CH. 9 Electrolyte Solutions

9.1 Activity Coefficient of a Nonvolatile Solute in Solution and Osmotic
Coefficient for the Solvent

As shown in Ch. 6, the chemical potential is
Wi =p? +RTIng =p? +RTIn(y ;) (9-1)

where pf is the chemical potential in the standard state and & is a measure
of concentration.

For a nonvolatile solute, its pure liquid is often not a convenient standard
state because a pure nonvolatile solute cannot exist as a liquid.

For the dissolved solute,
Wi =u; +RTIng; = i +RTIn(y&;) (9-2)
u/ is the chemical potential of 7 in a hypothetical ideal solution at unit
concentration (&= 1).
In the ideal solution y;= 1 for all compositions
In real solution, y/—> 1 as &£ —> 0

A common misconception:

The standard state for the solute is the solute at infinite dilution. (x)

At infinite dilution, the chemical potential of the solute approaches — .
Thus, the standard state should be at some non-zero concentration.

A standard state need not be physically realizable, but it must be well-
defined.

For convenience, unit concentration &= 1 is used as the standard state.



Three composition scales:

Molarity (moles of solute per liter of solution, ¢))
i =p +RTIn(y %) (9-3)
The standard state of the solute is a hypothetical ideal 1-molar solution of
/.
In real solution, v/ > 1 as ¢;—> 0

Molality (moles of solute per kg of solvent, m)
//  commonly used for
electrolytes
// density of solution not
needed
pi = uf +RTIn(y ™m,) (9-4y’
The standard state is hypothetical ideal 1-molal solution of /.
In real solution, y/™ > 1 as mi—» O

Mole fraction x;
Molality is an inconvenient scale for concentrated solution, and the mole
fraction is a more convenient scale.
;i =i +RTIn(yMx;) (9-5)
The standard state is hypothetical ideal solution of x; = 1.
In real solution, Y/ > 1 as x;> 0

For the solvent, the pure liquid is used as the standard state.
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Figure 9-1 Schematic representation of the activity of a nondissociating solute as a
function of its molality. Point A shows the standard state. When the solute’s molality is
1.5, its activity coefficient is given by CD/BD .



The activity and the activity coefficient are affected by the choice of
standard state and also by the choice of concentration scale.



Relationships to convert activity coefficients:

50 =y (1+0.001M,m,) (9-6)
Y™ =v¥es 1 (myd;) -7
159 = y$9[d +0001c, (M, - M3)]/ d, (9-8)

where d is the mass density (g cm™3) of the solution, ds the mass density of
pure solvent, M. the molar mass of the solute, and Ms the molar mass of
the solvent.

At constant temperature and pressure, the activity of the solvent is
obtained by the Gibbs-Duhem equation.

ndu, +ndw =0

po=p +RTIna,  =u"+RTIa™ =4°+RTIny™m

RTdIna, = ~ D RTdIn 7"m

|
S

For 1 kg of solvent, ns = 1000/Ms, n; = m;
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The osmotic pressure © of the solution is
= (9-10)
v
! Eq (4-41)

The osmotic coefficient is defined by

I 1 ] 1 (™ (oény™
Y, ML S, (TER —1+—J. mi[ = dm;  (9-11)
! TP

n(ideal) Ina{™ (ideal) o 0 om;

In agm)(ideal)z—llgﬂ(;o m  from (9-9) with y/™ = 1 for ideal solution

Experimentally, the osmotic coefficient is often obtained from vapor-
pressure measurement.

The activity of the solvent at modest pressure is
oyt (9-12)

~ psat
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Ps is the partial pressure of the solvent, and A" is the vapor pressure of
the pure solvent.
From (9-10) and (9-12),
4™ = z(real) _ (Ir)1 a,
r(ideal) Ina, (ideal)
p(m - _ 1000 B

; psat
Mm; P

(9-11a)

9.2 Solution of an Electrolyte. Electroneutrality

Cations and anions are not independent components because of
electroneutrality.

The electroneutrality imposes the condition that the number of moles of the
individual ionic species cannot be varied independently.

In aqueous NaCl, there are three species but only two components.

Electrolyte dissociation is represented by
My, X, == v,M¥4+v X¥ (9-13)

Electroneutrality requires that

ViZp+v_zo =0=v+z+—vg|z_| (9-14)
For example,

H,S0, == 2H" + SO%"

vi=2,2z, =1, v_=1,and z_ =-2.

The criterion for chemical equilibrium is
HM,,X,. = VaMpyzs + VoHyo- (9-15)

Using the molality scale, Eq (9-4), we have
BM,.X,. =By x. +V+RTIn(myy,)+v_RTIn(m_y_) (9-16)

and
Bh,x, = Velppe +V-He- (9-17)

Rewriting (9-16) in a more convenient form
® v+ V- v+, v—
u =pumx +RTIn(m; " m2")+RTn Al
MX = HMx + (r+v-") (9-163)

=umx +RTIn(ay*a)")

The mean ionic molality m: and the mean ionic activity coefficient y: are



defined by

— (V. V=11/V

my =(m,"m_") (9-18)
o V. V=i1/V

Y+ _(Y+ Y= ) (9_19)

where v=v,+ v_

vz is a measurable quantity while y. and y- are not independently measurable.
// We cannot vary moles of cations alone due to electroneutrality

Eq (9-16a) becomes
HMX = Bhx + vRTln(miyﬁ_Lm))

(9-20)
= ugx + vRTln(aim))

with

az =[(a,)"* @) 1" =myy ™ (9-21)

the mean ionic activity



For strong electrolyte, dissociation is essentially complete
m, = V+me and m_ = v_me

The mean ionic activity coefficient is

(m) _ ay

Y+
= v+, v—1/v
myx (Vi Vo)

(9-22)°

For NaCl (1-1 electrolyte)
my =myy and 78 =[(y oo ¥ o 172
For 2-1 (or 1-2) electrolyte (e.g. CaClz)

my = 4myy and 15" =020 )0 g1

Table 9-1 Mean ionic molality (m,.) for several electrolytes.

Type of Solute Example m,
Electrolyte M, X,_ My

1-1; 2-2; 3-3 NaCl; ZnSO, My
2-1;1-2 CaCl, 4Bmy
3-1;1-3 AlCl, 27 myis
4-1;1-4 Th(NO,), 256! 5myy

3-2 Al (SO,), 1085my




Activity coefficient as a function of concentration
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Figure 9-2 Mean ionic activity coefficients (Robinson and Stokes, 1970) for some
electrolytes in aqueous solution at 25°C.

In dilute solution, v:(™ decreases rapidly with increasing concentration.

For a given valence type, v:™ at low concentrations (m < 0.01) is
independent of its chemical nature of the ions. (explained by the Debye-
Hiickel theory)

Activity data for electrolytes are obtained from measurements of the
potentials of electrochemical cells, from solubility and colligative-property
measurements and from vapor-pressure measurements.



