) 

 

Deviation from the Debye-Hückel law at high concentration is due to 

nonelectrostatic ion-ion interactions (repulsion and dispersion forces), ion-

solvent solvation forces. 

 

Semi-empirical corrections for concentrated electrolyte solutions 

For I < 0.1 mol kg-1, 



 
For I < 0.1 mol kg-1, 

 
b is an adjustable parameter 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



9.8 Weak Electrolytes 

 

 

Weak Electrolytes are compounds (such as acetic acid) that are only 

partially dissociated in aqueous solutions. 

 

At equilibrium, in addition to the ions, there exists a significant 

concentration of the molecular (undissociated) electrolyte. 

 

The dissociation constant of the weak electrolyte (that depends only on 

temperature) relates the concentration of the undissociated electrolyte to 

the concentrations of the ions formed by partial dissociation. 

 

 

 
 

The dissociation ( or ionization) equilibrium constant is 

 
 

are ,respectively, the molality and the activity coefficient of the molecular (undissociated) 

part of the electrolyte. 

 

 

E.g., Dissociation constant of acetic acid (HAc) into H+ and acetate (Ac-) 

ions, 

 
 

 

 

 

 

 

 

 

 

 



9.9 Salting-out and Salting-in of Volatile Solutes 

 

 

When the appreciable amount of salt dissolves in a liquid, it significantly 

affects that liquid’s vapor pressure. Further, the dissolved salt affects 

the solubility of a gas (liquid) in that solvent and finally, if the solvent is 

mixture of two (or more) volatile components, the dissolved salt influences 

the composition of the vapor in equilibrium with the solvent mixture. 

 

 

The solubility of a gas in a salt solution is usually less than that in salt-

free water; this solubility decrease is called salting-out. 

 

 

Hydration forces (A simplistic but incomplete explanation) 

: Ions like to form complexes with water (hydration), thereby leaving less 

“free” water available to dissolve the gas. 

 

 
 

 

 

 

 



Setchenov equation (Setchenov, 1889) 

 

 
Three-phase system consisting of a gas phase and two aqueous phases. 

One aqueous phase(‘) contains no salt. 

The Other aqueous phase contains salt with molality mMX 

Temperature is sufficiently low so that water is essentially nonvolatile. 

 

 

For solute i, at equilibrium, 

 

 
Where, are, respectively, the molalities of solute i in the liquid 

phase ‘ (no salt) and in the liquid phase “ (with salt) 

 

 

Assume,  (a power series of the salt concentration) 

 

As an approximation, consider only the first term in the series. 

 
( Setchenov equation )  

: for low concentrations 

 
kMX : the salting parameter          

mMX : the molality of the salt in the aqueous solution  

 

 



Strictly, Setchenov’s constant, kMX, is independent of mMX only in the limit 

of infinite dilution of the electrolyte. 

Constant kMX depends on the salt, the solute, and the temperature. 

 
 

 

Constant kMX can be either positive or negative.  

If it is positive, the solubility of the gas decreases with rising salt 

concentration (the gas is salted-out) 

If it is negative, the solubility of the gas increases with rising salt 

concentration (the gas is salted-in) 

 

 

* Several empirical models ( estimation of Setchenov constant ) 

 

The model of Schumpe (1993) 

: The most general model because it can also be applied to mixed 

electrolyte solutions. 

 

Lang (1996) showed that the Setchenov equation and the Schumpe model 

can also be applied to aqueous solutions containing ionogenic organic 

compounds, such as amino acids, zwitterions peptides, proteins, and bases. 

 



A dissolved salt can also have a large effect on the composition of a vapor 

in equilibrium with an aqueous solution of a volatile liquid.(Furter and Cook, 

1967; Furter, 1976, 1977) When the dissolved salt solvates preferentially 

with the molecules of one component, the salt can have a selective effect 

on the volatilities of the two liquids, and hence on the composition of the 

equilibrium vapor. 

