
11. Solubilities of Solids in Liquids 

 

11.1 Thermodynamic Framework 

 

Solubility depends not only on the activity coefficient of the solute but also on the fugacity of 

the standard state to which that activity coefficient refers and on the fugacity of the pure solid. 
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From eq. (11-2) the solubility is 

(11-3) 

Thus the solubility depends not only on the activity coeffcient but also on the ratio of two 

fugacities as indicated by Eq. (11-3). 

 

To show the utility of Eq. (11-3), we consider first a very simple case. 

1. Assume that the vapor pressures of the pure solid and of the subcooled liquid are not large. 

-> In this case we can substitute vapor pressures for fugacities without serious error. 

2. Assume that the chemical natures of the solvent and of the solute are similar. 

 

In this case we can assume and Eq. (11-3) becomes 
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The solubility given by Eq. (11-4) is called the ideal solubility. 

 

Equation (11-4) explains why phenanthrene and anthracene have very different solubilities in 

benzene. Because of structual differences, the triple-point temperatures of the two solids are 

significantly different. As a result, the pure-component fugacity ratios at the same 

temperature also differ for the two solutes. 

 

 

The extrapolation indicated in Fig. 11-1 is simple when the solution temperature is not far 

removed from the triple-point temperatrue. However, any essentially arbitrary extrapolation 

involves uncertainty; when the extrapolation is made over a wide temperature range, the 

uncertainty may be large. 

 

11.2 Calculation of the Pure-Solute Fugacity Ratio 

 

For the liquid-phase activity coefficient, we define the standard state as the pure, subcooled 

liquid at temperature under its own saturation pressure. 

 

Assuming negligible solubility of the solvent in the solid phase, �, the equilibrium equation 

is 
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To simplify notation, let 

 

 

and let 

 

 

These two fugacities depend only on the properties of the solute(component 2). 

 

 

 

The ratio of these two fugacities can readily be calculated by the thermodynamic cycle 

indicated Fig. 11-2. 

 

The molar Gibbs energy change for component 2 in going from a to d is related to the 

fugacities of solid and subcooled liquid by 

(11-6) 

where, for simplicity, subscript 2 has been omitted. 

 

This Gibbs energy change is also related to the corresponding enthalpy and entropy changes 

by 
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The thermodynamic cycle in Fig. 11-2 provides a method to evaluate the enthalpy and 

entropy changes given in Eq. (11-7) 

 

Because both enthalpy and entropy are state functions independent of the path, it is 

permissible to substitute for the path a→d the alternate path a→b→c→d. For the enthalpy 

change from a to d we have 
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Equation (11-8) can be rewritten in terms of heat capacity and enthalpy of fusion  
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where and is the triple-point temperature.  

 

Similarly, for the entropy change from a to d, 
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which becomes 

(11-11) 

 

At the triple point, the entropy of fusion is 

(11-12) 

 

Substituting Eqs. (11-7), (11-9), (11-11), and (11-12) into Eq. (11-6) , and assuming that 

is constant over the temperature range , we obtain 

(11-13) 



Equation (11-13) gives the desired result; it expresses the fugacity of the subcooled liquid at 

temperature in terms of measurable thermodynamic properties. 

 

 

 

11.3 Ideal Solubility 

 

An expression for the ideal solubility of a solid solute in a liquid solvent has already been 

given by Eq. (11-4), but no clear-cut method was given for the saturation pressure of the 

subcooled liquid. 

 

However, this difficulty can be overcome by substituting Eq. (11-13) into Eq. (11-5). 

If we assume that the solution is ideal, then and we obtain for ideal solubility . 

(11-14) 

Equation (11-14) provides a reasonable method for estimating solubilities of solids in liquids 

where the chemical nature of the solute is similar to that of the solvent. 

 

Equation (11-14) immediately leads to useful conclusions concerning the solubilities of solids 

in liquids. 

●For a given solid/solvent system, the solubility increases with rising temperature. The rate 

of increase is approximately proportional to the enthalpy of fusion and, to a first 

approximation, does not depend on the melting temperature. 



