
Chapter 10. Solubilities of Gases in Liquids 
 

The solubility of a gas in a liquid is determined by the equations of phase equilibrium. 

If a gaseous phase and a liquid phase are in equilibrium, then for any component ί the fugacities in both phases must be the same. 

 

 
 

 

 

10.1 The Ideal Solubility of a Gas 
 

The simple way to reduce Eq. (10-1) to a more useful form is to rewrite it in a manner suggested by Raoult’s law. 

 

① neglecting all gas-phase nonidealities as well as the effect of pressure on the condensed phase 

② neglecting any nonidealities due to solute-solvent interactions 

 

 
 

pί : the partial pressure of component ί in the gas phase 

xί : the solubility of ί in the liquid 

pί
s: the saturation vapor pressure of pure liquid ί 

 

An obvious difficulty presents itself in finding a value for pί
s, whenever the solution temperature is above the critical temperature of pure ί. 

In that case it has been customary to extrapolate the saturation pressure of pure liquid ί beyond its critical temperature to the solution 

temperature. 

 



 
 

The ideal solubility, as calculated by Eq. (10-2) and the extrapolation scheme indicated in Fig. 10-1, usually gives correct order-of-magnitude. 

In some case, where the physical properties of solute and solvent are similar, the ideal solubility is remarkably close to the experimental value. 

 

 
 

The ideal solubility is significantly different from observed solubilities, but it is of the right order of magnitude. 

 

The ideal solubility given by Eq. (10-2) suffers from two serious defects. 

 

① at a fixed temperature and partial pressure, has the same solubility in all solvents 



② at constant partial pressure, the solubility of a gas always decreases with rising temperature 

 

 

 

10.2 Henry’s Law and Its Thermodynamic Significance 
 

 
 

κ : constant of proportionality depending only on temperature (for any given solute and solvent) 

 

For Eq. (10-3), there are two constraints 

 

① the solubility and the partial pressure of the solute are small 

② the temperature is well below the critical of the solvent 

 

When compared with Eq. (10-1) and Eq. (10-3), 

 

 
 

Thus, 

 

 
 

1 : stands for solvent 

2 : stands for solute 

 

At a given temperature and pressure, the standard-state fugacity is a constant and does not depend on the solute mole fraction in the liquid 

phase. 

Since κ does not depend on x2, the activity coefficient γ2 must also be independent of x2. 

So, 



 

 
 

A, B, … : constants depending on temperature and on intermolecular forces between solute and solvent 

 

When x2 ≪ 1, γ2 is only weakly dependent on χ2 and Henry’s law provides a good approximation. 

 

Coefficient A is a measure of nonideality. 

 

① A is positive : ‘dislike’ between solute and solvent 

② A is negative : ‘tendency’ between solute and solvent 

 

In any case, it is the absolute value of A/RT that determines the range of validity of Henry’s law. 

 

① A/RT = 0 : ideal solution. Henry’s law holds for the entire range of composition (0 ≤ x2 ≤ 1) 

② A/RT is small : activity coefficient γ2 does not change much even for appreciable x2 

③ A/RT is large : even a small x2 can produce a significant change in the activity coefficient with composition 

④ x2 → 0 : the logarithm of the activity coefficient approaches the constant value A/RT (So, Henry’s law is valid)     

 

In Eq. (10-3), Henry’s law assumes that the gas-phase fugacity is equal to the partial pressure. 

If this assumption is not used, Henry’s law for solute ί is, 

 

 
 



 
 

 
 

 

 



10.3 Effect of Pressure on Gas Solubility 

 

Actually, the pressure dependence can be neglected as long as the pressure is not large. 

At high pressures, however, the effect is not negligible and therefore it is necessary to consider how Henry’s constant depends on pressure. 

