11. Solubilities of Solids in Liquids

11.1 Thermodynamic Framework

Solubility depends not only on the activity coefficient of the solute but also on the fugacity of
the standard state to which that activity coefficient refers and on the fugacity of the pure solid.

Table 11-1 Structures of phenanthrene and anthracene and their solubility in benzene at
25°C.

Solute Structure Solubility in benzene
. (mol %)

Phenanthrene OO 20.7
Anthracene | . OGG 0.81
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From eq. (11-2) the solubility is
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Thus the solubility depends not only on the activity coeffcient but also on the ratio of two

fugacities as indicated by Eq. (11-3).

To show the utility of Eq. (11-3), we consider first a very simple case.
1. Assume that the vapor pressures of the pure solid and of the subcooled liquid are not large.
-> In this case we can substitute vapor pressures for fugacities without serious error.

2. Assume that the chemical natures of the solvent and of the solute are similar.

In this case we can assume " = land Eq. (11-3) becomes
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The solubility *zgiven by Eq. (11-4) is called the ideal solubility.

Equation (11-4) explains why phenanthrene and anthracene have very different solubilities in
benzene. Because of structual differences, the triple-point temperatures of the two solids are
significantly different. As a result, the pure-component fugacity ratios at the same

temperature Talso differ for the two solutes.
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Figure 11-1 Extrapolation (dashed line) of liquid vapor pressure on a pressure-
temperature diagram for a pure material (schematic).

The extrapolation indicated in Fig. 11-1 is simple when the solution temperature Zis not far
removed from the triple-point temperatrue. However, any essentially arbitrary extrapolation
involves uncertainty; when the extrapolation is made over a wide temperature range, the

uncertainty may be large.
11.2 Calculation of the Pure-Solute Fugacity Ratio

For the liquid-phase activity coefficient, we define the standard state as the pure, subcooled

liquid at temperature Zunder its own saturation pressure.

Assuming negligible solubility of the solvent in the solid phase, 1, the equilibrium equation

is
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To simplify notation, let
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These two fugacities depend only on the properties of the solute(component 2).
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]Figure 112 Thermodynamic cycle for calculating the fugacity of a pure subcooled
iquid.

The ratio of these two fugacities can readily be calculated by the thermodynamic cycle

indicated Fig. 11-2.

The molar Gibbs energy change for component 2 in going from a to d is related to the
fugacities of solid and subcooled liquid by

L
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where, for simplicity, subscript 2 has been omitted.

This Gibbs energy change is also related to the corresponding enthalpy and entropy changes

by
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The thermodynamic cycle in Fig. 11-2 provides a method to evaluate the enthalpy and

entropy changes given in Eq. (11-7)

Because both enthalpy and entropy are state functions independent of the path, it is
permissible to substitute for the path a—d the alternate path a—b—c—d. For the enthalpy

change from a to d we have
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Equation (11-8) can be rewritten in terms of heat capacity “and enthalpy of fusion AP
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where 265 = Coltizui ~ Colstiand s the triple-point temperature.

Similarly, for the entropy change from a to d,
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which becomes

A

5
ad'ﬂ dT

us +
b / T (11-11)
At the triple point, the entropy of fusion ArusSis
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Substituting Egs. (11-7), (11-9), (11-11), and (11-12) into Eq. (11-6) , and assuming that Ar,

=T

IS constant over the temperature range , We obtain
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Equation (11-13) gives the desired result; it expresses the fugacity of the subcooled liquid at

temperature Zin terms of measurable thermodynamic properties.
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Figure 11-3 Fugacity ratio for solid and subcooled liquid carbon dicxide.

11.3 Ideal Solubility

An expression for the ideal solubility of a solid solute in a liquid solvent has already been
given by Eq. (11-4), but no clear-cut method was given for the saturation pressure of the

subcooled liquid.

However, this difficulty can be overcome by substituting Eq. (11-13) into Eq. (11-5).

