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Overview: Closed-loop

To simplify the notation, the primes and s dependence have been omitted; thus, Y is used rather than Y′(s)

Y(s)
Ysp(s)

=
KmGcGvGp

1 + GcGvGpGm
=

KmGcGvGp

1 + GOL

Y(s)
D(s)

=
Gd

1 + GcGvGpGm
=

Gd
1 + GOL

GOL
∆
= GcGvGpGm

Different from open-loop!

Depends on Gc
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Analysis and Design Problems

Analysis: Given particular G's and Gc
Are the closed-loop dynamics stable?
Speed of response? Damping?
Gains for Y/Ysp and Y/D

Design: Given particular G's, choose (``design") Gc so that
the closed-loop dynamics are stable

Y
Ysp

has a gain of ∼ 1 and Y
D has a gain of ∼ 0

the dynamics are sufficiently fast (but not too fast) and smooth
(without excessive oscillation).
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Model Used for Analysis and Design

Case I (Less Frequent)
From a fundamental model, perform linearization and Laplace
transform of the linearized ODEs to find Gp(s) and Gd(s)
Find actuator and measurement dynamics Gv and Gm

Case II (More Frequent)
The composite model G(= GmGpGv) is fitted to data of ym
obtained by perturbing p (e.g., by making a step change).
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PID Controller

p(t) = p̄ + Kc

(
e(t) + 1

τI

∫ t

0
e(t∗)dt∗ + τD

de
dt

)
⇒

P′(s) = Kc

(
E(s) + 1

τIs
E(s) + τDsE(s)

)
⇒

P′(s)
E(s) = Kc

(
1 +

1

τIs
+ τDs

)

Y ′

sp
E

Kc

(

1 +
1

τIs
+ τDs

)

P ′

G
Y

′

Gd

D′
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Calculation of Closed-Loop Functions

+++++−+−

Y’sp E

D’

Gc

P’ Y’
G

Gd

Y′ = GdD′ + GP′ (P′ = Gc(Y′
sp − Y′))

Y′ = GdD′ + GGc(Y′
sp − Y′)

.
Convenience of L.T.
..

......

Y′(s)
D′(s) =

Gd
1 + GGc

and
Y′(s)
Y′

sp(s)
=

GGc
1 + GGc

6 / 1



Calculation of Closed-Loop Functions:
Generalization

+++++−+−

Y
G1 Gi Gi+1 Gj

X

Y(s)
X(s) =

Gi+1Gi+2 · · ·Gj
1 + G1G2 · · ·Gj

=

∏
f

1 +
∏

e

Assume negative feedback∏
f: Product of the transfer functions in the forward path from X to Y.∏
e: Product of every transfer function in the feedback loop.
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Analysis of P-only Control

Y
′

sp E
Kc

P
′

Kp

τs + 1

Y
′

Kd

τs + 1

D
′

Y′(s)
Y′sp(s)

=

KcKp
τs+1

1 +
KcKp
τs+1

=
KcKp

τs + 1 + KcKp
=

KcKp
1+KcKp
τ

1+KcKp
s + 1

Gain is not 1 unless Kc = ∞, Time constant decreases with increasing Kc.

Y′(s)
D′(s) =

Kd
τs+1

1 +
KcKp
τs+1

=
Kd

τs + 1 + KcKp
=

Kd
1+KcKp
τ

1+KcKp
s + 1

Gain is not 0 unless Kc = ∞, Time constant decreases with increasing Kc.
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Analysis of PI Control

Y
′

sp E
Kc

(

1 +
1

τIs

) P
′

Kp

τs+1

Y
′

Kd

τs+1

D
′

Y′(s)
Y′

sp(s)
=

KcKp(τIs+1)

τIs(τs+1)

1+
KcKp(τIs+1)

τIs(τs+1)

=
KcKp(τIs+1)

τIs(τs+1)+KcKp(τIs+1)

= τIs+1
τIτ

KcKp s2+ 1+KcKp
KcKp τIs+1

Gain = 1 always! No offset

2nd order dynamics

Underdamped dynamics for very small τI
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Closed-Loop Stability

.
Characteristic Equation
..
......1 + GOL = 0

Roots of the above equation are the poles of the closed-loop
functions (important information for analyzing closed-loop
dynamics)
For stability, make sure all the roots are in the Left-Half-Plane
(negative real parts)

Can be checked by Routh's test
Or by direct substitution

10 / 1



Example: Routh's Test
Main Idea: Form a Routh array to see if any roots are in the RHP

1 +
6Kc

(2s + 1)(4s + 1)(6s + 1)
= 0

48s3 + 44s2 + 12s + (1 + 6Kc) = 0

48 12
44 1 + 6Kc

44×12−48(1+6Kc)
44 0

( 120
11

− 72
11

Kc)×(1+6Kc)−44×0
120
11

− 72
11

Kc

Must be all positive for closed-loop stability!
120
11 − 72

11Kc > 0, 1 + 6Kc > 0
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Example: Direct Substitution

Main Idea: At the limits of instability, the closed-loop poles will be on
the imaginary axis (between LHP and RHP)

48s3 + 44s2 + 12s + (1 + 6Kc) = 0
s=jω−→

−48jω3 − 44ω2 + 12jω + (1 + 6Kc) = 0
(−48ω3 + 12ω)j +

(
−44ω2 + (1 + 6Kc)

)
= 0

−48ω3 + 12ω = 0 − 44ω2 + (1 + 6Kc) = 0
ω = 0, Kc = −1/6 ω = ±1/2, Kc = 5/3

.
Note
..

......
This method works with a system with time delay. Routh's method
does not.
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