 

 
 

iv  : partial molar volume of ί in the liquid phase 

 

The thermodynamic definition of Henry’s constant is, 

 

 
 

Substitution of Eq. (10-9) into Eq. (10-8) gives 

 

 
 

iv 
 : partial molar volume of solute ί in the liquid phase at infinite dilution 

 

Integrating Eq. (10-10) and assuming that the fugacity of ί at constant temperature and pressure is proportional to xί, 

 

 



 
( )
,

rP
i solventH  : Henry’s constant evaluated at an arbitrary reference pressure Pr. 

 

There are two constraints 

 

① the activity coefficient of the solute does not change noticeably over the range of x2 considered 

→ x2 must be small 

② the infinitely dilute liquid solution must be essentially incompressible 

→ temperatures far removed from the critical temperature of the solution 

 

Using two constraints and letting subscript 1 refer to the solvent and subscript 2 to the solute, Eq. (10-11) becomes 

 

 
( Krichevsky – Kasarnovsky ) 

 



 
 

 



 

 

 

Fig. 10-4 shows limitation of the Krichevsky – Kasarnovsky equation. 

 

 
 

At 70℃, Krichevsky – Kasarnovsky equation breaks down after about 600 bar. 

 

In case of 0℃, the assumptions of Eq. (10-12) are reasonably satisfied. 

 

① 0℃ liquid ammonia is an unexpanded liquid solvent 

(the critical temperature of ammonia is 132.3℃) 



② the solubility of nitrogen is small throughout, only 2.2 mol % at 1000 bar 

 

However 

 

① 70℃ liquid ammonia is already quite expanded (and compressible) 

② the solubility of nitrogen is no longer small (12.9 mol % at 1000 bar) 

 

As a result, it is not surprising that Krichevsky – Kasarnovsky equation fails at higher pressures for the data at 70℃. 

 

 

 

Variation of the activity coefficient of the solute with mole fraction can be taken into account by one of the methods discussed in Chap. 6. 

Among them, the simplest way is to use two-suffix Margules equation. 

 

 
 

A : an empirical constant determined by intermolecular forces in the solution. 

   (Typically, A is a weak function of temperature) 

 

The activity coefficient γ*
2 of the solute, normalized according to the unsymmetric convention (Sec. 6.4), is then found from the Gibbs-

Duhem equation. 

 

 
 

The fugacity of component 2 at pressure P1
s is 

 

 
 



instead of Eq. (10-12) we obtain 

 

 
( Krichevsky – Ilinskaya ) 

 

Because of the additional parameter, it has a wider applicability than does Eq. (10-12). 

 

 
 

 



 

When, for a given temperature, gas-solubility data alone are available as a function of pressure, it is difficult to obtain three isothermal 

parameters ( 1( )
2,1

SPH
, 2v 

, 
A) from data reduction. 

 

Let W = ln(f2/x2) & isothermal changes in the region P = P1
s and x2 = 0. 

 

At a constant temperature T, we write a Taylor series 

 

 
 

Comparison with Eq. (10-16) shows that 

 

 
 

 
 

 
 

We can calculate parameters ( 1( )
2,1

SPH
, 2v 

, 
A) from an equation of state. 

 

First, 

 

 



 
,

2
L   : fugacity coefficient of solute 2 in the liquid phase at temperature T at infinite dilution (x2 = 0) 

 

Second, 

 

 
 

n : the number of moles 

V : the total volume 

 

Finally, 

 

 
 

(EOS be valid for the entire density range, because fugacity coefficients depend on an integral of the EOS) 

 

 

 

Calculated thermodynamic properties of mixtures often depend strongly on the mixing rules. 

(especially on the cross term for the characteristic energy parameter) 

 

① in equations of the van der Waals form, the constant a (for a binary mixture) is 

 

 
 

k12 : binary parameter that has a large effect on 2
L  



 

② Redlich – Kwong – Soave 

 

 
 

 
 



 

 

10.4 Effect of Temperature on Gas Solubility 

 

No simple generalizations can be made concerning the effect of temperature on solubility as indicated by Fig. 10-6 that shows Henry’s 

constants as a function of temperature. 