If we assume that the solution is ideal, then = land we obtain for ideal solubility %z,
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Equation (11-14) provides a reasonable method for estimating solubilities of solids in liquids

where the chemical nature of the solute is similar to that of the solvent.

Equation (11-14) immediately leads to useful conclusions concerning the solubilities of solids
in liquids.

eFor a given solid/solvent system, the solubility increases with rising temperature. The rate
of increase is approximately proportional to the enthalpy of fusion and, to a first

approximation, does not depend on the melting temperature.



eFor a given solvent and a fixed temperature, if two solids have similar enthalpies of fusion,
the solid with the lower melting temperature has the higher solubility. Similarly, if the two

solids have nearly the same melting temperature, the one with the lower enthalpy of fusion

has the higher solubility.

To a fair approximation, the terms that include Acyin Eq. (11-14) may be neglected. Also, it
IS permissible to substitute melting temperatures for triple-point temperatures. Equation (11-
14) may then be rewritten.
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where Zixis the normal melting temperature.
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Figure 11-4  Solubility of aromatic solids in benzene.



T T T
=== CALCULATED FROM
IDEAL-SOLUBILITY EQUATION
85— . EKPEHIMFNT N
o
o o
- hd
w 60— » .
o« hd
= ./
7 o
o b4
& 350~ o -
2 "\,“ o
[ .... o
“\
10— I, \,\ -
\\
~
-35 | i |
0 025 050 075 1.0
X2 '
Figure 11-5 Freezing points for the system o-chloronitrobenzene (1 Yp-
chloronitrobenzene (2).

11.4 Nonideal Solutions

Equation (11-14) assumes ideal behavior but Egs. (11-5) and (11-13) are general. Whenever

there is a significant difference in the nature and size of the solute and solvent molecules, we
may expect that *is not equal to unity. In nonpolar solutions, where only dispersion forces
are important, s generally larger than unity (and thus the solubility is less than that
corresponding to ideal behavior), but in cases where polar or specific chemical forces are
important, the activity coefficients may well be less than unity with correspondingly higher

solubilities.

As for solutions of liquid components, there is no general method for predicting activity
coefficients of solid solutes in liquid solvents. For nonpolar solutes and solvents, however, a
reasonable estimate can frequently be made with the Scatchard-Hildebrand relation
Iy, = i 51—52'2‘3??
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where %is the molar volume of the subcooled liquid, bis the solubility parameter of the

subcooled liquid, U1is the solubility parameter of the solvent, and
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is the volume fraction of the solvent.

Let Zyus¥stand for the volume change of fusion at the triple-point temperature. That is,
Ar? =1~ V[ (11-18)

where subscript trefers to the triple-point temperature.

Let #be the molar volume of the solid at temperature Zof the solution. The molar volume
of the subcooled liquid is then given by
v=v Aty —wet) T - Th11-10)

where @~ and ofare the volumetric coefficients of expansion of the solid and liquid,

respectively.

The energy of vaporization of the subcooled liquid is found in a similar manner. Let Ayl

stand for the enthalpy of fusion of the solid at the triple-point temperature and let A, whistand
for the enthalpy of sublimation of the solid at temperature I. The energy of vaporization of
the subcooled liquid is then
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where £%is the saturation pressure of the subcooled liquid and #“is the molar volume of the

saturated vapor in equilibrium with the solid, all at temperature I,

The square of the solubility parameter is defined as the ratio of the energy of complete
vaporization to the liquid volume. Therefore, if the vapor pressure of the subcooled liquid is
large, it is necessary to add a vapor-phase correction to the energy of vaporization given by
Eqg. (11-20). Such a correction, however, is rarely required and for most cases of interest the

solubility parameter of the subcooled liquid is given with sufficient accuracy by
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where Susliis the energy of vaporization, given by the enthalpy of vaporization minus &7,



As discussed in Chap. 7, the regular-solution theory of Scatchard-Hildebrand can be
significantly improved when the geometric-mean assumption is not used. In that event, Eq.
(11-17) becomes
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The energy of vaporization was divided into two parts.

