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General Form of Transfer Function

Y(s)
U(s) = G(s) = N(s)

D(s)e−θs = γ
(s − z1)(s − z2) · · · (s − zm)

(s − p1)(s − p2) · · · (s − pn)
e−θs

Poles: Roots of the denominator polynomial D(s).
Zeros: Roots of the numerator polynomial N(s).

G(s) = 2s+1
s2+4s+3

p1 = −3, p2 = −1, z1 = −1/2

G(s) = 5
s2−s+1

p1, p2 = 1±
√
3j

2
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Definition of Stability
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For linear systems, same as BIBO
(Bounded-Input/Bounded-Output) stability.

BIBO stability: All output variables are bounded when all input
variables are bounded.
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.
Stability of Linear (or Linearized) Systems
..

......

If all poles have negative real part, the dynamics is stable.

If any of the poles have positive or zero real part, the dynamics is
unstable.

Transfer Function Stability Impulse Response
1

(s−1)(s+5) Unstable Aet + Be−5t

1
s(s+5) Unstable A + Be−5t

1
(s+2)(s+5) Stable Ae−2t + Be−5t
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System Gain
Gain =

Output Change
Input Change

=
y′(∞)

u′(∞)

Step Change in the input of size M → Ultimate response in y?

y′(∞) = lim
s→0

s
(

G(s)M
s

)
= lim

s→0
G(s)M

Hence, we get

Gain =
y′(∞)

u′(∞)
=

lims→0 G(s)M
M = lim

s→0
G(s)

.
Upshot & Warning
..

......

G(0) is the gain!

This works only when the dynamics is stable. For unstable dynamics, gain is ∞.
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Examples

G(s) =
1

(s + 2)(s + 5)
Gain = G(0) =

1

10

G(s) =
5s + 2

(6s + 7)(7s2 + 2s + 5)
Gain = G(0) =

2

35

G(s) =
1

(s − 2)(s + 5)
G(0) = − 1

10
but Gain=∞
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Damping

Underdamped dynamics:
Nonoscillatory input → Oscillatory response

If the poles are complex numbers (w/ nonzero imaginary parts),
the dynamics is underdamped.

The imaginary part of the pole is the frequency of oscillation
(rad/time).

G(s) = 1
s2−2s+5

p1, p2 = 1± 2j Underdamped, unstable
G(s) = 1

s2+4s+3
p1 = −3, p2 = −1 Overdamped, stable

G(s) = 1
s2+2s+5

p1, p2 = −1± 2j Underdamped, stable
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Overshoot and Inverse Response

Existence of overshoot or inverse response can be determined
from zeros of the transfer function.

Overshoot: a Left-Half-Plane (negative) zero closer to the origin
than the dominant pole (the pole that's closest to the origin)
Inverse response: a Right-Half-Plane (positive) zero
The closer the RHP zero to the origin, the more pronounced the
inverse response.
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Examples

G1(s) =
(10s+1)

(3s+1)(2s+1)
p1 = − 1

3
, p2 = − 1

2
, z1 = − 1

10
LHP zero, Overshoot

G2(s) =
(2.5s+1)

(3s+1)(2s+1)
p1 = − 1

3
, p2 = − 1

2
, z1 = − 1

2.5
LHP zero, No Overshoot

G3(s) =
(−2.5s+1)

(3s+1)(2s+1)
p1 = − 1

3
, p2 = − 1

2
, z1 = 1

2.5
RHP zero, Inverse Response

G4(s) =
(−10s+1)

(3s+1)(2s+1)
p1 = − 1

3
, p2 = − 1

2
, z1 = 1

10
RHP zero, Bigger Inverse Response
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Speed of Response

Speed of response is determined roughly by the dominant pole
(the pole that's close to the origin), which corresponds to the
slowest time constant.

Settling time ≈ 3 ∼ 5 × 1

dominant pole
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2nd Order System Plus a Zero

I / O
System

Y(s) = K(τas + 1)

(τ1s + 1)(τ2s + 1)
U(s)

↔ τ1τ2
d2y
dt2 + 2(τ1 + τ2)

dy
dt + y = K

(
τa

du
dt + u

)
Possible responses

Monotonic response (like the overdamped 2nd order system)
Overshoot
Inverse response
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Effect of τa

τa > τ1: Overshoot

τa ≤ τ1: Overdamped response with no overshoot

τa < 0: Inverse response (the initial response is the opposite direction to the
final response).

Note: τ1 > τ2
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Exemplary Scenario?

Two first-order effects in parallel:

+

+u

k1

τ1s+1

k2

τ2s+1

y

Y(s)
U(s) =

k1
τ1s + 1

+
k2

τ2s + 1
=

(k1 + k2)
(
τ2k1+τ1k2

k1+k2 s + 1
)

(τ1s + 1)(τ2s + 1)
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Transport Delays

v

CAi

v

CA

Plug flow

L
C’Ai C’Ai

θ

C′
A(t) = C′

Ai(t − θ)
L→ C′

A(s) = e−θsC′
Ai(s)

θ = L
v : dead time or transport delay
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First-Order-Plus-Delay System
q

CAi

v

CA0
L

V

q

CA

C′
A(s) =

K
τs + 1

C′
A0(s), C′

A0(s) = e−θsC′
Ai(s)

C′
A(s) =

K
τs + 1

e−θsC′
Ai(s), K = 1, τ =

V
q , θ =

A · L
q
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Approximating a High Order System with
a Delay

CA0(t), q

CA1(t), q CA(n-1)(t), q CAn(t), q

C′
A(i+1)(s) =

1
τs+1C′

Ai(s) ⇒ C′
An(s) =

1
(τs+1)n C′

A0(s)
≈ e−(nτ)sC′

A0(s) (for large n)

Note: ex ≈ 1 + x, τ = V/q
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Development of Empirical Models from
Process Data

In some situations, it is not feasible to develop a theoretical
(physically-based) model due to:

Lack of information
Model complexity
Engineering effort required

An attractive alternative: Develop an empirical dynamic model
from input-output data

Advantage: less effort is required
Disadvantage: the model is only valid (at best) for the range of data
used in its development
``Empirical models usually don't extrapolate very well."
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Fitting First-Order / Second-Order Model
Using Step Tests

Simple TF models can be obtained graphically from step response
data.

Process reaction curve: a plot of the output response of a process
to a step change input

If the process of interest can be approximated by a first- or
second-order linear model, the model parameters can be
obtained by inspection of the process reaction curve.
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First-Order Model

Y(s) =
K

τs + 1
U(s)

y(t) = KM(1− e−t/τ )

...1 Gain K: ∆y
M at steady

state
...2 Time constant τ :

d
dt
( y

KM
)

t=0
= 1

τ
or τ = t|(y=0.632×yss)
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First-Order Plus Time Delay Model

G(s) = Ke−θs
τs + 1

For this FOPTD model, we note the following characteristics of its step
response:
...1 The response attains 63.2% of its final response at time, t = τ + θ
...2 The line drawn tangent to the response at maximum slope (t = θ)
intersects the y/KM = 1 line at t = τ + θ.

...3 The step response is essentially complete at t = 5τ . In other
words, the settling time is ts = 5τ .
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