 

 
 

The effect of temperature depends strongly on the properties of the particular system and also on the temperature. 

 



 

 

The temperature derivative of the solubility, as calculated from the Gibbs-Helmholtz equation, is directly related to either the partial molar 

enthalpy or the partial molar entropy of the gaseous solute in the liquid phase. 

Therefore, if something can be said about the enthalpy or entropy change of solution, insight can be gained on the effect of temperature on 

solubility. 

 

 
 

 
 

x2 : the mole fraction of gaseous solute at saturation 

 

 
 

h2
G and s2

G : the enthalpy and the entropy of pure 2 gas at system temperature and pressure, respectively 

 

 

 

In Eq. (10-26), 

 

① 2s  〉 0 : the solubility increases with rising temperature 

② 2s  〈 0 : the solubility decreases with rising temperature 

 

 
 

s2
L : the entropy of the (hypothetical) pure liquid at the temperature of the solution 



 

In Eq. (10-27), 

 

① the first term on the right-hand side : the entropy of condensation of the pure gas 

(in general) negative (the entropy of a liquid is lower than that of a saturated 

gas at the same temperature) 

② the second term : the partial molar entropy of solution of the condensed solute 

 

 
(assuming ideal entropy of mixing for the two liquids) 

 

positive (x2 〈 1) 

   the smaller the solubility, the larger this term 

 

So (in Eq. 10-27), 

 

① gases have very small solubilities : 2s  〉 0 

② the others : 2s  〈 0 

 

Therefore (combining Eq. 10-26 and Eq. 10-27), 

 

① sparingly soluble gases (very small x2) : positive temperature coefficients of solubility 

② readily soluble gases (relatively large x2) : negative temperature coefficients of solubility 

 



 
 

 

 

In Eq. (10-25), 

 

① 2h  〉 0 : the solubility increases with rising temperature 

② 2h  〈 0 : the solubility decreases with rising temperature 

 

 
 

h2
L : the enthalpy of the (hypothetical) pure liquid at the temperature of the solution 



 

In Eq. (10-29), 

 

① the first term on the right-hand side : the enthalpy of condensation of pure solute 

(in general) negative (the enthalpy of a liquid is lower than that of a gas at the 

same temperature) 

② the second term : the partial enthalpy of mixing for the liquid solute 

(in general) positive / endothermic (the absence of salvation between solute and solvent) 

the larger the difference between the cohesive energy density of the solute and that of the solvent, the larger the 

enthalpy of mixing 

 

So (in Eq. 10-29), 

 

① the difference between the cohesive energy density is large (the second term dominates) : 2s  〉 0 

② the difference between the cohesive energy density is small (the first term dominates) : 2s  〈 0 

 

If there are specific chemical interactions between solute and solvent, then both terms in Eq. (10-29) are negative (exothermic) and the 

solubility decreases rapidly as the temperature rises. 

Actually, when the partial pressure of the solute is small, the solubility typically decreases with temperature, goes through a minimum, and 

then rises. 

 



 
 

 

 

The effect of temperature on Henry’s constant over narrow temperature ranges (0℃ ~ 50℃) is 

 

 
 

H2,1 : Henry’s constant for solute 2 in solvent 1 

α2 and T2 : constants specific to the solute 

β : universal constant 

 



 
 

Over a wider range of temperatures, simple equations such as Eq. (10-30) are unable to describe Henry’s constant. 

Harvey developed a semiempirical correlation of Henry’s constants over large temperature ranges. 

 

 



 

 

 

At the critical point of solvent 1, Henry’s constant for solute 2 is given by 

 

 
 

1CP  : the solvent’s critical pressure 

2
  : the solute fugacity coefficient at infinite dilution at the critical temperature and pressure of the solvent 

 

The derivative dH2,1/dT diverges to negative infinity (or positive infinity for some solute/solvent pairs) due to the diverging compressibility of 

the solvent. 