 

The effect of salt on vapor-liquid equilibria can be described by a 

Setchenov-type equation. For a single salt in a binary mixed-solvent at 

fixed (salt-free) composition, 

 
Where, are the relative volatilities with and without salt, respectively 

        kMX is the salt-effect parameter 

        mMX is the mole fraction of the salt in the liquid phase 

 

 
 

Another example,Fig.9-10 (    : azeotrope )  

 



9.10 Models for Concentrated Ionic Solutions 

 

 

When ions concentrations are low, the average distance between ions is 

large; in that case, only long-range electrostatic forces are important. As 

ion concentration rises ions begin to interact also with hard-core repulsive 

forces(leading to excluded-volume effects) and with short-range(van der 

Waals) attraction forces. 

 

 

To correlate activity coefficients in aqueous electrolyte solutions, semi-

empirical models can be divided into three broad categories. 

 

 Physical models. 

: Deviations from the Debye-Hückel limiting law are attributed to 

physical interactions between ions ( excluded-volume and van der 

Waals-attraction effects) 

 

 Chemical models. 

: Nonideal behavior of an electrolyte solution is attributed to 

chemical reactions that lead to the formation of semi-stable chemical 

species, particularly solvated ions. 

 

 Local-composition models. 

: The local-composition concept is used to account for nonrandomness. 

These models use the NRTL equation, or the Wilson equation, or 

the UNIQUAC equation. 

 

 

In all these models, the key adjustable parameters for the excess Gibbs 

energy are determined by regression of experimental data for the binary 

mixture. 

 

 

 

 

 

 

 

 



9.11 Fundamental Models 

 

 

With few exceptions, theoretical descriptions of electrolyte solutions have 

been based on the primitive model where the solvent is a dielectric 

continuum and the ions are considered to be charged hard sphere. 

 

This crude approximation is satisfactory for dilute solutions or else for 

solutions of particles that are much larger than the solvent molecules. 

Nevertheless, it is a bad approximation for concentrated ionic solutions 

where the size of the solute ion is comparable to that of the solvent 

molecule. 

 

 

Henderson et al. (1986) developed a non-primitive model where a 

perturbation expansion is applied to a mixture of dipolar hard spheres(the 

solvent) and charged hard spheres(the ions) of the same diameter. 

 

 

Using perturbation theory, Jin and Donohue (1988, 1988a, 1991) derived a 

four-parameter equation of state for aqueous solutions containing strong or 

volatile weak electrolytes, including multisalt systems 

 

 

The mean spherical approximation (MSA) has also been used to correlate 

activity coefficients in aqueous electrolyte solutions. This approximation 

uses the primitive model of aqueous electrolyte solutions but it takes 

serious account of the finite sizes of the charged particles(ions). 

 

 

 

 

 

 

 

 

 

 

 

 



9.12 Semi-Empirical Models 

 

 

Numerous semi-empirical models correct the Debye-Hückel theory through 

additional terms that account for ion-ion interactions and, at high 

concentrations, for incomplete dissociation. 

 
Where, Long-range (LR) coulombic forces, short-range forces (SR) 

 

(from sec. 9.3) 

 

(from Eq. *.19) 

 

Although almost all semi-empirical models use a Debye-Hückel-type term 

for the long-range contribution, several choices are abailable to account for 

the short-range contribution.  

  Local-composition expressions (UNIQUAC, NRTL, Wilson) 

  Van Laar equations 

 Margules equations 

 

Long-range forces between ions dominate at dilute electrolyte 

concentrations while short-range forces between all species dominate at 

high electrolyte concentrations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



9.13 Models Based on the Local-Composition Concept 

 

 

1. Cruz and Renon 

 

For the long-range contribution, Cruz and Renon use an expression obtained 

from the Debye-Hückel theory, For the short-range contribution, they use 

the NRTL model 

 

 

2. Chen et al. 

 

The NRTL model of Chen et al. Uses Eq. (9-57) with a Debye-Hückel long-

range term and a short-range interaction term of the NRTL form. 

Chen makes two assumptions to define local composition: 

 

 Like-ion repulsion assumption 

 Local electroneutrality assumption 

 

For single salt systems,  Two adjustable parameters (τMX,s and τs,MX) 

 
For multisalt systems,  binary parameters for solvent-salt pairs  

and binary salt-salt energy parameters 

 

 

 



3. Haghtalab and Vera 

 

Hanhtalab and Vera use the NRTL equation [as modified by Panayiotou and 

Vera] for short-range interactions, whereas long-range Coulombic 

interactions are obtained from the Debye-Hückel theory. 