The standard state for dissociating solute is at m: = 1 (unit molality),
not at mmx = 1.
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Figure 9-3 Mean ionic activity of aqueous CaCl, at 25°C as a function of its molality

(Robinson and Stokes, 1970). Point A shows the standard state. The (ideal solution?

straight line goes through coordinates (0, 0) and (1, 4'3). When mgacy, = 1 mol kg™,

4"3mgq, =1.587 mol kg™, 2 m = 4 173

9.3 Osmotic Coefficient in an Electrolyte Solution

The chemical potential of the solvent using the molality scale is
s = pd(T,P)+ RT Ina, = p9(T, P)+ RTH(™ Ina{™ (ideal) (9-23)

r(real) Ina,

r(ideal) Ina.” (ideal)

¢ is the osmotic coefficient. ¢ =

m caclz

If MX dissociates into v ions, the ideal-solution activity of the solvent is

M
Ina’™ (ideal) = - 05 VMX (9-24)

For real solution, substitution of (9-12) into (9-23) gives

¢(m) - n.[.._lp%__J Ina, (9-25)
vimpx Mg

In the mole fraction scale, the chemical potential of the solvent is
ng =pO(T,P)+RTna, = u? + RT In(y ;x,) (9-23a)
The mole fraction of the electrolyte is defined as

nMmx mMmx 12
= 9-26
n, -+ VﬂMX 5551+ Vme ( )

*MX =
taking ionic species

account

into



Table 9-2 Activity coefficients (y), and rational (g) and molal osmotic (¢) coefficients of
aqueous sulfuric acid solutions at 25°C.*

My,s0, 7™ YH,0 91,0 9 H,0
0.1 0.266 1.000 0.749 0.680
0.3 0.183 1.005 0.686 0.668
0.5 0.156 1.008 0.708 0.676
1.0 0.132 1.014 0.745 0.721
1.5 0.126 1.015 0.828 0.780

* Robinson and Stokes (1970). The activity coefficient of the solute, y(im). is based on the molality
scale, whereas the activity coefficient of the solvent, y H,0 is based on the mole-fraction scale.



9.4 Relation of Osmotic Coefficient to Mean Ionic Activity Coefficient

The mean ionic activity coefficient of the solute and the osmotic coefficient
of the solvent are related to each other through the Gibbs-Duhem equation.

At constant temperature and pressure,
x;dIna; + xyqxdInayy =0 (9-31)

where x; is the mole fraction in accord to Eq (9-26).

Rewriting

dlna: =—(XMX /X_‘.)dlnaMx = 10”010 dlnaMx

M

s

Substituting (9-21)

a, :[(a+)v+(a_)v—]l/v =m Yim)

We obtain

S vmdIn(myy (™)

M
dlna; =—17.—0.’delnaMx =_1I;)S0 vmdlna, S

Note that dlnmi=dinm gince m: =const™ mmx

1000
Yim) o (fovv—)llv ¢(m) - H(mjlﬂas
From (9-22) M T and (9-25) '
diny(™ = d¢+i(¢- 1)dm (9-32)
m
Integration from pure solvent to the solution of interest gives
Iny™ =¢-1+ Mdm (9-33)

the integrand (¢p—1)/m diverges to —o as m— 0
changing the independcnt variable from m to m"2.

1
m g 1+2J‘ ‘1’”20, 12 (9-34)

The integrand approaches (-A4) as m—>0, the Debye-Hiickel coefficient of
the osmotic coefficient.

In summary,
The experimental activity of solvent gives osmotic coefficient ¢ by Eq (9-

25).
¢(m)=-[ L Jlnas (9-25)

Vimpx MJ‘

The activity coefficient of the solute is then calculated from Eq (9-34).



my-1
Iny{™ = <1>*1+2‘[0 ——4’”2 dm'’? (9-34)
m



9.7 Debye-Hiickel Limiting Law

The ionic strength of the solution, I is defined by

. 1
I(mol kg 1)=52mﬂf2 (9-45)
i

a measure of concentration of ions
For seawater, I = 0.72 mol kg!

Table 9-3 Concentrations of major ions in oceanic seawater (Clegg and Whitfield, 1991 )-

Component Molality (mol kg™)
Na* 0.486
Mg+ 0.055
CaZ* 0.011
K* 0.010
(sily 0.566
so%” 0.029

Solutions of electrolytes depend on both long-range electrostatic
interactions and on short-range interactions between ions and between ions
and solvent molecules.

At infinite dilution, the ions are too far apart to exert any influence on
each other.
The mean ionic activity coefficient is unity.

For dilute solutions, Coulombic forces become important: the local
concentration of positive ions is slightly higher than that for the bulk
solution (ionic atmosphere).
The Debye-Hiickel theory shows that the Coulomb’s potential is shielded by
the ionic atmosphere, which is

(r"Vexp(-rx) (9-46)

where ! is called the Debye length (a characteristic distance of
interaction).
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Figure 9-4 Coulomb potential for CI~ and Na* as a function of their (center-to-center)
separatlon distance: in vacuo, ¢,= 1; in an infinitely-dilute aqueous solution at 25°C, ¢,
=78.41, x’! = «; shielded Coulomb potentlal in water at25°C, e,=78.41 andx™! = 3. 05
nm. Debye Iength 3.05 nm is that of a 0.01 mol kg'! aqueous NaCl solution at 25°C.

The Debye length is defined by
=1 €,8,.RT .
Sl P (B)
2d,Nie’l
€, = 8.85419 % 10712¢c2 Nt m'{j ¢=160218x1079C
er the relative permittivity or dielectric constant, ds the solvent density

The Debye length decreases with increasing concentration.
E.g., for a 1-molal solution of 1-1 electrolyte at 25°C, k™! =0.03 nm

When m = 0.001 mol kg!, k! =9.64 nm.

Electrolyte solutions are nonideal even at low concentration because of long-

range Coulombic forces.
From the Debye-Hiickel theory, the activity coefficient y; of an ion with

charge z; in a dilute solution of ionic strength I is

N
© = _z2 Ny (9-48)
8ne, € ,RT

(For further details, see McQuarrie's book, Statistical Mechanics)

Iny;

There is no significant difference between molality and molarity for dilute
aqueous solution near ambient temperature. (density of water =1.0 kg/L)

Iny{™ =-a 7212 -4 - - ,
il Ay (rasa) activity coefficient of ions

where

2 V2 2
€ A 1/2
A = 2d -4

L [EOS,RTJ gn 208 S



Substituting into the definition of the mean ionic activity coefficient (9-19),
we obtain

Iny™ =_A |72 |12
3 =—Alez | (-39 pebye-Hiickel limiting law

The osmotic coefficient is

¢ -1=-Aylz,z2| 1" (9-51)
1
A =34 (9-49a)
For aqueous solution at 25°C,
(m) /550 -
logy 3™ (25°C,aqueous) = -0.510Jz, z_| /2 (9-50a)
logio
The Debye-Hiickel limiting law is exact at low concentrations.
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Figure 9-5 Mean ionic activity coefficients as a function of concentration for some
aqueous strong electrolytes (Robinson and Stokes, 1970). Full lines show experimen-
tal data. Dashed lines are calculated from the Debye-Hiickel limiting law [Eq. (9-50a)].

M depends on the valence but not on the chemical nature of the

electrolyte.

The Debye-Hiickel equation is applicable only at low concentration ( I <
0.01 mol kg™!)

Deviation from the Debye-Hiickel law at high concentration is due to
nonelectrostatic ion-ion interactions (repulsion and dispersion forces), ion-
solvent solvation forces.