●For a given solvent and a fixed temperature, if two solids have similar enthalpies of fusion, 

the solid with the lower melting temperature has the higher solubility. Similarly, if the two 

solids have nearly the same melting temperature, the one with the lower enthalpy of fusion 

has the higher solubility. 

 

To a fair approximation, the terms that include in Eq. (11-14) may be neglected. Also, it 

is permissible to substitute melting temperatures for triple-point temperatures. Equation (11-

14) may then be rewritten. 

(11-15) 

where is the normal melting temperature. 

 

 

 



 

 

11.4 Nonideal Solutions 

 

Equation (11-14) assumes ideal behavior but Eqs. (11-5) and (11-13) are general. Whenever 

there is a significant difference in the nature and size of the solute and solvent molecules, we 

may expect that is not equal to unity. In nonpolar solutions, where only dispersion forces 

are important, is generally larger than unity (and thus the solubility is less than that 

corresponding to ideal behavior), but in cases where polar or specific chemical forces are 

important, the activity coefficients may well be less than unity with correspondingly higher 

solubilities. 

 

As for solutions of liquid components, there is no general method for predicting activity 

coefficients of solid solutes in liquid solvents. For nonpolar solutes and solvents, however, a 

reasonable estimate can frequently be made with the Scatchard-Hildebrand relation 

(11-17) 

where is the molar volume of the subcooled liquid, is the solubility parameter of the 

subcooled liquid, is the solubility parameter of the solvent, and 

 



is the volume fraction of the solvent. 

 

Let stand for the volume change of fusion at the triple-point temperature. That is, 
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where subscript refers to the triple-point temperature. 

 

Let be the molar volume of the solid at temperature of the solution. The molar volume 

of the subcooled liquid is then given by 
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where and are the volumetric coefficients of expansion of the solid and liquid, 

respectively. 

 

The energy of vaporization of the subcooled liquid is found in a similar manner. Let 

stand for the enthalpy of fusion of the solid at the triple-point temperature and let stand 

for the enthalpy of sublimation of the solid at temperature . The energy of vaporization of 

the subcooled liquid is then 

(11-20) 

where is the saturation pressure of the subcooled liquid and is the molar volume of the 

saturated vapor in equilibrium with the solid, all at temperature . 

 

The square of the solubility parameter is defined as the ratio of the energy of complete 

vaporization to the liquid volume. Therefore, if the vapor pressure of the subcooled liquid is 

large, it is necessary to add a vapor-phase correction to the energy of vaporization given by 

Eq. (11-20). Such a correction, however, is rarely required and for most cases of interest the 

solubility parameter of the subcooled liquid is given with sufficient accuracy by 

(11-21) 

where is the energy of vaporization, given by the enthalpy of vaporization minus . 

 



As discussed in Chap. 7, the regular-solution theory of Scatchard-Hildebrand can be 

significantly improved when the geometric-mean assumption is not used. In that event, Eq. 

(11-17) becomes 
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The energy of vaporization was divided into two parts. 

(11-23) 

 

As a result, two cohesive-energy densities can now be computed, corresponding to the types 

of intermolecular forces: 

(11-24) 
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where superscript has been omitted. 

 

The activity coefficient of component 2, the solute, dissolved in a nonpolar solvent, is now 

written 

(11-26) 

where . 

If , Eq. (11-26) reduces to Eq. (11-17). 

 

To calculate the cohesive-energy density due to quadrupole forces, Myers derived the relation 

(11-27) 

where is the quadrapole moment of species , is the molar liquid volume, is 

Avogadro’s constant, is Boltzmann’s constant, is the absolute temperature, and is a 

dimensionless constant. 

 



If the solvent, component 1, also has a significant quadrupole moment, then an additional 

term must be added to the bracketed quantity in Eq. (11-26) to account for quadrupole forces 

between the dissimilar components; further, the geometric-mean term must be modified to 

include only the dispersion cohesive –energy density of component 1. The bracketed term in 

Eq. (11-26) then becomes 

 

 

Using the theory of intermolecular forces, Myers showed that 

(11-28) 

where is the same as in Eq. (11-27). 

 

For Myers used the combining rule 
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The term is frequently negligible but it is important. 

 

As Briefly indicated in Chap. 6, liquid-phase activity coefficients can sometimes be estimated 

from a group-contribution method such as UNIFAC.  