 

For multisalt solutions,  not successful 

 

 

4. Liu et al. 

 

Liu et al. propose that The first term of Eq. (9.57) is obtained from an 

extended Debye-Hückel theory, and the second term of Eq. (9.57) is 

obtained from a local-composition expression of the Wilson type. 

 
 

Liu does not assume additivity of long-range and short-range contributions. 

 

Liu’s model successfully fits data  for a variety of concentrated 

electrolyte solutions. 

 
 

 



5. Sander et al. 

 

Sander et al. proposed a method to correlate and predict salt effects in 

vapor-liquid equilibria for water+cosolvent mixtures. 

 

This model conbines a term of the Debye-Hückel type with a modified 

UNIQUAC equation with concentration-dependent parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



9.14 The Model of Pitzer 

 

 

Since about 1973, the ion-interaction model of Pitzer has achieved wide 

acceptance. 

 

For an electrolyte solution containing ws kilograms of solvent, with molalities 

mi, mj, …, of solute species I, j, …, Pizer assumed that the excess Gibbs 

energy is given by 

 

 
Function f(I) depoens on ionic strength I, temperature and solvent 

properties; it represents long-rang electrostatic forces and includes the 

Debye-Hückel limiting law. 

 

λij(I) represents the short-range interaction between two solute particles in 

the solvent. 

 

Λijk(I) terms account for three-body ion interactions; they are important 

only at high salt concentrations. 

 

Pitzer assumed that the λ and Λ matrices are symmetric, i.e., λij=λji and Λ

ijk =Λikj=Λjik 

 

 

Applying Eq.(9-42) and (9-43) to Eq. (9-58), 

For a binary (i.e. single electrolyte) solution,  

 

 

 
 

Pitzer found that the best general agreement was obtained when terms f, 

BMX, and CMX have the form 

 

 



 
 

- Aφ is the Debye-Hückel constant for the osmotic coefficient given by 

Eq. (9-49a) 

- b is a universal parameter equal to 1.2 kg 1/2mol-1/2 

- α is another universal parameter equal to 2.0kg1/2mol-1/2 for most 

electrolytes. 

- Adjustable binary parameters βMX
(0), βMX

(1), and CMX
φ  are specific for 

each salt 

- Parameters CMX
φ depend on triple-ion interactions 

- All parameters (except α and β) are temperature-dependent. 

 

 
 



For mixed electrolytes, Pitzer uses additional terms in Eq. (9.58) that 

require additional interaction parameters, θij and ψijk, obtained from 

experimental data for aqueous mixed-electrolyte solutions with a common 

ion. 

 

However, for a multi-electrolyte solution, the principal contributions to GE* 

usually come from the single-electrolyte parameters; parameters θij and ψijk 

have only a small effect. 

 

 
 

 

 The like-sign interactions have little effect on mean ionic activity 

coefficient of NaCl; they account for only 3.5% of the total. 

 

 

 

All parameters can be evaluated from measurements for single electrolytes 

and common-ion two-salt solutions. 

 With Pitzer-model parameters and with solubility products of salts 

available from the experimental solubility in single-salt solutions, 

Pitzer’s model can be used to predict solid solubilities in mixed-salt 

systems. 



For a solid electrolyte Mv+Xv-·nH2O the solubility equilibrium in water is 

 
 

If the activity of the pure solid electrolyte is taken as unity, the solubility 

product is defined as 

 
 

The solubility product, Ksp, can be calculated if the standard-state Gibbs 

energy of the solid and aqueous species are available at the temperature of 

interest. 

For the aqueous ions and electrolytes, the standard state is the ideal, 

molal solution at fixed pressure and temperature. 

For the solid and solvent, the standard state is the pure phase at the 

pressure and temperature of interest. 