Semi-empirical corrections for concentrated electrolyte solutions
For T< 0.1 mol kg'!,



12
(my _ ~fy lesz-|1 )
Iny{m = —Lt0 (9-52)
For I'< 0.1 mol kg'!,
12
(m) _ _AY|Z+Z- [ 19
Iy < —L =t bl (9-53)

b is an adjustable parameter

Table 9-4 Mean-ionic activity coefficients of aqueous sodium chloride at 25°C (Robinson
and Stokes, 1970).

m 7(:) Y(tFn) y (:1) Y(xm)
(mol kg™")* [Experiment]  [Eq. (9-50)] (Eq. (9-52)] [Eq. (9-53) with
b =0.37 kg mol*!]

0.001 0.965 0.964 0.965 0.965

0.005 0.927 0.920 0.925 0.927

0.01 0.902 0.889 0.899 0.902

0.05 0.819 0.769 0.807 0.822

0.1 0.778 0.690 0.755 0.783

* For a 1:1 electrolyte, molality of the electrolyte is equal to ionic strength.



9.8 Weak Electrolytes

Weak Electrolytes are compounds (such as acetic acid) that are only
partially dissociated in aqueous solutions.

At equilibrium, in addition to the ions, there exists a significant
concentration of the molecular (undissociated) electrolyte.

The dissociation constant of the weak electrolyte (that depends only on
temperature) relates the concentration of the undissociated electrolyte to
the concentrations of the ions formed by partial dissociation.

M, X,. = vWM%+ v X¥

The dissociation ( or ionization) equilibrium constant is

v+ _v- v+ v— . (m)y v+, (m)yv- v+ v— ¢ (m)\v
K=a+ a_ =m+ m_ (Y+ ) (Y-— ) =m+ m_ (Yi ) (9_54)

amx mMx Y &"))( mMx ¥ &T})(

(m)
myx and YMX gre respectively, the molality and the activity coefficient of the molecular (undissociated)
part of the electrolyte.

E.g., Dissociation constant of acetic acid (HAc) into H+ and acetate (Ac-)
ions,

_mygem, - (y M)

MHAC Y gIch

K




9.9 Salting-out and Salting-in of Volatile Solutes

When the appreciable amount of salt dissolves in a liquid, it significantly
affects that liquid's vapor pressure. Further, the dissolved salt affects
the solubility of a gas (liquid) in that solvent and finally, if the solvent is
mixture of two (or more) volatile components, the dissolved salt influences
the composition of the vapor in equilibrium with the solvent mixture.

The solubility of a gas in a salt solution is usually less than that in salt-
free water; this solubility decrease is called salting-ouft.

Hydration forces (A simplistic but incomplete explanation)
: Ions like to form complexes with water (hydration), thereby leaving less
“free” water available to dissolve the gas.
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Fel
g M (NH,),50.% 2
o |
g
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Figure 9-6 Solubility of carbon dioxide in aqueous solutions of sodium suifate and
ammonium sulfate at 80°C (Rumpf and Maurer, 1993). For the salt-containing solu-
tions the ionic strength is 6 mol kg™*.



Setchenov equation (Setchenov, 1889)

P

@

Vapor Phase '

Gaseous Solute i

Water Water + Salt

Myx=0 Myx >0

Liquid Phase ' | Liquid Phase "

Figure 9-7 Three-phase system consisting of a gaseous solute in equilibrium with
two aqueous liquid phases: phase ' contains only water; phase " contains water and a
salt with molality my,y. It is assumed that water is nonvolatile.

Three-phase system consisting of a gas phase and two aqueous phases.
One aqueous phase(’) contains no salt.

The Other aqueous phase contains salt with molality mmx

Temperature is sufficiently low so that water is essentially nonvolatile.

For solute i, at equilibrium,
G ) "

Hi =H; =H;
!—l,-G = p? +RTInm; = p? +RTInm;
Where, ™ 204 M que respectively, the molalities of solute i in the liquid

phase ' (no salt) and in the liquid phase " (with salt)

N?" ..pl(,)' = RTIn(kygxmpgx ) + higher terms

Assume, (a power series of the salt concentration)

As an approximation, consider only the first term in the series.

m_
In " = knxmmix (9-55)

( Setchenov equation )
: for low concentrations

kmx : the salting parameter
mumx : the molality of the salt in the aqueous solution



Strictly, Setchenov's constant, kmx, is independent of mmx only in the limit
of infinite dilution of the electrolyte.
Constant kmx depends on the salt, the solute, and the temperature.

Table 9-5 Molality Setchenov constants for volatile solutes in aqueous electrolyte solu-
tions at 25°C (Krishnan and Friedman, 1974).

Salt Gas kyx (mol kg™")
NaCl H, 0.220

N, 0.309

CH, 0319

C,H 0.399
KCl 0, 0.298

$0, -0.051
(CH,),NBr CH, -0.039

C,H, -0.092

CHy -0.170

Constant kmx can be either positive or negative.

If it is positive, the solubility of the gas decreases with rising salt
concentration (the gas is salted-out)

If it is negative, the solubility of the gas increases with rising salt
concentration (the gas is salted-in)

* Several empirical models ( estimation of Setchenov constant )

The model of Schumpe (1993)
: The most general model because it can also be applied to mixed
electrolyte solutions.

Lang (1996) showed that the Setchenov equation and the Schumpe model
can also be applied to aqueous solutions containing ionogenic organic
compounds, such as amino acids, zwitterions peptides, proteins, and bases.
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Figure 9-8 Setchenov plot of oxygen in aqueous solutions of some bio-organic com-
pounds at body temperature (37°C).* HAc, acetic acid; Ammediol, 2-amino-2-methyl-
1,3-propan-diol; TRIS, Tris(hydroxymethyl)amino-methane; Gly, glycine; TRIS.HAc
Tns(hydroxymelhyl)amino-methane acetate; Gly-Na, glycine-sodium sait; L-Lys.Hdl
L-IyS|ne-monohydrochloride; L-Glu-Na, L-glutamic acid-monosodium salt; L-GIu-Naz'
L-glutamic acid-disodium salt. (Lang, 1996). ' :



A dissolved salt can also have a large effect on the composition of a vapor
in equilibrium with an aqueous solution of a volatile liquid.(Furter and Cook,
1967; Furter, 1976, 1977) When the dissolved salt solvates preferentially
with the molecules of one component, the salt can have a selective effect
on the volatilities of the two liquids, and hence on the composition of the
equilibrium vapor.

The effect of salt on vapor-liquid equilibria can be described by a
Setchenov-type equation. For a single salt in a binary mixed-solvent at
fixed (salt-free) composition,

o .
lna—o = kMxxMx (9-56)

Where, @ 1 0° gre the relative volatilities with and without salt, respectively

kmx is the salt-effect parameter
mumx is the mole fraction of the salt in the liquid phase
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Figure 9-9 Salt effects in ethanol/water system at constant liquid composition
X = 0.206 (salt-free basis).
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Another example,Fig.9-10 ( O : azeotrope )
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Figure 9-10 A salt may invert relative volatility or eliminate an azeotrope. Vapor-
liquid equilibrium at 1 bar for: (a) Acetic acid/water system with no salt (- - -), satu-
rated (about 1.8 mol kg'!) with BaCl, (0), and saturated (about 7.5 mol kg'!) with
CaCl, (O) (Ramalho et al., 1964).(b) Acetone/methanol system with no salt (- — -),
and saturated (about 3.8 mol kg™*) with Nal (a) (lliuta and Thyrion, 1995).
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9.10 Models for Concentrated Ionic Solutions

When ions concentrations are low, the average distance between ions is
large:; in that case, only long-range electrostatic forces are important. As
ion concentration rises ions begin to interact also with hard-core repulsive
forces(leading to excluded-volume effects) and with short-range(van der
Waals) attraction forces.

