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General Form of Transfer Function
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o Poles: Roots of the denominator polynomial D(s).

@ Zeros: Roots of the numerator polynomial N(s).

Gls) =255 m=-3 p=—-1,2=-1/2
1£/3;
G(S) = 52—5s+1 b1, p2 = 5[]




Definition of Stability
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@ For linear systems, same as BIBO
(Bounded-Input/Bounded-Output) stability.

@ BIBO stability: All output variables are bounded when all input
variables are bounded.
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Stability of Linear (or Linearized) Systems
e If all poles have negative real part, the dynamics is stable.

o If any of the poles have positive or zero real part, the dynamics is
unstable.
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System Gain

Gain — Output Change 3/ (o0)
"~ Input Change ~ /(o0)

@ Step Change in the input of size M — Ultimate response in y?

Y (00) = lim s (G(s) %) = lim G(s)M

5s—0 s—0

Hence, we get

Gain = W(oo) ~ i = ll_r)% G(s)

Upshot & Warning
@ (G(0) is the gain!

@ This works only when the dynamics is stable. For unstable dynamics, gain is oo.
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Examples
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Gain = G(0) = 0

~ (6s+T7)(7s2+25+5)

1

 (s—2)(s+5)

Gain = G(0) = —

G(0) = —% but Gain=co



Damping

o Underdamped dynamics:
o Nonoscillatory input — Oscillatory response

o If the poles are complex numbers (w/ nonzero imaginary parts),
the dynamics is underdamped.

e The imaginary part of the pole is the frequency of oscillation
(rad/time).

G(s) = m pr,pe =14+2§ Underdamped, unstable
i

G(s) = TS p1=—3, pp=—1 Overdamped, stable

= 7i2s75 Dup2=-—1%2j Underdamped, stable



Overshoot and Inverse Response

o Existence of overshoot or inverse response can be determined
from zeros of the transfer function.

o Overshoot: a Left-Half-Plane (negative) zero closer to the origin
than the dominant pole (the pole that's closest to the origin)
o Inverse response: a Right-Half-Plane (positive) zero

o The closer the RHP zero to the origin, the more pronounced the
inverse response.



Examples

G) = Gynean P =h = A=t
SR R R A
GS(S):% pL=—%p2=-3%, =35

LHP zero, Overshoot
LHP zero, No Overshoot
RHP zero, Inverse Response

RHP zero, Bigger Inverse Response
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Speed of Response

@ Speed of response is determined roughly by the dominant pole
(the pole that's close to the origin), which corresponds to the
slowest time constant.

Settlingtime~3~5 x ———
dominant pole



2" Order System Plus a Zero
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@ Possible responses

o Monotonic response (like the overdamped 2" order system)

o Overshoot
o Inverse response



Effect of 7,

@ 7, > 71: Overshoot
@ 7, < 71: Overdamped response with no overshoot

@ 7, < 0: Inverse response (the initial response is the opposite direction to the
final response).

Note: 71 > 7o



Exemplary Scenario?

Two first-order effects in parallel:
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Transport Delays

Plug flow

Cut) = Clt— 0) 5 C(s) = ¢ 0 (s)

0 = £: dead time or transport delay



First-Order-Plus-Delay System
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Approximating a High Order System with
a Delay

Cao®). 0

Ca(). Canp®. 4 Canl®). @

Cirny(9) = A Culs) = COyls) = mCAO(S)

e~ (s (s) (for large n)

Note: e* =~ 1 + 2,7 = V/q



Development of Empirical Models from
Process Data

@ In some situations, it is not feasible to develop a theoretical
(physically-based) model due to:
o Lack of information
o Model complexity
o Engineering effort required

@ An attractive alternative: Develop an empirical dynamic model
from input-output data
o Advantage: less effort is required
o Disadvantage: the model is only valid (at best) for the range of data
used in its development
“Empirical models usually don't extrapolate very well."



Fitting First-Order / Second-Order Model
Using Step Tests

e Simple TF models can be obtained graphically from step response
data.

@ Process reaction curve: a plot of the output response of a process
to a step change input

o If the process of interest can be approximated by a first- or
second-order linear model, the model parameters can be
obtained by inspection of the process reaction curve.



First-Order Model

K

Vi) = Ts—i—lU(s)

y(t) = KM(1—e )

@ Gain K: 5¢ 57 at steady
state

@ Time constant 7:
d 1
e dt( e )t 0= 7T

° or T = t(,.630%y.,)
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First-Order Plus Time Delay Model

Ke s
G(S) ors+1

For this FOPTD model, we note the following characteristics of its step
response:

@ The response attains 63.2% of its final response at time, t =7 + 6

@ The line drawn tangent to the response at maximum slope (¢ = 6)
intersects the y/ KM = 1lineatt =1 +0.

© The step response is essentially complete at t = 57. In other
words, the settling time is t; = 57.
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