 

At reference temperature Tr = 298.15 K and standard pressure, Ksp can be 

calculated from tabulated standard-state values of Δfgi
0 

 

With  

Using the Gibbs-Helmholtz equation, the temperature dependence of Ksp is 

 

Where, ,  

 

If the temperature dependence of cp,i
0 is not known or if the difference 

between T and Tr is not large, Δcp
0 may be assumed constant, in that case, 

Eq. (9-70) simplifies to  

 
 

 



Figure 9-14 and 9-15 present two examples comparing experimental and 

calculated solubilities of two solid salts in an aqueous ternary mixture. 

The system NaCl/KCl in fig. 9-14 is simple with no intermediate solid phase 

but the system NaCl/Na2So4 exhibits an intermediate solid phase due to 

the formation of hydrate Na2SO4·10H2O. In both examples the two salts 

have a common ion thereby simplifying the calculations. 

 

 
 

 



Another example of application of Pizer’s model to multi-salt mixtures is 

provided by studies of mineral solubilities in brines by Weare and 

collaborators. To illustrate Weare’s results, Fig. 9-16 compares 

experimental with calculated solubilities of gypsum (CaSO4·2H2O) in 

Na2SO4/NaCl solutions. 

 
 

 

Calculated gypsum solubilities are in good agreement with experimental data 

at all ionic strengths. However, for this ternary system the model requires 

12 single electrolyte parameters and 5mixed-electrolyte parameters. The 

large number of parameters required in Pitzer’s model for multi-salt 

mixtures is its major disadvantage. 

 

 

 

 

 

 

 

 

 

 

 



9.15 The “Chemical” Hydration Model of Robinson and Stokes 

 

 

In a manner similar to that for chemical theories described in Chap. 7, it is 

possible to relate the activity of the water to the equilibrium constant (or 

constants) which characterize hydration equilibria. 

 

A particularly successful example for a single solvent solution is provided by 

the work of Stokes and Robinson (1973) 

 

Consider an aqueous solution of a strong electrolyte, containing nw moles of 

free water, n0 moles of anhydrous cations, n1 moles of singly-hydrated 

cations, ni moles of i-hydrated cations and nA moles of anions, at 

temperature T and total volume V. We neglect hydration of anions. This 

solution was prepared by adding c moles of anhydrous salt to water to give 

a final volume of 1 liter. 

 

The hydration equilibrium is 

 

 
And the corresponding equilibrium constant Ki is 

 
 

For fixed i, Ki, depends only on temperature. In general, however, Ki also 

depends on i.To reduce the number of adjustable parameters, Stokes and 

Robinson suggest that 

 
Stokes and robinson also assume that in a mixture of hydrated cations and 

anhydrous anions, there is a Flory-Huggins-type contribution to the entropy 

of mixing because the various dissolved species do not all have the same 

size. 

 

 

 



The molar volumes of the hydrates are assumed linear functions of I 

according to 

 
Where v0 is the molar volume of anhydrous cation and vw is the molar 

volume of water. 

 

Stokes and Robinson obtained an expression for the activity based on the 

theory of ion-ion interactions given by Waisman and lebowitz (1970) which, 

in effect, is a higher-order Debye-Hückel theory 

 

The activity of water is given by 

 

Where,  

 

Here h, the average hydration number, is found from a known function of 

the maximum hydration number, K, k, aw and Y where 

 
 

In Eq.(9-70), k-1 is the Debye length; d is the average diameter of the 

anhydrous cation and anion; NA is Avogadro’s constant; and function S( is 

given by the Waisman-Lebowitz theory: 

 
 

Volumetric data give v0, vA, and vw. Crystallographic data give diameter d. 

The Debye length is found from Eq. (9-47). The important adjustable 

binary parameters are K and k. 

 

Fig. 9-17 shows calculated and observed (molality) osmotic coefficients for 

water in three aqueous systems; NaOH and LiBr[Fig. (9-17a); and 

CaCl2[Fig.(9-17b)] 

 

 

 

 

 

 



 
 

 

Table 9-8 gives parameters for several binary aqueous systems. Results are 

not sensitive to ion diameter d and to the maximum hydration number, 

provided that reasonable values are used. However, results are sensitive to 

adjustable binary parameters K and k. 