To correlate activity coefficients in aqueous electrolyte solutions, semi-
empirical models can be divided into three broad categories.

® Physical models.
: Deviations from the Debye-Hiickel limiting law are attributed to
physical interactions between ions ( excluded-volume and van der
Waals-attraction effects)

® Chemical models.
: Nonideal behavior of an electrolyte solution is attributed to
chemical reactions that lead to the formation of semi-stable chemical
species, particularly solvated ions.

® Local-composition models.
: The local-composition concept is used to account for nonrandomness.
These models use the NRTL equation, or the Wilson equation, or
the UNIQUAC equation.

In all these models, the key adjustable parameters for the excess Gibbs
energy are determined by regression of experimental data for the binary
mixture.



9.11 Fundamental Models

With few exceptions, theoretical descriptions of electrolyte solutions have
been based on the primitive model where the solvent is a dielectric
continuum and the ions are considered to be charged hard sphere.

This crude approximation is satisfactory for dilute solutions or else for
solutions of particles that are much larger than the solvent molecules.
Nevertheless, it is a bad approximation for concentrated ionic solutions
where the size of the solute ion is comparable to that of the solvent
molecule.

Henderson et al. (1986) developed a non-primitive model where a
perturbation expansion is applied to a mixture of dipolar hard spheres(the
solvent) and charged hard spheres(the ions) of the same diameter.

Using perturbation theory, Jin and Donohue (1988, 1988a, 1991) derived a
four-parameter equation of state for aqueous solutions containing strong or
volatile weak electrolytes, including multisalt systems

The mean spherical approximation (MSA) has also been used to correlate
activity coefficients in aqueous electrolyte solutions. This approximation
uses the primitive model of aqueous electrolyte solutions but it takes
serious account of the finite sizes of the charged particles(ions).



9.12 Semi-Empirical Models

Numerous semi-empirical models correct the Debye-Hiickel theory through
additional terms that account for ion-ion interactions and, at high
concentrations, for incomplete dissociation.

E* *
gF = gfp + ekt (9-57)

Where, Long-range (LR) coulombic forces, short-range forces (SR)

® _1ny® 4 1py®
Iny:" =InYiR *IYiSR (o cec. 9.3)

Iny{® =l(v,r Iy +v_Iny®)
v (from Eq. *.19)

Although almost all semi-empirical models use a Debye-Hiickel-type term
for the long-range contribution, several choices are abailable to account for
the short-range contribution.

Local-composition expressions (UNIQUAC, NRTL, Wilson)

Van Laar equations

Margules equations

Long-range forces between ions dominate at dilute electrolyte
concentrations while short-range forces between all species dominate at
high electrolyte concentrations.



9.13 Models Based on the Local-Composition Concept

1. Cruz and Renon

For the long-range contribution, Cruz and Renon use an expression obtained
from the Debye-Hiickel theory, For the short-range contribution, they use
the NRTL model

2. Chen et al.

The NRTL model of Chen et al. Uses Eq. (9-57) with a Debye-Hiickel long-
range term and a short-range interaction term of the NRTL form.

Chen makes two assumptions to define local composition:

Like-ion repulsion assumption
Local electroneutrality assumption

For single salt systems, > Two adjustable parameters (tmx,s and Ts mx)

T I T T T

6l = Experiment .
- - = Chen's Model

(m)

Tz
0 | [ | 1 1
0 2 4 6 8 10
Molality KOH, mol kg™
Figure 8-11 Mean ionic activity coefficients for aqueous KOH at 25°C. —— Experi-
ment (Zemaitis et al., 1986); ==~ - - Chen’s model.

For multisalt systems, - binary parameters for solvent-salt pairs
and binary salt-salt energy parameters



3. Haghtalab and Vera

Hanhtalab and Vera use the NRTL equation [as modified by Panayiotou and
Vera] for short-range interactions, whereas long-range Coulombic
interactions are obtained from the Debye-Hiickel theory.

For multisalt solutions, > not successful

4. Liu et al.

Liu et al. propose that The first term of Eq. (9.57) is obtained from an
extended Debye-Hiickel theory, and the second term of Eq. (9.57) is
obtained from a local-composition expression of the Wilson type.

E

Ell *
gE =gl + e (9-57)

Liu does not assume additivity of long-range and short-range contributions.

Liu's model successfully fits data ) for a variety of concentrated
electrolyte solutions.

110°C

In PHCI

12} o

1 I
0.00 0.10 0.20

X, (HC)
Figure 9-12 Partial pressures of HCI (with pressure in bar) in the HCI/H,0 system

as a function of the mean ionic mole fraction x, of HCI [defined by Eq. (9-26)].
o Experiment, —— Liu's model with parameters in Table 9-6.

Table 9-§ Parameters obtained by Liu and Grén (1991) from fitting ¥ 2‘) data converted
from partial pressure data for the HCIH,0 system in the temperature range 0-110°C and
for HCI concentrations to 21.55 M. Temperature Tis in Kelvin.*

(Gpo o) AT (G o JIRT JIRT 1,

Ier my0

-1.92597 2.63355 -0.39037 0.72649 + 0.0019624(T - 273.15)
* The significance of g here is not to be confused with that used in Eq. (9-27)




5. Sander et al.

Sander et al. proposed a method to correlate and predict salt effects in
vapor-liquid equilibria for water+cosolvent mixtures.

This model conbines a term of the Debye-Hiickel type with a modified
UNIQUAC equation with concentration-dependent parameters.



9.14 The Model of Pitzer

Since about 1973, the ion-interaction model of Pitzer has achieved wide
acceptance.

For an electrolyte solution containing ws kilograms of solvent, with molalities
mi, mj, .., of solute species I, j, .., Pizer assumed that the excess Gibbs
energy is given by

GE
RTw- f(1)+zzmimj)"ij(l)+zszi”’jmk‘\ijk L (9-58)™
2 ij i j ok

Function f(I) depoens on ionic strength I, temperature and solvent
properties; it represents long-rang electrostatic forces and includes the
Debye-Hiickel limiting law.

Aij(T) represents the short-range interaction between two solute particles in
the solvent.

Aijk(I) terms account for three-body ion interactions; they are important
only at high salt concentrations.

