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Overview: Closed-loop

To simplify the notation, the primes and s dependence have been omitted; thus, Y'is used rather than Y’ (s)

Y(s) KnGeGyGy  KyGoGyGy
Yip(s) 14 GeGyGpGn 1+ Gop
Y(s) Gy Gy
D(s) 1+ GeGyGpGm 1+ Gop

A
Q@ Gor = GcGyGyGry
@ Different from open-loop!
@ Dependson G,
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Analysis and Design Problems

@ Analysis: Given particular G's and G.

o Are the closed-loop dynamics stable?
o Speed of response? Damping?
e Gains for Y/Y,, and Y/D

e Design: Given particular G's, choose (“design") G, so that
o the closed-loop dynamics are stable
° Y—Yp has a gain of ~ 1 and % has a gain of ~ 0
o the dynamics are sufficiently fast (but not too fast) and smooth
(without excessive oscillation).



Model Used for Analysis and Design

o Case | (Less Frequent)

o From a fundamental model, perform linearization and Laplace
transform of the linearized ODEs to find G,(s) and Gg(s)
e Find actuator and measurement dynamics G, and G,,

o Case Il (More Frequent)

o The composite model G(= G,,G,G,) is fitted to data of y,,
obtained by perturbing p (e.g., by making a step change).



PID Controller

p(t) = b+ K. <e(t) + 1/0te(t*)dt* +TDZ:) =

TI

P(s) = K. (E(S) + iE’(s) + TDSE(3)> =

TIS
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Calculation of Closed-Loop Functions

N Gd _|
Y E P’ %
26 G, G &1

T

Y = G+ GP (P =GV, V)
Y = Gle—i-GGc(ng—Y/)

Y(s)  Gqg and Y(s) GG,
D(s) 1+ GG. Y, (s) 1+ GG.

Convenience of L.T. J




Calculation of Closed-Loop Functions:
Generalization

lX
Y
%—» Gl —>000—> Gi —>®—> Gi+l I >e00—> Gj >

Y(s) _ Gi1Gia-- G Il
X(s) 1+GiGa---Gj  1+]],

@ Assume negative feedback
@ [] Product of the transfer functions in the forward path from Xto Y.

@ J].: Product of every transfer function in the feedback loop.



Analysis of P-only Control

D' K,
7s+1

Y. E P K Y’
5P @
&) N
s+ 1

KoK, K. K,
Y(S) Ts+1 KCKp . 1+ K. Kp

Vi(s) 14 5K~ 7ot 1+ KoK,

- T
YK K, S +1

@ Gainisnot 1 unless K. = oo, Time constant decreases with increasing K.

Ky Ky
Y'(s) | Kg  ITK.K,

D(s) 1+ KFKP T ors+ 14+ KK,

- T
71+KCKPS+1

@ Gainis not O unless K, = oo, Time constant decreases with increasing K..
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Analysis of Pl Control

/
D X,

7541

Y! 1))

P Y’
S e B

KCKp('rls+l)
7‘13(7‘s+1) _ KCKP(T]S-"-].)

Y (s) 1+KcKp(7'IS+1) T rrs(ts+1)+ Ko Kp(Trs+1)
) Trs(Ts+1)

Trs+1
- TIT 1+KCKp

KcKp82+ Kok, Tr54+1

@ Gain =1 always! No offset
@ 2nd order dynamics

@ Underdamped dynamics for very small 7;
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Closed-Loop Stability

Characteristic Equation
1+ Gor=0 J

@ Roots of the above equation are the poles of the closed-loop
functions (important information for analyzing closed-loop
dynamics)

e For stability, make sure all the roots are in the Left-Half-Plane
(negative real parts)

o Can be checked by Routh's test
o Or by direct substitution

10/1



Example: Routh's Test

Main Idea: Form a Routh array to see if any roots are in the RHP

1+ 0K =0
(25+1)(4s+1)(6s+1)

485% + 445 + 125+ (14+6K,.) =0

48 12

44 1+6K,
44x12—48(1+6K.) 0
a1
(22— 2 K.)x(1+6K.)—44x0

120 72
11 7HK‘3

Must be all positive for closed-loop stability!

120 72
120 Ty 50, 1+6K.>0



Example: Direct Substitution

Main Idea: At the limits of instability, the closed-loop poles will be on
the imaginary axis (between LHP and RHP)

s=jw

4883 +445% + 125+ (1 +6K,) =0
—48jw? — 44w? + 12jw + (1 + 6K,) =0

(—48w? + 12w)j + (—44w? + (1 + 6K,)) =0
—48w3 + 12w =0 —44w?+ (1+6K.) =0
w=0,K,=-1/6 w=%+1/2 K.=5/3

Note

This method works with a system with time delay. Routh's method
does not.