 
 

 

 

 

 

 

 

 

 

 

 



The law of mass action suggests that, when water is present in excess, 

cations tend to hydrate with large hydration numbers. However, as the 

ratio of water to electrolyte declines, hydration numbers decrease. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



9.16 Conversion from McMillan-Mayer to Lewis-Randall Formalisms 

 

 

In the semi-empirical models briefly described in Sec.9.12, the excess 

Gibbs energy GE* is written as the sum of two contributions: 

First, a long-range contribution described by a Debye-Hückel-type 

electrostatic expression 

Second, a short-range contribution from another model (NRTL, Wilson, 

UNIQUAC, virial expansion, expression based on a chemical theory) 

 

However this simple addition of two contributions gives rise to an 

inconsistency because it combines an electrostatic contribution derived from 

the framework of MacMillan and Mayer with a contribution due to short-

range forces calculated in the customary framework of Lewis and Randall. 

 

In the Lewis-Randall framework, 

The independent variables are temperature T, pressure P, and the mole 

numbers of all species ni.  

 

In the McMillan-Mayer framework, 

The independent variables are temperature T, volume V, the mole numbers 

of the solute species nk, and the chemical potential of the solvent μs. 

 

Thermodynamic properties obtained from the McMillan-Mayer formalism are 

not identical to those obtained from the Lewis-Randall formalisms. 

 

To maintain consistency, it is necessary to convert the activity coefficients 

from the McMillan-Mayer to the Lewis-Randall frame work. 

 

 

 

 

 

 

 

 

 

 

 

 



9.17 Phase Equilibria in Aqueous solutions of Volatile Electrolytes 

 

 

Design of operations to remove volatile weak electrolytes from aqueous 

solutions requires representation of pertinent vapor-liquid equilibria. 

 

In aqueous solution, volatile electrolytes exist in ionic and molecular form. 

At ordinary temperatures and pressure only the molecular form exists in 

the vapor. 

 

Calculation of vapor-liquid equilibria requires simultaneous solution of phase-

equilibrium equations (for the molecular species), chemical-equilibrium 

equations for the liquid phase, and material balances. 

 

 
A molecular-thermodynamic framework proposed by Edwards et al. has been successfully used for 

calculating vapor-liquid equilibria in aqueous solutions containing one or more weak volatile electrolytes 

for temperatures from 0 to 200℃ for the total ionic strengths to more than 6 molal.(Figure9-19) 

 

For some solute i at low concentration of i, the phase equilibrium is 

primarily determined by Henry’s constant, Hi, and the molality of molecular 

(not ionic) solute i. This molality is strongly influenced by the chemical 

dissociation equilibrium, characterized by the dissociation constant,K. 

 

At higher concentration of i, Henry’s constant Hi must be multiplied by an 

activity coefficient that depends on the concentration of all solute species 

and on temperature. 

 

 

 

 

 



First consider the single-solute case; 

 

Since ions are not volatile, the phase equilibrium is governed only by the 

molecular concentration of the electrolyte in the liquid phase. Vapor liquid 

equilibria for the solvent(water) and for the solute(molecular electrolyte) 

are described by 

 
 

Equation (9-75) is rewritten (see Sec. 3.3) 

 

 
For the electrolyte, phase equilibrium considers only molecular electrolyte 

(designated with subscript M); therefore, Eq. (9-76) is rewritten 

 
In Eq. (9-78), yMX,MP is the partial pressure of the molecular weak electrolyte and φMX,M

V 

is the vapor-phase fugacity coefficient; mMX,M is the molality of the electrolyte in 

molecular form, γMX,M
(m) is the activity coefficient and HMX,M is Henry’s constant for the 

molecular solute. 

 

From a mass balance for the weak electrolyte in the liquid phase, we relate 

the overall electrolyte concentration (stoichiometric), mMX, to that in 

molecular form, mMX,M, and in chemically reacted form. For example, when 

NH3 is dissolved in water, 

 
 

In addition, the bulk electroneutrality condition of the liquid phase relates 

the concentration of cations to those of anions: 

 
 

Finally, using Eq. (9-54) the chemical equilibrium relates the molecular 

concentration of the undissociated electrolyte and the ionic concentrations 

of the weak electrolyte; for example, for the reaction  



 
 

------------------------------------------------------------- 

 

 
 

