Colloidal nanoparticles as advanced biological sensors,
Philip D. Howes, Rona Chandrawati, Molly M. Stevens*
P. D. Howes et al., Science 346, 53 (2014)
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Example: Protease detection

| Fluorescent nanoparticle biosensors | | Plasmonic nanoparticle biosensars |
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Quantum dot bioconjugates

for imaging, labelling and sensing
H. Mattoussi, Nature Mater. 2005, 4, 435.

Applications in cellular labelling, deep-tissue imaging, assay
labelling and as efficient fluorescence resonance energy transfer
donors.

High quantum yield, high molar extinction coefficients (~10-100 X
that of organic dyes)

Broad absorption with narrow, symmetric photoluminescence (PL)
spectra (full-width at half-maximum ~25-40 nm) spanning the UV
to near-infrared, large effective Stokes shifts

High resistance to photobleaching
Exceptional resistance to photo- and chemical degradation
Size-tune fluorescent emission as a function of core size

Broad excitation spectra, which allow excitation of mixed QD
populations at a single wavelength far removed (>100 nm)
from their respective emissions - ‘multiplexing’
(simultaneous detection of multiple signals).
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Absorbance (normalized)

Absorbance (normalized)

Comparison of rnodamine red/DsRed?2 spectral properties to those
of QDs highlighting how multiple narrow, symmetric QD emissions can be
used in the same spectral window as that of an organic dye.
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Representative QD core materials scaled as a function of their emission
wavelength superimposed over the spectrum.
Representative areas of biological interest
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Pseudo-colored image depicting five-color QD

staining of fixed human epithelial cells.
Cyan corresponds to 655-nm Qdots labelling the nucleus,
magenta 605-Qdots labelling Ki-67 protein,
green 565-Qdots labelling microtubules
and red 705-Qdots labelling actin filaments.




Fluorescent Bio-imaging using QDs
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Advantage Limitation

Long term stability *Highly toxic cadmium
*Various wavelength Shallow penetration
*Narrow emission depth to living organ




Water-dispersible Nanoparticles

Hydrophobic shell

Ligand Exchange
with hydrophilic ligands

Encapsulation
with hydrophilic surface




QD solubilization and biofunctionalization
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Schematic of current Qdot surface coatings
Jesse M. Klostranec and Warren C. W. Chan* Adv. Mater. 2006, 18, 1953.
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Semicondutor Nanocrystals

Semiconductor Nanocrystals as Fluorescent Biological Labels
Shimon Weiss and A. Paul Alivisatos (U. California, Berkeley)

Science 1999, 281, 2013.

The use of nanocrystals for biological detection.
A. Paul Alivisatos, Nature Biotechnology 2004, 22, 47.

Demonstration of Photostability of QD’s vs conventional dye

..

.



Advantages of QDs over conventional dyes for Biological imaging

1. Semiconductor nanocrystals were prepared for use as fluorescent
probes in biological staining and diagnostics.

2. Compared with conventional fluorophores, the nanocrystals have a
narrow, tunable, symmetric emission spectrum and are
photochemically stable.

3. The advantages of the broad, continuous excitation spectrum were
demonstrated in a dual-emission, single-excitation labeling experiment
on mouse fibroblasts: Many sizes of nanocrystals may therefore be
excited with a single wavelength of light; many emission colors that
may be detected simultaneously.

4. These nanocrystal probes are thus complementary and in some
cases may be superior to existing fluorophores.



Excitation (dashed) and fluorescence (solid) spectra of
(A) fluorescein and (B) a typical water-soluble nanocrystal (NC)
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Normalized fluorescence

Wavelength (nm)

InAs nanocrystals InP nanocrystals rgdse nanocrystals 2.1, 2
2.8, 3.6, 4.6, and 6.0 nm3.0, 3.5, and 4.6 np$-1, 3.6, and 4.6 nm

B: silica-coated core (CdSe)—shell (ZnS or CdS) nanocrystal probes



ross section of a dual-labeled sample 107
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 Cross section of a dual-labeled sample examined with a Bio-Rad
1024 MRC laser-scanning confocal microscope.

« 3T3 mouse fibroblast cells using two different size CdSe-CdS core-
shell nanocrystals enclosed in a silica shell.

* The smaller nanocrystals (2-nm core) emitted green fluorescence
(maximum 550 nm, 15% quantum yield), the larger (4-nm core), red
fluorescence (maximum 630 nm, 6% quantum yield)



« nanocrystals coated with trimethoxysilylpropyl urea and acetate
groups were found to bind with high affinity in the cell nucleus

-> “stain” the nucleus with the green-colored nanocrystals,

* Avidin-biotin interaction: a model Biotin was covalently

bound to the nanocrystal surface, and the biotinylated nanocrystals

were used to label fibroblasts. Fibroblasts had been
Incubated in phalloidin-biotin. o
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Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection
Warren C. W. Chan and Shuming Nie*
Science 1998, 281, 2016.

A) Mercaptoacetic acid

{Protein |

N
3
)
X

20 times as bright
100 times as stable against photobleaching
 one-third as wide in spectral linewidth.