The corrected functional form for this divergence is Eq. (10-31). 

Near the solvent’s critical point, a function of Henry’s constant is linear in density. 

 

 
 

f1 and ρ1 : the fugacity and the density of the pure solvent, respectively 

ρc1 : the solvent’s critical density 

 

Constant A is related to H2,1 at the solvent’s critical-point as determined by 2
 . 

Constant B is related to a thermodynamic derivative called the Krichevsky parameter, the key quantity describing dilute mixtures near the 

solvent’s critical point. 

 

 

 

 
 

1

S
L  : the saturated liquid density of the solvent 



K  : infinite dilution partition coefficient, defined along the solvent’s coexistence curve 

 

 
 

While Eqs. (10-31) and (10-32) are only asymptotic results, they describe experimental data over a wide range of conditions. 

 

 
 



 

 

10.5 Estimation of Gas Solubility 

 

Reliable data on the solubility of gases in liquids are not plentiful. So we consider first the semiempirical correlations. 

 

 
 



 
 

Figures 10-11 and 10-12 may be used to predict solubilities in nonpolar systems where no experimental data are available. 

These predictions are necessarily limited to systems at 25℃. 

But, with the help of Eq. (10-26) and the entropy data shown in Fig. 10-7, it is possible to predict solubilities at other temperatures not far 

removed from 25℃. 

 

In Fig. 10-11, Lewis acid-base interaction → higher solubility 

(CO2 in basic aromatic system) 

 



In Fig. 10-12, the solubilities of the quantum gases are a little higher than expected, the discrepancies becoming larger as the solubility 

parameter of the solvent increases. 

 

 

 

Unfortunately, solubility data at temperatures much larger or smaller than room temperature are scarce. 

For theoretical methods, the theory of regular solutions and the theorem of corresponding states can serve as the basis for a correlating scheme. 

 

The solution process for the gas is accompanied by a large decrease in volume because the partial molar volume of the solute in the condensed 

phase is much smaller than that in the gas phase. 

Therefore, to apply regular solution theory, the isothermal solution process of the gaseous solute is then considered in two steps, 

 

 
 

 
 

 
 

2
L
puref  : the fugacity of (hypothetical) pure liquid solute 

γ2 : the symmetrically normalized activity coefficient of the solute referred to the (hypothetical) pure liquid 

(γ2 → 1 as x2 → 1) 

 

Ⅰ Step ) 

 

the gas isothermally “condensed” to a hypothetical state having a liquid-like volume 

 

Ⅱ Step ) 

 



liquid-like fluid dissolves in the solvent 

 

The solute in the liquid solution is in equilibrium with the gas that is at fugacity 2
Gf . 

So, the equation of equilibrium is 

 

 
 

We assume that the regular-solution equation gives the activity coefficient for the gaseous solute 

 

 
 

δ1 : the solubility paremeter of solvent 

δ2 : the solubility paremeter of solute 

2
Lv  : the molar liquid volume of solute 

Φ1 : the volume fraction of solvent 

 

Substitution of Eqs. (10-34), (10-35), (10-36), and (10-38) into Eq. (10-37) gives the solubility. 

 

 
 

Eq. (10-39) requires three parameters (these parameters are all temperature dependent). 

 

① the pure liquid fugacity 

② the liquid volume 

③ the solubility parameter 

 

However, the theory of regular solutions assumes that at constant composition Eq. (10-40), the quantity  is not temperature-

dependent. 



 

 
 

Therefore, any convenient temperature can be used for 2
Lv  and δ2 provided that the same temperature is also used for δ1 and 1

Lv . 

 

 
 

 

 

For nonpolar systems, where the molecular size ratio is far removed from unity, it is necessary to add a Flory-Huggins entropy term to the 

regular-solution equation for representing gas solubility. 