For aqueous solutions of sulfur dioxide, Fig. 9-20 compares experiment with 

results calculated using the method of Edwards. Dissociation of sulfur 

dioxide in the liquid phase was taken into account through the chemical 

equilibria 

 
 
Each of these chemical equilibria is characterized by a chemical-equilibrium constant, defined 

according to Eq. (9-81). Vapor-phase fugacity coefficients were calculated using the method of 

Nakamura et al. Henry’s constants as a function of temperature were obtained from binary-data 

reduction. Activity coefficients for the electrolyte and the activity of water were obtained from 

Edward’s extension of Pitzer’s model. Because SO2 is a weak electrolyte with a low dissociation 

constant, the concentration of ions is so small that Eq.(9-59) reduces to 

 



 
And for water 

 
 

Combining Eqs. (9-78) and (9-82), the equation for the phase equilibrium of 

SO2 is 

 
 

Where, HSO2,M
(Pw

s) stands for Henry’s constant of molecular SO2 in water at infinite dilution. 

 

Plotting the left-hand side of Eq.(9-84) as a function of the molecular 

concentration of So2, the slope gives the molecule-molecule interaction 

parameter, βSO2,SO2
(0), and the intercept gives Henry’s constant, HSO2,M

(Pw
s)
. 

 

 

 

 

The thermodynamic framework described above for a single-solute system 

can be extended to multisolute systems. The necessary parameters are 

obtained primarily from binary-data reduction but at high salt concentration, 

some ternary data are required. 

 

Figure 9-21 compares calculated and experimental results (Rumpf et al., 

1993a) for a two-solute system: ammonia and sulfur dioxide in water, from 

40 to 100℃ at two overall molalities of ammonia (302 or 6.1 mol kg-1 of 

water) and at pressures to 22bar 

 



This example is qualitatively different from the previous one because there 

is strong chemical interaction between the two solutes: acidic sulfur dioxide 

and basic ammonia. In this example, in addition to water, the liquid phase 

contains molecular ammonia, molecular sulfur dioxide, ammonium ion, 

hydrogen ion, hydroxyl ion, sulfite ion, and bisulfate ion, as indicated in Fig. 

9-22. 

 
Details of Rumpf et al. work (See 562p) 

 

------------------------------------------------------------- 

 

Coal-gasification and sweetening of natural gases often require removal of 

acid gases such as carbon dioxide and hydrogen sulfide from gaseous fuels. 

Such removal is best accomplished by absorption with aqueous alkanolamine 

solutions. Proper design of absorption equipment requires information on 

vapor-liquid equilibria, caloric effects and also on the kinetics of mass 

transfer and of chemical reactions 

 

Numerous models have been proposed to describe vapor-liquid equilibria for 

such systems.  

 

Silkenbäumer et al. (1998) used a similar correlation( Kuranov et al. 1996) 

for the solubility of carbon dioxide in aqueous solutions containing 2-amino-

2-methyl-1-propanol (AMP) and the alkanolamines MDEA and AMP, Due to 

chemical reactions in the liquid phase, carbon dioxide dissolves in both 

neutral and (non-volatile) ionic forms.( Figure 9-23) 

 

 

 

 

 



 
 

The good agreement between calculation and experiment is achieved only by 

taking into account all the chemical reactions possible in the liquid phase. In 

the system CO2/AMP/H2O, in addition to the solvent (water), 8 species are 

present: CO2, RNH2, RNH3
+, RNHCOO-, HCO3

-, CO3
2-, H+, and OH-. 

 

Details of Silkenbäumer et al. (1998) work (See 563~564p) 

 

 

 

Figure9-24 show predicted molalities of the major molcular species present 

in the liquid phase as a function of the overall molality of carbon dioxide 

for a 2.43 molal AMP aqueous solution at 313.15K. 

 



Silkenbäumer et al. (1998) also demonstrated that the solubility of carbon 

dioxide can be predicted reliably in solutions containing two alkanolamines, 

MDEA and AMP, using parameters of the Pitzer model obtained from 

reduction of experimental data for aqueous solutions containing only one of 

these alkanolamines.(Fig. 9-25) 

 

 
 

 

The work described above shows that is possible but not easy to describe 

phase equilibria of aqueous systems containing weak electrolytes and other 

solutes that react with those electrolytes.  