Biomolecule-Nanocrystal Conjugate

ZnS shell

bifunctional
crosslinker

functional group

stabilizing groups
embedded in the
outer siloxane shell:

functional groups
embedded in the
outer siloxane shell:

CdSe/ZnS core/shell nanocrystals



Near-infrared fluorescent type Il guantum dots

for sentinel lymph node mapping,

Sungjee Kim, Yong Taik Lim, ....... , M. G. Bawendi, J. H. Frangioni,
Nature Biotechnology 2004, 22, 93.

 Fluorescence emission of type |l quantum dots can be tuned

Into the near infrared and that a polydentate phosphine coating renders
them soluble, disperse and stable in serum.

« Type Il NIR QDs with a hydrodynamic diameter of 15-20 nm,

a maximal absorption cross-section, fluorescence at 840—860 nm

* NIR QD size of 16 nm = 440 kDa protein - critical diameter

of 5 ~ 50 nm needed for retention of QDs in sentinel lymph node (SLN)

Sentinel lymph node:
First lymph node(s) reached by metastasizing cancer cells from a tumor.




* By changing the two variables of shell thickness and core size, the
emission of type-Il QDs can be easily and widely tuned.
* PL spectra from CdTe/CdSe QDs that range from 700 nm
to over 1000 nm simply by changing the core size and shell thickness.
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NIR emitting window is appealing for biological optical imaging
because of the low tissue absorption and scattering effects.
typically at 650-900 nm
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R. Weissleder, Nature Biotechnol. 2001, 19, 316.



 Demonstrate that these quantum dots allow a major cancer surgery,
sentinel lymph node mapping, under complete image guidance.

* Injection of only 400 pmol of near-infrared quantum dots permits
sentinel lymph nodes 1 cm deep to be imaged easily in real time
using excitation fluence rates of only 5 m\W/cm?>.

* Localization of SLN - only 3 -4 min

* Image guidance using NIR QDs minimized size of incision to find node

Sentinel lymph node:
First lymph node(s) reached by metastasizing cancer cells from a tumor.




NIR QD sentinel lymph node mapping in the mouse
Images of mouse injected intradermally with 10 pmol of NIR QDs in the left paw.

a

Pre-injection Color video 5 min NIR fluorescence 5 min

autofluorescence post-injection post-injection
r : 1

b Color video NIR fluorescence

Sentinel lymph node:
First lymph node(s) reached by metastasizing cancer cells from a tumor.



Surgical field in a pig injected intradermally
with 400 pmol of NIR QDs in the right groin.

Color video NIR fluorescence  Color-NIR merge

Pre-injection

post-injection (autofluorescence)

30 sec

4min
post-injection

Image-guided
resection




In Vivo Imaging of Quantum Dots

Encapsulated in Phospholipid Micelles
Benoit Dubertret,1,3*t Paris Skourides,2 David J. Norris,3,4*
Vincent Noireaux,1 Ali H. Brivanlou,2 Albert Libchaber1,3

Science 2002, 298, 1759.

« Encapsulation of individual nanocrystals

In phospholipid block—copolymer micelles

* When conjugated to DNA, the nanocrystal-micelles acted as in vitro
fluorescent probes to hybridize to specific complementary sequences.
* Moreover, when injected into Xenopus embryos,

the nanocrystal-micelles were stable, nontoxic (5 x 10° nanocrystals
per cell), cell autonomous, and slow to photobleach.

* Nanocrystal fluorescence could be followed to the tadpole stage,
allowing lineage-tracing experiments in embryogenesis.




QD-micelle formation

LAY
Ll G

g Evaporate

1  Phospholipid

-
-
‘.



Water-dispersible Nanoparticles

Hydrophobic shell

Ligand Exchange
with hydrophilic ligands

Encapsulation
with hydrophilic surface




Conjugation of QD-micelles with DNA.

“=pe Phospholipid NH2
Quantum dot

19um

Oligonucleotide—QD-micelles were shown to bind specifically to cDNA, immobilized
In 4% agarose beads, but not to noncomplementary oligonucleotides



QD labeling of Xenopus embryos at different stages:
Real-time tracking of embryonic development
Requirements for in vivo imaging
* Biologically neutral (i.e., no biological activity or toxicity).

« Stable for long periods of time
QD injection

Embryo Observation
Important for

cell tracking [

0

* QD-micelles were cell autonomous.
* QD-micelles seemed to have very little activity or toxicity.
* QD-micelles were stable in vivo.



Comparison of QD and RG-D (Rhodamine Green Dextran)
for resistance to photobleaching.

30min 80min




Renal clearance of quantum dots,

H. S. Choi, ....... , M. G. Bawendi, J. H. Frangioni,
Nature Biotechnology 2007, 25, 1165.

* size and charge of most nanoparticles preclude their efficient
clearance from the body as intact nanoparticles.