Ab = B, T Aiggeq(11-23)

As a result, two cohesive-energy densities can now be computed, corresponding to the types
of intermolecular forces:
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where superscript Zhas been omitted.

The activity coefficient of component 2, the solute, dissolved in a nonpolar solvent, is now

written

i
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where Fototal = Cogizn T Coqua.

If Czeue =0 Eq. (11-26) reduces to Eq. (11-17).

To calculate the cohesive-energy density due to quadrupole forces, Myers derived the relation
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where &is the quadrapole moment of species {, Uis the molar liquid volume, Najs

Avogadro’s constant, ¥is Boltzmann’s constant, ZTis the absolute temperature, and fis a

dimensionless constant.



If the solvent, component 1, also has a significant quadrupole moment, then an additional
term must be added to the bracketed quantity in Eq. (11-26) to account for quadrupole forces
between the dissimilar components; further, the geometric-mean term must be modified to
include only the dispersion cohesive —energy density of component 1. The bracketed term in

Eq. (11-26) then becomes
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Using the theory of intermolecular forces, Myers showed that

2 o2
B
Cliguad 1372
12

k2|
Nyl (11-28)

where fis the same as in Eq. (11-27).

For %zMyers used the combining rule

1
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The term  “zaadis frequently negligible but it is important.

As Briefly indicated in Chap. 6, liquid-phase activity coefficients can sometimes be estimated
from a group-contribution method such as UNIFAC.
In the liquid phase, it is also possible to calculate the fugacity of the dissolved component

using an equation of state. For solute 2, the equation of equilibrium is written
fz =b40:F (11-30)
where %is obtained from an equation of state, valid for the fluid mixture, over the density

range from zero density to liquid density, as discussed in Chaps. 3 and 12.

From experimental solid-liquid equilibrium (SLE) data we can obtain the binary parameters
of a particular liquid-phase activity coefficient model, such as Wilson or UNIQUAC. These
parameters may give in turn liquid phase activity coefficients at different system conditions

that can be used to predict other equilibria.



11.5 Solubility of a Solid in Mixed Solvent

Scatchard-Hildebrand theory predicts that the solubility of a solid is a maximum in that
solvent whose solubility parameter is the same as that of the (liquid) solute. In that event, the
activity coefficient of the solute is equal to unity. Scatchard-Hildebrand theory suggests,
therefore, that when a solid solute is dissolved in a mixture of two carefully selected solvents,

a plot of solubility versus solvent composition should go through a maximum. : maximum-

solubility effect
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Figure 11-13  Solubility of phenanthrene in a mixed solvent containin il
and methylene iodide. 9 cyclohexane

Shown in Fig. 11-13 are calculations based on regular-solution theory without, however,

using the geometric-mean assumption. The activity coefficient is given by

U
Inv = T 41585+ 418+ (Ayp+ App— *42.3'@2@’3](11_31)

where
Ay =18— 8+ 2,80,
Parameters %, that give deviations from the geometric mean, are obtained from binary data

reported by Gordon and Scott. For the two binaries including phenanthrene, lzand hzare
obtained from experimental solubilities of phenanthrene in each of the two solvents at 25°C.

In these calculations, all parameters were taken as independent of temperature.

A group-contribution method such as UNIFAC may sometimes be used to calculate liquid-

phase activity coefficients of solutes in mixed solvents.



Table 11-2  Solubility of naphthalene in alcohol/water systems.