 

The ion-interaction model of Pitzer is suitable for such calculations; 

however, the large number of adjustable parameters requires an extensive 

data base that can be established only by carefully performed experiments. 

 

 

 

 

 

 

 

 

 

 



9.18 Protein Partitioning in Aqueous Two-Phase Systems 

 

 

Separation of biologically active materials is an important operation in 

biotechnology. 

One useful separation process is provided by liquid-liquid extraction using an 

aqueous two-phase polymer system formed when two water-soluble polymers 

are dissolved in excess water. 

 

 
 

A mixture of proteins is added to a two-phase aqueous system, each type 

of protein partitions uniquely between the phases. Therefore, separation 

can be achieved with an extraction process (Fig.9-27) 

 
To prevent denaturation of the biomacromolecules and to maintain pH 

control, small amounts of salts may be added. 

 



A useful feature of such systems is that the partitioning of 

biomacromolecules between the two phases can be altered changing the 

solution ph, ionic strength or the type of salt (electrolyte) added 

 

The difference in salt concentration establishes an electric-potential 

difference between the two phases; 

 

The difference in salt concentration, pH of the solution and the properties 

of the phase-forming polymers can result in a change in the partitioning 

behavior of proteins. 

 

 

 

The first task is to calculate the liquid-liquid phase diagram formed by 

water and the two water-soluble polymers in absence of salt or 

biomacromolecules. This calculation is achieved by expressing the chemical 

potential of all three components through an osmotic virial expansion in the 

polymer concentrations 

 

For equilibrium between phase ‘ and “ 

 
Subscript 1 refers to water and subscripts 2 and 3 refer to the water-soluble polymers.  

 

An osmotic virial expansion truncated after the second term gives chemical 

potentials μ2 and μ3 

 

 
An expression for the chemical potential μ3 of water is obtained from the 

Gibbs-Duhem equation, 

 
With Eq. (9.86) for μ2 and Eq.(9-87) for μ3, the chemical potentials μ1 is 

 
 

 

 



Interaction parameter b22, b33, and b23 are directly related to osmotic 

second virial coefficients B22
*, B33

* and B23
* by 

 

 

 
 

Consider now a protein component (subscript 4) distributed between the two 

aqueous phases. The distribution coefficient K is defined by 

 
Depending on pH, the protein may be electrically charged and therefore the 

presence of ions (salts) must be taken into account. When all proteins in 

the system are dilute, the distribution coefficient for a particular protein 

is given by (Haynes et al., 1993) 

 
 
F is faraday’s constant, φ the electric potential, z the electric charge and γ the chemical activity 

coefficient. 

 

Activity coefficients are found from the osmotic virial expansion with 

coefficients B22
*, B33

*, B23
*, B24

*and B34
*; additional terms for protein-salt 

and polymer-salt interactions are obtained from osmometric data.( Haynes 

et al., 1989) 

 

The electric-potential difference Δφ=φ”-φ’ between the two phases arises 

as the result of the additionof a salt that fully dissociates into v+ cations 

of charge z+ and v- anions of charge z- 

 

 

 

 

 



Applying quasi-electrostatic potential theory gives the relation (Haynes et 

al., 1991) 

 
 

Tow-phase system at equilibrium containing 1:1 electrolyte, i.e., z+/z- = -1 

and z+-z-=2. In this case, Eq. (9-95) reduces to 

 
Where Ks is the partition coefficient of the salt and, as usual, 

 
The last equality in Eq. (9-95a) holds because, at equilibrium, 

 
 

 

 

Figure 9-28 compares calculated and experimental partition coefficients for 

three proteins: albumin, chymotrypsion and lysozyme (Haynes et al., 

1991).

 



Figure 9-29 shows the dramatic effect on the partition coefficient of 

chymotrypsin when the salt is KI (Haynes etal., 1991). Because the anion 

(iodide) is bound by α-cyclodextrin and because α-cyclodextrin is 

predominantly in the aqueous dextran-rich phases, the salt KI partitions 

toward that phase. The more asymmetric the partitioning of salt, the 

larger Δφ. 

 

 