 

 

 



 
 

If the solution under consideration is at a considerably higher pressure, the Poynting correction should be applied to the fugacity as read from 

Fig. 10-13, 

 

 
 

Shair’s technique for correlating gas solubilities with regular-solution theory can readily be extended to mixed solvents. 

Eq. (10-39) is replaced by, 

 

 
 



 
 

  : an average solubility parameter for the entire solution 

 

 

 

The correlation given by Eq. (10-39), Table 10-7, and Fig. 10-13 gives fair estimates of gas solubilities over a moderate temperature range for 

nonpolar gases and liquids. 

 

 

 

Gas solubilities can also be calculated from an equation of state using the methods discussed in Chaps.3 and 12. 

(the equation of state must be valid for the solute-solvent mixture from zero density to the density of the liquid) 

 

 
 

,
2
L   : the fugacity coefficient of the solute in the liquid solvent at infinite dilution 

 

 

 

[ Gas Solubilities from Scaled-Particle Theory ] 

 

Consider a very dilute solution of nonpolar solute 2 in nonpolar solvent 1 at low pressure and at a temperature well below the critical of the 

solvent. 

Henry’s constant is, 

 

 
 



v1 : the molar volume of the solvent 

 

Equation (10-44) assumes that the dissolution process can be broken into two steps. 

 

Ⅰ Step ) 

 

a cavity is made in the solvent to allow introduction of a solute molecule 

 

Ⅱ Step ) 

 

the solute molecule interacts with surrounding solvent 

 

If the total pressure is low, 

 

 
 

 
 

 
 

a1 : the hard-sphere diameter for solvent 

a2 : the hard-sphere diameter for solute 

NA : Avogadro’s constant 

 

To obtain an expression for ig , we assume two things. 

 



① all changes in entropy that result from dissolution of a gas in a solvent are given by the cavity-formation calculation 

② some potential function are used for describing solute-solvent intermolecular forces. 

 

 
Lennard-Jones-12,6 potential is used 

 

σ12 and ε12 : parameters in the Lennard-Jones potential 

k : Boltzmann’s constant 

R : the universal gas constant 

 

 

 

Within the approximations used here, it is reasonable to set σ12 = 1/2(a1 + a2). 

The adjustable parameters are a1, a2, and ε12/k. 

 



 
 

 

 

10.6 Gas Solubility in Mixed Solvents 

 

Solubility data in mixed solvents are scarce. 

However, with the aid of a simple molecular-thermodynamic model, it is often possible to make a fair estimate of the solubility of a gas in a 

simple solvent mixture. 

 



Let subscript 2 stand for the gas as before, and let subscripts 1 and 3 stand for the two (miscible) solvents. 

To simplify matters, we confine attention to low or moderate pressures where the effect of pressure on liquid-phase properties can be 

neglected. 

For the ternary liquid phase, we write the simplest (two-suffix Margules) expansion for the excess Gibbs energy at constant temperature 

 

 
 

aij : a constant characteristic of the ij binary pair 

 

From Eq. (10-47) we can compute the symmetrically normalized activity coefficient γ2 of the gaseous solute using Eq. (6-25). 

The unsymmetrically normalized activity coefficient *
2  can be found by 

 

 
 

 
 

Parameters a23 and a12 are related to the two Henry’s constants 

 

 
 

H2,3 : Henry’s constant for the solute in solvent 3 at system temperature 

 

From Eqs. (10-47) and (10-48), utilizing Eq. (6-25), we obtain 

 

 
 



 
 

H2,mixture : Henry’s constant for the solute in the mixed solvent 

 

From Eq. (10-51), 

 

 
 

Substitution of Eqs. (10-50) and (10-53) into Eq. (10-52) gives the desired result 

 

 
 

① when the two solvents (without solute) form an ideal mixture, a13 = 0 

② when the solute-free mixture exhibits positive deviations from Raoult’s law, a13 〉 0 

(Henry’s constant in the mixture is smaller or solubility is larger than that corresponding to an ideal mixture of the same composition) 

③ when the solute-free mixture exhibits negative deviations from Raoult’s law, a13 〈 0 

(Henry’s constant in the mixture is larger or solubility is smaller) 

④ Constant a13 must be estimated from vapor-liquid equilibrium data for the solvent mixture 

 

 
 

According to Eq. (10-54), the effect of nonideal mixing of the solvents is not large. 