In the liquid phase, it is also possible to calculate the fugacity of the dissolved component 

using an equation of state. For solute 2, the equation of equilibrium is written 

(11-30) 

where is obtained from an equation of state, valid for the fluid mixture, over the density 

range from zero density to liquid density, as discussed in Chaps. 3 and 12. 

 

From experimental solid-liquid equilibrium (SLE) data we can obtain the binary parameters 

of a particular liquid-phase activity coefficient model, such as Wilson or UNIQUAC. These 

parameters may give in turn liquid phase activity coefficients at different system conditions 

that can be used to predict other equilibria. 

 



 

11.5 Solubility of a Solid in Mixed Solvent 

 

Scatchard-Hildebrand theory predicts that the solubility of a solid is a maximum in that 

solvent whose solubility parameter is the same as that of the (liquid) solute. In that event, the 

activity coefficient of the solute is equal to unity. Scatchard-Hildebrand theory suggests, 

therefore, that when a solid solute is dissolved in a mixture of two carefully selected solvents, 

a plot of solubility versus solvent composition should go through a maximum. : maximum-

solubility effect 

 

 

Shown in Fig. 11-13 are calculations based on regular-solution theory without, however, 

using the geometric-mean assumption. The activity coefficient is given by 

(11-31) 

where 

 

Parameters , that give deviations from the geometric mean, are obtained from binary data 

reported by Gordon and Scott. For the two binaries including phenanthrene, and are 

obtained from experimental solubilities of phenanthrene in each of the two solvents at 25°C. 

In these calculations, all parameters were taken as independent of temperature.  

 

A group-contribution method such as UNIFAC may sometimes be used to calculate liquid-

phase activity coefficients of solutes in mixed solvents. 



 

 

Table 11-2 gives calculated and experimental solubilities for naphthalene in aqueous solvents 

containing methanol, ethanol, propanol, or butanol. The ideal solubilities (  ) are always 

too large by one order of magnitude. Solubilities calculated with UNIFAC are in 

semiquantitative agreement with experiment. 

 

For a solid dissolved in a binary mixed solvent, enhanced solubility (or maximum-solubility 

effect) has been observed for a large variety of systems. 

 



 

 

11.6 Solid Solutions 

 

There are many situations where components 1 and 2 are miscible not only in the liquid phase 

but in the solid phase as well. In such cases we must write two equations of equilibrium, one 

for each component. 

(11-32) 



(11-33) 

Introducing activity coefficients we can rewrite these equations. 

(11-34) 

(11-35) 

 

If system temperature is above the triple-point temperature of component 1 but below that 

of component 2, then pure solid 1 and pure liquid 2 are both hypothetical. 

 

When Eqs. (11-34) and (11-35) are applied over a range of temperatures, it is possible to 

calculate the freezing-point diagram for the binary system. 

 

 

 

It is difficult to say a priori whether or not two components are partially or totally miscible in 

the solide phase. For nonpolar substances the general rule is that solid-phase miscibility is 

usually negligible provided that the two components differ appreciably in molecular size and 

shape. 

 

Because our knowledge of solid-phase mixtures is so meager, in many typical chemical-

engineering calculations for multicomponent systems, it has been customary to assume either 

that there is complete immiscibility or (more rarely) complete miscibility in the solid phase.  

 



Unfortunately, calculated phase equilibria are extremely sensitive to this choice of 

assumption. 

 

 

 



 

 

 

11.7 Solubility of Antibiotics in Mixed Nonaqueous 

Solvents 

 



An industrial application that requires solid-liquid equilibria is provided by separation and 

recovery processes for amino acids and antibiotics. A simple solubility model for amino acids 

and antibiotics was presented by Gupta and Heidemann using a modified UNIFAC equation. 

 

Using available experimental solubilities of the antibiotic in different solvents, and 

considering the entire antibiotic molecule as a group, Gupta and Heidemann wanted to obtain 

UNIFAC group-interaction parameters. To do so, they obtained from experimental solubility 

data the activity coefficient of the solid at saturation, using an equation similar to Eq. (11-15) 

 

(11-36) 

 



 

 


