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� Traction or stress vector;  stress components.

Consider a surface element,         , of either the bounding surface of the 

body or the fictitious internal surface of the body as shown in Fig. 2.1. 

Assume that        contains the point .  

The traction vector,   t , is defined by

S∆

S∆

S 0
lim

S∆ →

 
=  ∆ 

∆f
t (2-1)

• Fig. 2.1  Definition of  surface traction
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It is assumed that         and         approach zero but the fraction, in general, 

approaches a finite limit. 

An even stronger hypothesis is made about the limit approached at  Q by the 

surface force per unit area.  

First, consider several different surfaces passing through  Q all having the 

same normal  n at Q as shown in Fig. 2.2.

� Traction or stress vector;  stress components.

∆f S∆

• Fig. 2.2  Traction vector t  and vectors at Q

Then the tractions on        ,        and          are the same.  That is, the 

traction is independent of the surface chosen so long as they all have the 

same normal.

S S ′ S ′′
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� Traction or stress vector;  stress components.

Stress vectors on three coordinate plane 

Let the traction vectors on planes perpendicular to the coordinate axes 

be       ,       , and        as shown in Fig. 2.3.  

Then the stress vector at that point on any other plane inclined arbitrarily to the 

coordinate axes can be expressed in terms of        ,        , and        . 

Note that the vector           acts on the positive        side of the element.  The 

stress vector on the negative side will be denoted by          .

(1)t
(2)t (3)t

(1)t (2)t (3)t
(1)t

1x
(1)−t

• Fig. 2.3 Traction vectors on three planes 

perpendicular to coordinate axes
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� Traction or stress vector;  stress components.

Stress components 

The traction vectors on planes perpendicular to the coordinate axes,        ,        

and are       ,       , and       . 

The three vectors can be decomposed into the directions of coordinate axes as

1x 2x

3x (1)t (2)t (3)t

(1)
11 12 13

T T T= + +t i j k
(2)

21 22 23
T T T= + +t i j k

(3)
31 32 33

T T T= + +t i j k

(2-2)

The nine rectangular components       are called the stress components.  Here ijT

the first subscript represents the “plane”  and

the second subscript represents the “direction”.

• Fig. 2.4 Stress components



Mechanics and Design

Chapter 2 : Stresses and Strains

School of Mechanical and Aerospace Engineering

Seoul National University

� Traction or stress vector;  stress components.

Sign convention

A stress component is positive when it acts in the positive direction of the 

coordinate axes, and on a plane whose outer normal points in one of the 

positive coordinate directions.

• Fig. 2.5   Sign convention of

stress components

Stress state at a point
The stress state at a point  Q is uniquely determined by the tensor  T which is 

represented by

11 12 13

21 22 23

31 32 33

T T T

T T T

T T T

 
 =  
  

T (2-3)
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� Traction or stress vector;  stress components.

Traction vector on an arbitrary plane: The Cauchy tetrahedron

When the stress at a point  O is given, then the traction on a surface passing 

the point Q is uniquely determined.

Consider a tetrahedron as shown in Fig. 2.6.  The orientation of the oblique 

plane ABC is arbitrary.  Let the surface normal of             be n and the line ON

is perpendicular to           .

The components of the unit normal vector  n are the direction cosine as

ABC∆

ABC∆

(2-4)

1 cos( )n AON= ∠

2 cos( )n BON= ∠

3 cos( )n CON= ∠

• Fig. 2.6 Geometry of tetrahedron
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� Traction or stress vector;  stress components.

If we let  ON = h , then 

321 nOCnOBnOAh ⋅=⋅=⋅= (2-5)

Let the area of           ,            ,             &             be      ,       ,       &       , 

respectively.  Then the volume of the tetrahedron,       , can be obtained by
ABC∆ OBC∆ OCA∆ OAB∆ S∆

1S∆ 2S∆ 3S∆

V∆

321
3

1

3

1

3

1

3

1
SOCSOBSOAShV ∆⋅=∆⋅=∆⋅=∆⋅=∆ (2-6)

From this we get,

1 1

h
S S S n

OA
∆ = ∆ ⋅ = ∆ ⋅

2 2

h
S S S n

OB
∆ = ∆ ⋅ = ∆ ⋅

3 3

h
S S S n

OC
∆ = ∆ ⋅ = ∆ ⋅

(2-7)
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� Traction or stress vector;  stress components.

• Fig. 2.7 Forces on tetrahedron

Now consider the balance of the force on OABC as shown in Fig. 2.7.  