Pitzer assumed that the A and A matrices are symmetric, i.e., Aij=Ajiand A

ijk =Aikj=N\jik

Applying Eq.(9-42) and (9-43) to Eq. (9-58),
For a binary (i.e. single electrolyte) solution,

' 2V, V_ 2(v,v_)¥?
g = e |17 e 200 gy m[‘——)— Cix 059

_ i 2 32
¢-1=lz+z_|f*+m[~“—-;-”—]3&x+m2[—(!%‘-)—JC&x (9-60)

Pitzer found that the best general agreement was obtained when terms f,
Bmx, and Cmx have the form



11/2 /
I ==ty =5 +3 1n(1+b1‘ % (9-61)

(1) 2
Bliy =20 + 2 - +ar'? & yeealt (9-62)
a’l 2
3
Clix = - Chix (9-63)
V2
AT e
= B0 + B exp(-a'?) (9-65)"
o 3
CMX = m—(V+AMMx + V-AMXX) (9-66)
+ -

Ay is the Debye-Hiickel constant for the osmotic coefficient given by
Eq. (9-49q)

b is a universal parameter equal to 1.2 kg 1/2mol-1/2

a is another universal parameter equal to 2.0kgl/2mol-1/2 for most
electrolytes.

Adjustable binary parameters Bmx®, Bmx'’, and Cux® are specific for
each salt

Parameters Cmx® depend on triple-ion interactions

All parameters (except a and B) are temperature-dependent.

Table 9-7 Deviations for estimated versus experimental mean ionic activity coefficients
(Inyt ) at 25°C, Calculations from Pitzer's equation with binary parameters obtained at
different conditions: Pitzer and Mayorga from data regression to the lower concentration
shown for each electrolyte; Kim and Frederick from data regression to the higher concen-
tration shown for each electroiyte.

Deviation*

Electrolyte Maximum molality Pitzer, Mayorga  Kim, Frederick

(mol kg™')
HCI 16.00 0.22031 0.02854

6.00 0.00311 0.02956
LiBr 20.00 0.06099 0.07224

2.50 0.00286 0.06780
CaBr, 7.66 0.46557 0.08760

2.00 0.00773 0.00732

* Root-mean-square deviation.



For mixed electrolytes, Pitzer uses additional terms in Eq. (9.58) that
require additional interaction parameters, 6;; and yijk, obtained from
experimental data for aqueous mixed-electrolyte solutions with a common

ion.

However, for a multi-electrolyte solution, the principal contributions to GE*
usually come from the single-electrolyte parameters; parameters 6;; and yij
have only a small effect.

I 1 - I T T T
15 (a) Extended Debye-Hiickel (d)
I (b) Pitzer {c) T
X (c) Pitzer (including 6, and ) o b
3 (d) Experiment ()
081 i
x;
m Sz
'Yt 06 ii. _________
- ‘k. -
'.'..‘.
0.4} ."‘.'.u""'-.. | =
"""""" " (a)
1 1 1 1 1 1

I, mol kg™

Eigure_s-ja Mean ionic activity coefficient of NaCl, y(t“‘) , in water at 25°C as a func-
tion of ionic strength: (a) Extended Debye-Hiickel term [Eq. (9-61)]; (b) Pitzer equation
10(1 Sa multi-e[gctrolyte system with electrolytes as in seawater [Eq. (9-58)), with ﬂ‘(‘oﬁ ;
Bux and CMtx but omitting mixed-salt parameters 6;; and yy ; (c) All terms in(h:1)l.(|d-

ing.mixed-sal néarameters 0, and W j - For comparison, the solid line (d) gives ex-
perimental y; ) of NaCl (in the range 3 < /< 6 mol kg™!) in aqueous NaC)I gt the same

ionic strength as that of the multi-electrolyte system. Line (d), based on data for the
single-solute solution, closely approximates line (c) for seawater.

= The like-sign interactions have little effect on mean ionic activity
coefficient of NaCl: they account for only 3.5% of the total.

All parameters can be evaluated from measurements for single electrolytes
and common-ion two-salt solutions.
= With Pitzer-model parameters and with solubility products of salts
available from the experimental solubility in single-salt solutions,
Pitzer's model can be used to predict solid solubilities in mixed-salt

systems.



For a solid electrolyte Mv.X,--nHz20 the solubility equilibrium in water is

M, X, -nH,0 = v,M¥+ v_X¥ +nH,0 (9-67)

If the activity of the pure solid electrolyte is taken as unity, the solubility
product is defined as

Ko =(a,)""(a_)" (an,0)"

= (my )" (m_y ™) (ap,0)" (9-68)

= (m,)"* (m_)" (r§) (ap,0)"

The solubility product, Ksp, can be calculated if the standard-state Gibbs
energy of the solid and aqueous species are available at the temperature of
interest.

For the aqueous ions and electrolytes, the standard state is the ideal,
molal solution at fixed pressure and temperature.

For the solid and solvent, the standard state is the pure phase at the
pressure and temperature of interest.

At reference temperature T, = 298.15 K and standard pressure, Ks, can be
calculated from tabulated standard-state values of A¢g°

Ag(T,)
K., (T.)= ——2—r2 (9-69)
sp\ir RT,

AgO(T,) = Bsely + Deg% — Degiix

With '
Using the Gibbs-Helmholtz equation, the temperature dependence of Ksp is
Aho(T)(l 1J 1J‘T J7 Achmar
s P o i S —.

In Kyp (1) = In Ko (T,) - =~ - =
T,

dT 9-70
i (9-70)

Where, M00)=Adky + Adh§ - Akl AcpT) = o) + ey (@) = chyx @)

If the temperature dependence of c; ® is not known or if the difference
between T and Tr is not large, Ac may be assumed constant, in that case,
Eq. (9-70) simplifies to

0 A 0 T
1nKsp(T)=ansp(T,)_éhTfTr_)[l_i)+ € r)[ln%—+£~1)

(9-70a)




Figure 9-14 and 9-15 present two examples comparing experimental and
calculated solubilities of two solid salts in an aqueous ternary mixture.

The system NaCl/KCl in fig. 9-14 is simple with no intermediate solid phase
but the system NaCl/NazSos exhibits an intermediate solid phase due to
the formation of hydrate Na2SO4'10H20. In both examples the two salts
have a common ion thereby simplifying the calculations.

12 T

I I 1

Dotted Symbols: Solid KCI
< Filled Symbols: Solids KCI and NaCl
200C Open Symbols: Solid NaCl

Pitzer Model

Myg, mol kg™

™ 9

Mnacy, mol kg“

Figure 9-14 Experimental (Linke and Seidell, 1458, 1965) and calculated solubilities
in the ternary mixture NaCl/KCI/H,O at several temperatures. Intersections of isother-
mal curves represent calculated ternary invariant points, where three phases are in
equilibrium: solid NaCl, solid KCI, and aqueous solution.

Solid Phases: O NaCl ® NaCland Na,SO 4.10H20
Na,SO,.1 0H,0 ® NaClandNa,SO,
Na SO, 4 NaySO, and Na,SO,4.10H,0
15°C 25°C ) 30°C ° 100°C
. 416
? A a
3 14
: : |
)
z q2
1 1 1 1 1 1 1 0

1
2 83 01 2 3 0 1 2 3 0 1 2 3 0 1 2 3 4
-1
,nNBQSO"n'OIkg

Figure 9-15  Experimental and calculated solubilities in the ternary mixture NaCV/
Na,S0,/H,0 at several temperatures. Hydrate Na,SO,+10H,0 is stable only at tem-
peratures Eelow about 38°C. Symbols: experiment (Linke and Seidell, 1958, 1965);
—— Pitzer model. Intersections of isothermal curves represent calculated ternary in-
variant points where three phases are in equilibrium: aqueous solution, solid NaCl, and
solid Na,SQ, or solid hydrate; or aqueous solution, solid Na,SO, and solid hydrate.