Solubility {mal %)

Alcohol Mole fraction alcohol  Temp. Ideal UNIFAC Exp.*
in solvent mixture’  (°C)

Methanol 0.922 35.7 39.7 2.8 24
0.922 50.6 55.8 4.8 4.6

Ethanol - 0.906 27.5 327 26 34
0.906 39.5 43.5 38 55
0.743 73.0 47.0 20 38

1-Propancl  0.739 409 449 37 5.6
0.739 46.7 514 44 7.4
0.616 521 57.6 3.0 5.7

1-Butanol 0.813 21.8 283 35 4.3
0.813 296 34.1 4.6 5.8
0.680 30.7 353 29 4.7
0.680 43.5 47.7 4.5 8.0

: O. Mannhardt, R. De Right, W. Martin, C. Burmaster, and W. Wadt, 1943, J. Phys. Chem,, 47: 68S.

Solute-free basis.

Table 11-2 gives calculated and experimental solubilities for naphthalene in aqueous solvents
containing methanol, ethanol, propanol, or butanol. The ideal solubilities (% = 1 ) are always
too large by one order of magnitude. Solubilities calculated with UNIFAC are in

semiquantitative agreement with experiment.

For a solid dissolved in a binary mixed solvent, enhanced solubility (or maximum-solubility

effect) has been observed for a large variety of systems.
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Figure 11-14 Solubility isotherms for {a) 2-acetyl-1-naphthol (1) and (b) 1-acetyl-2-
naphthol (2) in cyclohexane/1-butanol mixed solvent system (Domanska, 1990). ——

Smoothed experimental data (symbols); - - - Additivity rule.
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Figure 11-15 Schematics of ultraviolet absorpticn spectra for (a) 2-acetyl-1-naphthol
(1) and (b} 1-acetyl-2-naphthol (2), in cyclohexane (——) and in 1-butanol {- - - -). Here
€ is the extinction coefficient,

11.6 Solid Solutions

There are many situations where components 1 and 2 are miscible not only in the liquid phase
but in the solid phase as well. In such cases we must write two equations of equilibrium, one

for each component.

Fitsotigpase = F1 (Yiguidpkase) (11-32)
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Introducing activity coefficients we can rewrite these equations.
W8] et = KT et (11-34)

W €5 Fgaro = B8 arer(11-35)

If system temperature Zis above the triple-point temperature of component 1 but below that

of component 2, then pure solid 1 and pure liquid 2 are both hypothetical.

When Egs. (11-34) and (11-35) are applied over a range of temperatures, it is possible to

calculate the freezing-point diagram for the binary system.
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Figure 11-17 Phase diagram for the system naphthalene/B-naphthol.

It is difficult to say a priori whether or not two components are partially or totally miscible in
the solide phase. For nonpolar substances the general rule is that solid-phase miscibility is
usually negligible provided that the two components differ appreciably in molecular size and

shape.

Because our knowledge of solid-phase mixtures is so meager, in many typical chemical-
engineering calculations for multicomponent systems, it has been customary to assume either

that there is complete immiscibility or (more rarely) complete miscibility in the solid phase.



Unfortunately, calculated phase equilibria are extremely sensitive to this choice of

assumption.
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Figure 11-19  Solubility of argon in nitrogen.
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Figure 11-20 Experimental solid-liquid phase diagram for the system fiuo-
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Figure 11-21 Experimental solid-liquid phase diagram for the system fluo-
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11.7 Solubility of Antibiotics in Mixed

Solvents

Nonagueous



An industrial application that requires solid-liquid equilibria is provided by separation and
recovery processes for amino acids and antibiotics. A simple solubility model for amino acids

and antibiotics was presented by Gupta and Heidemann using a modified UNIFAC equation.

Using available experimental solubilities of the antibiotic in different solvents, and
considering the entire antibiotic molecule as a group, Gupta and Heidemann wanted to obtain
UNIFAC group-interaction parameters. To do so, they obtained from experimental solubility

data the activity coefficient of the solid at saturation, using an equation similar to Eq. (11-15)
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solutions in toluene upon dilution with a selected hydrocarbon.