* For globular proteins, a hydrodynamic diameter of ~ 5-6 nm is
associated with the ability to be cleared rapidly from the body

by renal filtration and urinary excretion

« Without such clearance or their biodegradation into biologically
benign components, toxicity is potentially amplified and radiological
Imaging is hindered. Au nanoparticles for CT.

 Using intravenously administered quantum dots in rodents

as a model system, we have precisely defined the requirements
for renal filtration and urinary excretion of inorganic nanoparticles.




 Zwitterionic (cysteine) or neutral organic coatings prevented
adsorption of serum proteins, which otherwise increased
hydrodynamic diameter by 415 nm and prevented renal excretion.
* A final hydrodynamic diameter < 5.5 nm resulted in rapid and
efficient urinary excretion and elimination of quantum dots

from the body.

* This study provides a foundation for the design and development

of biologically targeted nanoparticles for biomedical applications.
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* The larger quantum dots, including DHLA-,cysteamine- and
DHLA-PEG-coated ones, were never found in the bladder but,
Instead, were trapped in the liver, lung and spleen in large amounts

« Four hours after intravenous injection of QD515 (HD = 4.36 nm),
the dominant signal was in the bladder.

* In contrast, QD574 (HD = 8.65 nm) exhibited high uptake in liver
(26.5 = 3.9%ID), lung (9.1 + 4.0%ID) and spleen (6.3 + 2.4%ID) and
a proportionally lower signal in bladder.
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Hydrodynamic diameter vs. Blood half-life and Urine excreation
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High-Resolution
Three-Photon
Biomedical Imaging
using Bright Doped

ZnS Nanocrystals

J. Yu et al.,
Nature Mater. 2013, 12, 359.




NIR emitting window is appealing for biological optical imaging
because of the low tissue absorption and scattering effects.
typically at 650-900 nm
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NIR-imaging guided Surgery using NIR QDs (CdTe/CdSe QDs

Color video NIR fluorescence Color-NIR merge

Pre-injection

post-injection (autofluorescence)

30 sec

4min
post-injection

Image-guided
resection

Sungjee Kim, Yong Taik Lim,



Toxicity Issue of Semiconductor Nanocrystals

4 N

The in vivo accessible quantum dots are composed of toxic elements,
and hardly degradable. Making smaller Q.D. < 6 nm requires more
toxic element (Arsenic).

N — Prof. Frangioni@ MGHNat. Biotech. Commentary 2011)

/

» Almost every fluorescence imaging semiconductor nanocrystal
IS composed of toxic elements (Cd, As, Se, etc.)

« ZnS is a main-cover material to temporarily solve this problem.

CdSe/ZnS, CdTe/ZnS
INP/ZnS, INAsS/ZnS



3-photon imaging using non-toxic & bright Mn**-doped ZnS
nanocrystals enables deeper tissue penetration in vivo.
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“News & Views in Nature Mater.,” K. Zagorovsky, W. C. W. Chan, Nature Mater. 2013, 12, 285.



3-photon fluorescence microscopy improves
tissue penetration depth and resolution in vivo.
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Fluorescence Correlation Spectroscopy

® ZnS:Mn** NCs
- ® Rhodamine 6G
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» The gquantum mechanical probability of three-photon process is lower
than that of one-photon and two-photon process.
(3PA~The 5" order nonlinear optical process!)

* Due to large 3PA cross section of ZnS:Mn NCs, the 3PL brightness
reaches to the two-photon brightness of 1 GM at low power of 1.3 m\W.



3PL High-Resolution Imaging of ZnS:Mn NCs

Signal Intensity (a.u.)
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3PL of ZnS:Mn NCs enables high-resolution imaging approaching
theoretical limit of 3PL Imaging (272 nm for 950 nm NIR eXxcitation).

The ability of live cellular imaging for 10 hours demonstrates no phototoxicity
at the imaging condition owing to low power excitation of 0.5 mW.






In Vivo 3PL Imaging of
ZnS:Mn NC-RGD Conjugates
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* High photostability of ZnS:Mn NCs enables in vivo 3PL imaging at
high power (~10 mW).

« 3PL of RGD-conjugated ZnS:Mn NCs were visualized at the tumor

vasculature due to the angiogenesis targeting.



Depth- pro;ectlon of Tumor Vasculature

Background
autofluorescence

3PL of RGD-conjugated ZnS:Mn NCs can be imaged down to 100 um
even at the base of dermis (Highly Scattering & Very Challenging).



In Vivo 3PL Imaging of
ZnS:Mn NC-targeting Tumor

SHG from collagen fiber
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« 3PL of ZnS:Mn NCs in tumor vasculature is highly bright &
spectrally distinguishable from background fluorescence.

« 3PL Imaging of ZnS:Mn NCs-targeting Tumor at um & Subcellular
Resolution.
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* The reticuloendothelial organs already contain non-negligible amounts
of zinc ions (Biocompatibility of ZnS nanocrystals).

 The total amount of zinc ions is gradually decreased (Clearance of ZnS
nanocrystals).

* The histological examination confirms no sign of in vivo toxicity
(Biocompatibility of ZnS nanocrystals).



