
458.308 Process Control & Design

Lecture 8: Frequency Response

Jong Min Lee
Chemical & Biomolecular Engineering

Seoul National University

1 / 1



ejωt: Review
a vector in the complex plane with constant length one, making angle ωt with
the positive real axis
As time t increases the angle ωt increases, and so the vector rotates around the
origin in the complex plane, in the counter-clockwise sense. It makes one
complete rotation when ωt = 2π radians. If that occurs when t = T, then
ω = 2π/T, which has the units of radians per time.
ω is called the angular frequency of the vector's rotation.
If we measure frequency in units of rotations (or cycles) per second, and if we
denote that number by ν, then ν = 1/T and ω = 2πν.

The only difference between ejωt and e−jωt is ωt, that is, e−jwt rotates in the

opposite direction.
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Definition of Frequency Response

Linear System:
Sinusoidal forcing → Sinusoidal Response

System

A sin(ωt) Â sin(ωt + φ) φ < 0

.
Defined by two quantities that depend on the frequency ω
..

......

Â
A : Amplitude Ratio (``gain" for sinusoidal change)

ϕ: Phase Angle (``delay" in terms of radians)
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Bode Plots

Since Amplitude Ratio(A.R.) and Phase Angle (P.A.) depend on the
frequency of ω, a continuous parameter, it is convenient to display
as plots

ω vs. A.R. on a log-log scale
ω vs. P.A. on a log-linear scale
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How to Compute Frequency Response?
.
Quickly from transfer function
..

......

Y′(s)
U′(s) = G(s) s=jω−→ G(jω) = Â

Aejϕ

Â
A(ω) =

√
Re2[G(jω)] + Im2[G(jω)] = mod [G(jω)]

ϕ(ω) = tan−1

(
Im[G(jω)]
Re[G(jω)]

)
= arg[G(jω)]

Re

Im

G(jω)

Â
A

φ
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Example

Y′(s)
U′(s) = G(s) = K

τs + 1

G(jω) = K
τ(jω) + 1

=
K

1 + ω2τ2
− j Kωτ

1 + ω2τ2

Â
A =

K√
1 + ω2τ2

ϕ = tan−1(−ωτ)

Notice AR and PA are functions of ω
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Static (Pure Gain) System

Y′(s)
U′(s) = K

↓

Â
A = K
ϕ = 0
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1st Order System (Lag)

Y′(s)
U′(s) =

K
τs+1

↓ s = jω

Â
A = K√

1+ω2τ2

ϕ = tan−1(−ωτ)

ω = 1/τ : corner frequency
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1st Order Lead

Y′(s)
U′(s) = K(τas + 1) τa > 0

↓ s = jω

Â
A = K

√
1 + ω2τ2a

ϕ = tan−1(ωτa)

ω = 1/τa: corner frequency
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Pure Capacity (Integrating) System

Y′(s)
U′(s) =

K
s

↓ s = jω

Â
A = K

ω
ϕ = −π

2

Pure differentiator?

G(s) = K · s
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2nd Order System

Y′(s)
U′(s) =

K
τ2s2+2ζτs+1

↓ s = jω

Â
A = K√

(1−ω2τ2)2+(2ωτζ)2

ϕ = tan−1
(

−ωτζ
1−ω2τ2

)
ω = 1/τ : corner frequency
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Pure Delay System

Y′(s)
U′(s) = e−θs

↓ s = jω

Â
A = 1

ϕ = −θω
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Sketching Bode Plots: Complex Systems
.
Main Idea
..

......

For systems connected in series, the A.R.s multiply and the phase angle adds.(Why?

Euler's identity!) This rule can be used to obtain frequency response formula and

sketch bode plots very quickly.

G(s) = K(α1s + 1)(α2s + 1)

(τ1s + 1)(τ2s + 1)(τ3s + 1)
e−θs

G1 G2 G3 G4 G5 G6

K

τ1s+1

1

τ2s+1

1

τ3s+1
α1s + 1 α2s + 1

e
−θs

ARG(ω) = ARG1(ω)× ARG2(ω)× · · · × ARG6(ω)

ϕG(ω) = ϕG1(ω) + ϕG1(ω) + · · ·+ ϕG6(ω)
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Example

G(s) = −5(3s+1)
(5s+1)(10s+1)e

−2s

= (−5)× 1
5s+1 × 1

10s+1 × (3s + 1)× e−2s

AR = 5× 1√
25ω2 + 1

× 1√
100ω2 + 1

×
√

9ω2 + 1× 1

ϕ = −π + tan−1(−5ω) + tan−1(−10ω) + tan−1(3ω) + (−2ω)

What if

G(s) = 5(3s + 1)

(5s + 1)(10s + 1)
e−2s ?
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Example

G(s) = 1

(s + 1)(5s + 1)
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Example

G(s) = K
τs + 1

e−θs
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PID Controller

G(s) = Kc

(
1 +

1

τIs
+ τDs

)

ω → 0: G(s) ≈ 1
τIs .

ω → ∞: G(s) ≈ τD.

Corner frequency: 1
τIω

= τDω −→ ω = 1√
τIτD
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Bode Plots using MATLAB

% 1st Order System (Lag)
gs = tf([1], [1 1]);
[mag, phase, w] = bode(gs); % magnitudes and phase
subplot(2, 1, 1), loglog(w, squeeze(mag))
ylabel('AR/K')
subplot(2, 1, 2), semilogx(w, squeeze(phase))
ylabel('\phi'), xlabel('\omega \tau')
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