Another example of application of Pizer's model to multi-salt mixtures is
provided by studies of mineral solubilities in brines by Weare and
collaborators. To illustrate Weare's results, Fig. 9-16 compares
experimental with calculated solubilities of gypsum (CaSOa4-2H20) in
Na2504/NaCl solutions.
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Figure 8-16 Gypsum (CaS0,+2H,0) solubilities in aqueous Na,SO,/NaCl solutions
at 25°C. @ Experiment; —— Pitzergs model (Harvie et al, 1982).2 ’

Calculated gypsum solubilities are in good agreement with experimental data
at all ionic strengths. However, for this ternary system the model requires
12 single electrolyte parameters and 5mixed-electrolyte parameters. The
large number of parameters required in Pitzer's model for multi-salt
mixtures is its major disadvantage.



9.15 The “"Chemical” Hydration Model of Robinson and Stokes

In a manner similar to that for chemical theories described in Chap. 7, it is
possible to relate the activity of the water to the equilibrium constant (or
constants) which characterize hydration equilibria.

A particularly successful example for a single solvent solution is provided by
the work of Stokes and Robinson (1973)

Consider an aqueous solution of a strong electrolyte, containing ny moles of
free water, no moles of anhydrous cations, n1 moles of singly-hydrated
cations, ni moles of i-hydrated cations and na moles of anions, at
temperature T and total volume V. We neglect hydration of anions. This
solution was prepared by adding ¢ moles of anhydrous salt to water to give
a final volume of 1 liter.

The hydration equilibrium is

hydrate (i ~1) + water == hydrate i

And the corresponding equilibrium constant Ki is

K =—2 (9-71)
aj—1 Ay

For fixed i, Ki, depends only on temperature. In general, however, Ki also
depends on i.To reduce the number of adjustable parameters, Stokes and
Robinson suggest that

Kl = K
K, = kK
K, = kK

Stokes and robinson also assume that in a mixture of hydrated cations and
anhydrous anions, there is a Flory-Huggins-type contribution to the entropy
of mixing because the various dissolved species do not all have the same
size.



The molar volumes of the hydrates are assumed linear functions of I
according to

v; =Ug +iv,, (9-72)

Where vo is the molar volume of anhydrous cation and vy is the molar
volume of water.

Stokes and Robinson obtained an expression for the activity based on the
theory of ion-ion interactions given by Waisman and lebowitz (1970) which,
in effect, is a higher-order Debye-Hiickel theory

The activity of water is given by

3
UK

24TINA

Ina, =In(l-cvy)+c@, -vv,)+ S(xd) (9-73)

Where Up =V, Ug+V_ U,y +hy,

Here h, the average hydration number, is found from a known function of
the maximum hydration number, K, k, aw and Y where

InY =c(v,-vuv,)

In Eq.(9-70), k-1 is the Debye length: d is the average diameter of the
anhydrous cation and anion; Na is Avogadro's constant; and function S( is
given by the Waisman-Lebowitz theory:

62 2
S(t) = (73)[5(1 +2t)¥2 - 3711 +2r)”2] (9-74)

Volumetric data give vo, va, and vw. Crystallographic data give diameter d.
The Debye length is found from Eq. (9-47). The important adjustable
binary parameters are K and k.

Fig. 9-17 shows calculated and observed (molality) osmotic coefficients for
water in three aqueous systems; NaOH and LiBr[Fig. (9-17a); and
CaClz[Fig.(9-17b)]
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Figure 9-17 Osmotic coefficients for aqueous electrolyte solutions at 25°C: (a) NaOH
and LiBr; (b) CaCl,. o Experiment (Hamer and Wu, 1972; Staples and Nuttall, 1977);
—— Stokes and Robinson chemical theory using parameters in Table 9-8.

Table 9-8 gives parameters for several binary aqueous systems. Results are
not sensitive to ion diameter d and to the maximum hydration number,

provided that reasonable values are used. However, results are sensitive to
adjustable binary parameters K and k.

Table 9-8 Parameters in the Stokes-Robinson model and maximum molality of fit. Aque-
ous solutions at 25°C. For all solutes, d = 0.4 nm.

Solute Maximum hy- K k Maximum
dration number molality

NaOH 4 77.6 0.375 29

HCl 6 135 0.338 16

LiCl 5 81.6 0414 20

LiBr 5 492 0.290 20

CaCl, 9 48.7 0.678 10

CaBr, 9 804.6 0.595 8




The law of mass action suggests that, when water is present in excess,
cations tend to hydrate with large hydration numbers. However, as the
ratio of water to electrolyte declines, hydration numbers decrease.
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Figure 9-18 Distribution of hydration numbers for aqueous lithium chloride at 1, 10,
and 20 mol kg™'.



9.16 Conversion from McMillan-Mayer to Lewis-Randall Formalisms

In the semi-empirical models briefly described in Sec.9.12, the excess
Gibbs energy GF is written as the sum of two contributions:

First, a long-range contribution described by a Debye-Hiickel-type
electrostatic expression

Second, a short-range contribution from another model (NRTL, Wilson,
UNIQUAC, virial expansion, expression based on a chemical theory)

However this simple addition of two contributions gives rise to an
inconsistency because it combines an electrostatic contribution derived from
the framework of MacMillan and Mayer with a contribution due to short-
range forces calculated in the customary framework of Lewis and Randall.

In the Lewis-Randall framework,
The independent variables are temperature T, pressure P, and the mole
numbers of all species n.

In the McMillan-Mayer framework,
The independent variables are temperature T, volume V, the mole numbers
of the solute species nk, and the chemical potential of the solvent us.

Thermodynamic properties obtained from the McMillan-Mayer formalism are
not identical to those obtained from the Lewis-Randall formalisms.

To maintain consistency, it is necessary to convert the activity coefficients
from the McMillan-Mayer to the Lewis-Randall frame work.



9.17 Phase Equilibria in Aqueous solutions of Volatile Electrolytes

Design of operations to remove volatile weak electrolytes from aqueous
solutions requires representation of pertinent vapor-liquid equilibria.

In aqueous solution, volatile electrolytes exist in ionic and molecular form.
At ordinary temperatures and pressure only the molecular form exists in
the vapor.

Calculation of vapor-liquid equilibria requires simultaneous solution of phase-
equilibrium equations (for the molecular species), chemical-equilibrium
equations for the liquid phase, and material balances.

3|

Vapor Phase I

Molecular
Electrolyte
i

Wl

Molecular
Electrolyte < lons

Liquid Phase

Figure 9-19 Schematic representation of vapor-liquid equilibria for an aqueous solu-
tion containing a single volatile weak electrolyte.

A molecular-thermodynamic framework proposed by Edwards et al. has been successfully used for
calculating vapor-liquid equilibria in aqueous solutions containing one or more weak volatile electrolytes
for temperatures from O to 200C for the total ionic strengths to more than 6 molal.(Figure9-19)

For some solute i at low concentration of i, the phase equilibrium is
primarily determined by Henry's constant, Hi, and the molality of molecular
(not ionic) solute i. This molality is strongly influenced by the chemical
dissociation equilibrium, characterized by the dissociation constant,K.