 



 
 

 

 

Eq. (10-54) is readily generalized to solvent mixtures containing any desired number of solvents. 

For an m-component system where the gas is designated by subscript 2, Henry’s constant for the gaseous solute is given by 

 

 
 

 

 



 
 

The negative values for a13 indicate that the water-solvent mixture exhibits negative deviations from Raoult’s law, probably due to hydrogen 

bonding between water and solvent molecules. 

 

 

 

The important assumption is that Eq. (10-47) gives a valid description of the excess Gibbs energy of the ternary mixture. 

This assumption provides a reasonable approximation for some solutions of simple fluids, but for mixtures containing polar or hydrogen-

bonded liquids a better model is required. 

For such cases, binary data may not be sufficient. 

A ternary constant may be necessary. 

 

define a residual quantity R by 

 

 
 

Hi,mixture : Henry’s constant for solute i in the solvent mixture containing m solvents 

Hi,j : Henry’s constant for solute i in the solvent j 



Φj : the volume fraction of solvent j in the solvent mixture on a solute-free basis 

 

 
 

 
 

 
 

 
 

v : the molar volume of the solute-free solvent mixture 

x : mole fraction 

vi : the molar “liquid” volume of solute i 

xjk : Flory interaction parameter for solvents j and k 

 

 

 

If one of the solvents (solvent k) is an alcohol or amine that associates continuously, 

 

 
 

 
 

 



 

c1 : the concentration of monomer 

cn : the concentration of polymer of degree n 

 

 

 



 

 

 

10.7 Chemical Effects on Gas Solubility 

 

The gas-solubility correlations discussed in Sec. 10.5 are based on a consideration of physical forces between solute and solvent. 

But they are not useful for those cases where chemical forces are significant. 

Specific chemical forces are not subject to simple generalizations. 

 

 

 

The importance of chemical effects is shown in Figure 10-18. 

 

 
 



Figure 10-18 indicates that the solvents fall roughly into three groups. 

 

① the solubility is less than ideal (positive deviations from Raoult’s law) 

→ the solvent molecules are strongly self-associated, they will not be available to form hydrogen bonds with the solute 

→ as a result, strongly associated substances are poor solvents for solute that can form only weak hydrogen bonds 

→ cannot compete successfully for proton acceptors 

 

② the solubility is similar to ideal (deviations from Raoult’s law are very small) 

→ aromatic solvents aniline, benzotrifluoride, and nitrobenzene are weak proton acceptors 

→ for these solvents, chemical forces (causing negative deviations from Raoult’s law) are just strong enough to overcome physical 

forces (usually cause positive deviations from Raoult’s law) 

 

③ the solubility is larger than ideal (negative deviations from Raoult’s law) 

→ solvents that are powerful proton acceptors and whose molecules are free to accept protons 

 

 



 

As discussed earlier, Henry’s constant is directly related to the activity coefficient at infinite dilution (see Eq. 6-43). 

In this case, Henry’s constant is the product of 
2SO   and the vapor pressure of pure SO2 liquid at 25℃. 

 

To characterize the electron-donor ability of a molecule, the donor number DN (or donicity) as the molar enthalpy value (-Δh) for the reaction 

of the donor (D) with SbCl5 was defined. 

 

 
 

 
 

 
 

Using this linear relation, it is possible to estimate Henry’s constants for sulfur dioxide in a variety of “chemical” organic solvents. 