At higher concentration of i, Henry's constant H; must be multiplied by an
activity coefficient that depends on the concentration of all solute species
and on temperature.



First consider the single-solute case;

Since ions are not volatile, the phase equilibrium is governed only by the
molecular concentration of the electrolyte in the liquid phase. Vapor liquid
equilibria for the solvent(water) and for the solute(molecular electrolyte)
are described by

= fE (9-75)

Y (9-76)

Equation (9-75) is rewritten (see Sec. 3.3)

'UW(P—P,:)
RT
For the electrolyte, phase equilibrium considers only molecular electrolyte

(designated with subscript M); therefore, Eq. (9-76) is rewritten

1%
PuywP = awP,f, (p‘.fv exp 9-77)

. A
PMxMIMxMP =¥ ](J{n}%,MmMX,MHMx,M (9-78)

In Eq. (9-78), ymx.mP is the partial pressure of the molecular weak electrolyte and dmx m’
is the vapor-phase fugacity coefficient; mmxm is the molality of the electrolyte in
molecular form, ymx.m™ is the activity coefficient and Hwx.m is Henry's constant for the
molecular solute.

From a mass balance for the weak electrolyte in the liquid phase, we relate
the overall electrolyte concentration (stoichiometric), mmx, to that in
molecular form, mmx,m, and in chemically reacted form. For example, when
NHs is dissolved in water,

mNH3 = mNHB’M + mNH: (9-79)

In addition, the bulk electroneutrality condition of the liquid phase relates
the concentration of cations to those of anions:

> zm; =0 © (9-80)
i

Finally, using Eq. (9-54) the chemical equilibrium relates the molecular
concentration of the undissociated electrolyte and the ionic concentrations
of the weak electrolyte; for example, for the reaction MX == v.M™+v X",
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Figure 8-20 Solubility of sulfur dioxide in water at 10°C. Comparison with experiment
of the calculated (Edwards et al., 1978) resuits considering (—) or neglecting (- - -)
ionization of SO, in water.

For aqueous solutions of sulfur dioxide, Fig. 9-20 compares experiment with
results calculated using the method of Edwards. Dissociation of sulfur
dioxide in the liquid phase was taken into account through the chemical
equilibria

SO, + H,0 == HSO0j3 + H*
HSO; == SO0% + Ht

H,0O == H' + OH

Each of these chemical equilibria is characterized by a chemical-equilibrium constant, defined
according to Eq. (9-81). Vapor-phase fugacity coefficients were calculated using the method of
Nakamura et al. Henry's constants as a function of temperature were obtained from binary-data
reduction. Activity coefficients for the electrolyte and the activity of water were obtained from
Edward's extension of Pitzer's model. Because SO: is a weak electrolyte with a low dissociation
constant, the concentration of ions is so small that Eq.(9-59) reduces to



0
In Yg?))z,m = ZBE«%Z,SOZ ms0,,M (9-82)

And for water

__My © 3
== s (ms0,.m +Bsoz.soz’"soz,M) (-83)

Combining Egs. (9-78) and (9-82), the equation for the phase equilibrium of
S0 is

 750,050,F USo, (P-Py)
msoz’M RT

1

—tng®) 0
=InHgy M+ ZBééz,so, Ms0,M (9-84)

Where, Hso. u® stands for Henry's constant of molecular SO: in water at infinite dilution.

Plotting the left-hand side of Eq.(9-84) as a function of the molecular
concentration of So2, the slope gives the molecule-molecule interaction
parameter, Bso,,50,(?, and the intercept gives Henry's constant, Hso.n®,

The thermodynamic framework described above for a single-solute system
can be extended to multisolute systems. The necessary parameters are
obtained primarily from binary-data reduction but at high salt concentration,
some ternary data are required.

Figure 9-21 compares calculated and experimental results (Rumpf et al.,
1993a) for a two-solute system: ammonia and sulfur dioxide in water, from
40 to 100 at two overall molalities of ammonia (302 or 6.1 mol kg™! of
water) and at pressures to 22bar
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Figure 9-21 Experimental and calculated results for the simultaneous solubilities of
ammonia and sulfur dioxide in water at 100°C. Experiment: o, m; Calculated from
model of Edwards and Maurer: — — — myy, =3.2mol kgt — myy, = 6.1 mol kg,



This example is qualitatively different from the previous one because there
is strong chemical interaction between the two solutes: acidic sulfur dioxide
and basic ammonia. In this example, in addition to water, the liquid phase
contains molecular ammonia, molecular sulfur dioxide, ammonium ion,
hydrogen ion, hydroxyl ion, sulfite ion, and bisulfate ion, as indicated in Fig.
9-22.
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NHs + H;0 == NH{ + OH
80, + H,0 == HSO; + H*
HSO; == SO+ H¥
H.0 == H*+OH
Liquid Phase

Figure 8-22 Vapor-liquid equilibria and chemical equilibria in the ammonia/sulfur di-
oxide/water system.

Details of Rumpf et al. work (See 562p)

Coal-gasification and sweetening of natural gases often require removal of
acid gases such as carbon dioxide and hydrogen sulfide from gaseous fuels.
Such removal is best accomplished by absorption with aqueous alkanolamine
solutions. Proper design of absorption equipment requires information on
vapor-liquid equilibria, caloric effects and also on the kinetics of mass
transfer and of chemical reactions

Numerous models have been proposed to describe vapor-liquid equilibria for
such systems.

Silkenbdumer et al. (1998) used a similar correlation( Kuranov et al. 1996)
for the solubility of carbon dioxide in aqueous solutions containing 2-amino-
2-methyl-1-propanol (AMP) and the alkanolamines MDEA and AMP, Due to
chemical reactions in the liquid phase, carbon dioxide dissolves in both
neutral and (non-volatile) ionic forms.( Figure 9-23)
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Figure 9-23 Solubility of carbon dioxide in aqueous solutions of 2-amino-2-methyl-1-
proPanoI (AMP). Experiment: A myyp = 2.44 mol kg at 353.15 K; O mpyp = 2.45 mol
kg™ at 333.15 K; W myyp = 2.43 mol kg™ at 313.15 K. —— Pitzer model. (Silkenbau-
mer et al., 1998).

The good agreement between calculation and experiment is achieved only by
taking into account all the chemical reactions possible in the liquid phase. In
the system CO2/AMP/H:0, in addition to the solvent (water), 8 species are
present: COz2, RNHz, RNH3*, RNHCOO-, HCO3™, COs%-, H*, and OH".

Details of Silkenbdumer et al. (1998) work (See 563~564p)

Figure9-24 show predicted molalities of the major molcular species present
in the liquid phase as a function of the overall molality of carbon dioxide
for a 2.43 molal AMP aqueous solution at 313.15K.
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Figure 9-24 Predicted molalities (Pitzer's model) of major species present in aque-
ous 2.43 molal AMP solutions at 313.15 K as a function of the overall molality of CO,
(Silkenbaumer et al., 1998).



Silkenbdumer et al. (1998) also demonstrated that the solubility of carbon
dioxide can be predicted reliably in solutions containing two alkanolamines,
MDEA and AMP, using parameters of the Pitzer model obtained from

reduction of experimental data for aqueous solutions containing only one of

these alkanolamines.(Fig. 9-25)
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Figure 9-25 Solubility of carbon dioxide at 313.15 K in aqueous alkanolamine solu-
tions. Results for the single-amine and double-amine solutions. Expenment ® Mypea
=2.63 mol kg™ (N- methyldlethanolamme) V Mypoea = 1.28 mol kg™ + Mayp = 1. 29
mol kg™'; m myyp = 2.43 mol kg! (2- amlno-z-met?'-ylpropanol) — Pttzer’s model.

(Silkenbaumer et al., 1998).

The work described above shows that is possible but not easy to describe
phase equilibria of aqueous systems containing weak electrolytes and other

solutes that react with those electrolytes.

The ion-interaction model of Pitzer is suitable for such calculations;
however, the large number of adjustable parameters requires an extensive
data base that can be established only by carefully performed experiments.



9.18 Protein Partitioning in Aqueous Two-Phase Systems

Separation of biologically active materials is an important operation in
biotechnology.

One useful separation process is provided by liquid-liquid extraction using an
aqueous two-phase polymer system formed when two water-soluble polymers
are dissolved in excess water.
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Figure 9-26 Schematics of a two-phase aqueous system H,O+PEG+dextran for ex-
traction. (a) Phase ‘: aqueous PEG-rich phase containing only a small amount of dex-
tran; phase “: aqueous dextran-rich phase containing only a small amount of PEG;

(b) Calculated phase diagram. Tie-line length is given by AB, where A and B represent
the equilibrium compositions of phases ‘ and *, respectively.

A mixture of proteins is added to a two-phase aqueous system, each type
of protein partitions uniquely between the phases. Therefore, separation
can be achieved with an extraction process (Fig.9-27)

Phase ": PEG (Dextran)

Dilute solution of
i j k..., and salt

11
VK

Dilute solution of
i, ji k..., and salt

Phase ": Dextran (PEG)

l:‘igure 9-27 Separation of a mixture of proteins i, j, k, ... by extraction: partition coef-
ficient K; = (concentration of protein in phase ')/(concentration of protein in phase ").

To prevent denaturation of the biomacromolecules and to maintain pH
control, small amounts of salts may be added.



A useful feature of such systems is that the partitioning of
biomacromolecules between the two phases can be altered changing the
solution ph, ionic strength or the type of salt (electrolyte) added

The difference in salt concentration establishes an electric-potential
difference between the two phases;

The difference in salt concentration, pH of the solution and the properties
of the phase-forming polymers can result in a change in the partitioning
behavior of proteins.

The first task is to calculate the liquid-liquid phase diagram formed by
water and the two water-soluble polymers in absence of salt or
biomacromolecules. This calculation is achieved by expressing the chemical
potential of all three components through an osmotic virial expansion in the
polymer concentrations

For equilibrium between phase ' and "
Hp=Hy Mo =H2 H3 =H3 (9-85)
Subscript 1 refers to water and subscripts 2 and 3 refer to the water-soluble polymers.

An osmotic virial expansion truncated after the second term gives chemical
potentials yz2 and us3

18 R }1% = RT(In my + bzz"lz +b23"l3) (9-86)
H3— }l? = RT(In ms +b33!ﬂ3 +b23m2) (9-87)

An expression for the chemical potential 13 of water is obtained from the
Gibbs-Duhem equation,

3
Y mdy; =0 (9-88)
i=1

With Eq. (9.86) for 12 and Eq.(9-87) for us, the chemical potentials ui is

RTM b, b ~
0. 1 2 33
p-pd = 1 (m2+m3+ > m%+ > m§+b23m2m3) (9-89)



Interaction parameter bzz, bss, and bzs are directly related to osmotic
second virial coefficients B22", Bss™ and Bzs" by

2M3B3,
== 9-90
"2 = 0002 il
2M2B3;
s Jal 0-91
3= 0002 (9-91)
2M,M4B5,
= D L) 9-.92
"= 0002 92

Consider now a protein component (subscript 4) distributed between the two
aqueous phases. The distribution coefficient K is defined by

Concentration of protein in phase '

K4 = . S
4 ™ Concentration of protein in phase "

(9-93)

Depending on pH, the protein may be electrically charged and therefore the
presence of ions (salts) must be taken into account. When all proteins in
the system are dilute, the distribution coefficient for a particular protein
is given by (Haynes et al., 1993)
InKy = lny—";— + L0 0
Y4 "L

(9-94)

F is faraday's constant, ¢ the electric potential, z the electric charge and y the chemical activity
coefficient.

Activity coefficients are found from the osmotic virial expansion with
coefficients B2z, Bss", B2s, B24 and Bss ; additional terms for protein-salt
and polymer-salt interactions are obtained from osmometric data.( Haynes
et al., 1989)

The electric-potential difference Ap=9"-¢' between the two phases arises
as the result of the additionof a salt that fully dissociates into v. cations
of charge z. and v. anions of charge z.



Applying quasi-electrostatic potential theory gives the relation (Haynes et
al., 1991)

" L} :— / ‘—.
M=) = ff T “(7 ' Yz )/Z (9-95)
A (Yelre)™" "
Tow-phase system at equilibrium containing 1:1 electrolyte, i.e., z./z. = -1
and z.-z.=2. In this case, Eq. (9-95) reduces to
woan _RT NYYL | RT Y: | RT
(¢"-¢") = Tz Inf ——F |= S~ Inf == | = SLIn(K) (9-95a)
2F (y_y ) F [Y:t) F J
Where Ks is the partition coefficient of the salt and, as usual,
vi=yv5 (9-96)
The last equality in Eq. (9-95a) holds because, at equilibrium,
MYy =mgyy (9-97)

Figure 9-28 compares calculated and experimental partition coefficients for
three proteins: albumin, chymotrypsion and lysozyme (Haynes et al.,
1991).
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Fi_gure 9-28 Predicted and experimental partition coefficients for a dilute protein
mixture in an aqueous two-phase system containing PEG 3350, dextran T-70, and 50 -
mM KCl (overall) at pH = 7.5 and 25°C. d: diameter (A); z: electric charge; @ : albumin
(d=78; z=-8); 0 : chymotrypsin (d=34; z=2); a: lysozyme (d = 22; z=7). Lines are
calculated using second osmotic virial coefficients obtained from single-phase light-
scattering measurements.



Figure 9-29 shows the dramatic effect on the partition coefficient of
chymotrypsin when the salt is KI (Haynes etal., 1991). Because the anion
(iodide) is bound by a-cyclodextrin and because a-cyclodextrin is
predominantly in the aqueous dextran-rich phases, the salt KT partitions
toward that phase. The more asymmetric the partitioning of salt, the

larger Ag.

With a-Cyclodextrin

Partition Coefficient
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Figure 8-29 Effect of electric-potential difference A$ on the partition coefficient for

chymotrypsin in PEG 3350/dextran T-70/water. z=5; pH = 7.3; 25°C. @ : 1 mM Kl
m: 1 mMKI + 1 mM a-cyclodextrin. Tie-line length is not affected by a-cyclodextrin.