 

 

 

While the chemical characteristics of solvents can be used to correlate gas solubilities, it is also possible to use gas-solubility data to 

characterize solvents. 



 

 
 

 



 

The solubility data show that addition of small amounts of aromatics to heptanes increases the solubility of hydrogen chloride. This increase is 

a result of the electron-donating properties of aromatic molecules that, because of their π–electrons, can act as Lewis bases. 

 

 

 

The evidence that hydrogen chloride and aromatics form stable complexes at low temperatures is given by the freezing point data of for 

mixtures of hydrogen chloride and mesitylene shown in Fig. 10-21. 

 

 
 

The maximum at a mole fraction of one-half shows that the stoichiometric ratio of hydrogen chloride to aromatic in the complex is 1:1. 

 

 

 

Brown and Brady reduced their solubility data by calculating dissociation equilibrium constants for the complexes. 

The dissociation constant is defined by 

 



 
 

x : mole fraction 

p : partial pressure 

 

According to this definition, the stability of a complex falls as the dissociation constant rises. 

By simple stoichiometry and by assuming that the complex is nonvolatile, Brown and Brady were able to calculate K from the change in 

Henry’s constant in heptanes that results when aromatic molecules are added to the solvent. 

Their results are shown in Table 10-12. 

The aromatic components are listed in order of rising basicity. 

As basicity increases, the solubility also increases and Henry’s constant falls. 

 

 

 

Deviations from Henry’s law may result from chemical effects even at very low solute concentrations. 

However, whenever the gaseous solute experiences a chemical change such as association or dissociation in the solvent, Henry’s law fails 

because the equilibrium between the vapor phase and the liquid phase is then coupled with an additional (chemical) equilibrium in the liquid 

phase. 

 

 



 

In Table 10-13, when plotted, these data do not yield a straight line. 

The reason for the failure of Henry’s law becomes apparent when we consider that sulfur dioxide plus water produces hydrogen ions and 

bisulfate ions. 

When sulfur dioxide gas is in contact with liquid water, we must consider two equilibria 

 

 
 

Henry’s law governs only the vertical equilibrium between the two phases. 

In this case, 

 

 
 

p : the partial pressure of sulfur dioxide 

H : a “true” Henry’s constant 

mM : the molality of molecular (nonionized) sulfur dioxide in aqueous solution 

 

When the partial pressure of sulfur dioxide is plotted against mM, a straight line is obtained. 

 

 

 

This case is particularly fortunate because independent conductivity measurements are available. 

In a more typical case, independent data on the liquid solution would not be available. 

 

For equilibrium between sulfur dioxide in the gas phase and molecular sulfur dioxide in the liquid phase, 

 

 
 



For ionization equilibrium in the liquid phase, 

 

 
 

K : the ionization equilibrium constant 

 

Substituting Eq. (10-67), 

 

 
 

 
 

Finally, 

 

 
 

Equation (10-71) shows the effect of ionization on Henry’s law. 

 

If there were no ionization, K = 0 and Henry’s law is recovered. 

The ability of a solute to ionize in solution increases its solubility. 

However, as the concentration of solute in the solvent rises, the fraction ionized falls. 

Therefore, the “effective” Henry’s constant p/m rises with increasing pressure. 

 



 
 

Figure 10-22 presents solubility data for the sulfur dioxide/water system plotted according to Eq. (10-71). 

 

 

 

The effect of ionization on solubility is particularly strong when two volatile, ionizing solutes, one basic and one acidic, are dissolved in an 

ionizing (high-dielectric constant) solvent. 

 



 
 

The indicated values of K are ionization equilibrium constants for the reactions 

 

 
 

 
 

 

 

The preceding examples illustrate how chemical effects may have a large influence on solubility behavior. 

It must be remembered that a solvent is never an inert material that merely acts as a cage for the solute. 