The equation expressing the equilibrium for the tetrahedron becomes

( )* * * (1)* (2)* (3)*

1 2 3 0S V S S Sρ∆ + ∆ − ∆ − ∆ − ∆ =n
t b t t t (2-8)

Here the subscript * indicates the average quantity.  Substituting for      ,     ,      

and , and dividing through by      , we get
1

S∆
2

S∆

3S∆

V∆

S∆

( )* * (1)* (2)* (3)*

1 2 3

1

3
h n n nρ ∗+ = + +n

t b t t t (2-9)
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� Traction or stress vector;  stress components.

Now let h approaches zero, then the term containing the body force 

approaches zero, while the vectors in the other terms approach the vectors at 

the point O.  The result is in the limit

( ) (1) (2) (3) (k)

1 2 3 kn n n n= + + =n
t t t t t (2-10)

This important equation permits us to determine the traction        at a point 

acting on an arbitrary plane through the point, when we know the tractions on 

only three mutually perpendicular planes through the point.

The equation (2-10) is a vector equation, and it can be rewritten by

(n)
t

(2-11)

3

)3(

12

)2(

11

)1(

1

)(

1 ntntntt
n ++=

3

)3(

22

)2(

21

)1(

2

)(

2 ntntntt
n ++=

3

)3(

32

)2(

31

)1(

3

)(

3 ntntntt
n ++=

Comparing these with eq. (2-2), we get

(2-12)

kk

n
nTnTnTnTt

1331221111

)(

1
=++=

( )

2 12 1 22 2 32 3 2

n

k k
t T n T n T n T n= + + =

kk

n
nTnTnTnTt 3333223113

)(

3 =++=
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� Traction or stress vector;  stress components.

Or for simplicity, we put

in indicial notation

in matrix notation

in dyadic notation

jji

n

i
nTt =)(

(n) T
t T n=

( ) T= ⋅ = ⋅nt n T T n

(2-13)

From the derivation of this section, 

It can be shown that the relation (2-13) also holds for fluid 

mechanics.

(n)

:  Cauchy stress tensor.

This stress tensor is the linear vector function which 

associates with  the traction vector .

ij
T

n t
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� Coordinate transformation of stress tensors

As we discussed in the previous chapter, stress tensor follows the tensor 

coordinate transformation rule.  That is, let       and       be the two coordinate 

systems and   A be a transformation matrix as

x x

or T
v Av v A v= =

Then the stress tensor      transforms to      asT T

T
T A TA=

We may consider the stress tensor transformation in two dimensional case.  Let 

the angle between        axis and         axis is        .  Then the transformation 

matrix  A becomes

x x θ

1 1

1 2

2 2

1 2

cos sin

sin cos

a a
A

a a

θ θ

θ θ

−   
= =   
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The stress    transforms to    according to the followingT T

� Coordinate transformation of stress tensors

11 12

21 22

cos sin cos sin

sin cos sin cos

T
T T

T A TA
T T

θ θ θ θ

θ θ θ θ

−    
= =     −    

Evaluating the equation, we get

2

11 11 21 22
cos 2 sin cos cos sinT T T Tθ θ θ θ θ= + +

2 2

12 22 11 12( )sin cos (cos sin )T T T Tθ θ θ θ= − + −

2 2

22 11 22 12sin cos 2 sin cosT T T Tθ θ θ θ= + −

By using double angle trigonometry, we can get

11 22 11 22
11 22 12

( ) ( )
, cos2 sin 2

2 2

T T T T
T T Tθ θ

+ −
= ± ±

11 22
12 12

( )
sin 2 cos2

2

T T
T Tθ θ

−
= +
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Now we recognize the last two equations are the same as the ones we 

derived for Mohr circle, (eq 4-25) of Crandall’s book.  

For the two dimensional stress state, Mohr circle may be convenient 

because we recognize the stress transformation more intuitively.  

However, for 3D stress state and computation, it is customary to use the 

tensor equation directly to calculate the stress components in 

transformed coordinate system.

� Coordinate transformation of stress tensors
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� Principal axes of stress, Principal stress, etc.

Characteristic of the principal stress

(1) When we consider the stress tensor T as a transformation, then there 

exist a line  which is transformed onto itself by T.

(2) There are three planes where the traction of the plane is in the direction

of  the normal vector, i.e.

( ) / / ornt n ( ) λ=nt n (2-14)

Definitions

� Principal axes

� Principal plane

� Principal stress
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� Principal axes of stress, Principal stress, etc.

Determination of the principal stress

Let  T be the stress at a point in some Cartesian coordinate system,  n be a unit 

vector in one of the unknown directions and      represent the principal component on 

the plane whose normal is  n.

Then

λ

( ) λ=nt n λ⋅ =n T n; that is,

In indicial notation, we have

rrssrrs
nnnT λδλ ==

Rearranging, we have
0)( =− rrsrs nT λδ (2-15)

The three direction cosines cannot be all zero, since

12

3

2

2

2

1 =++= nnnnn rr

A system of linear homogeneous equations, such as eq. (2-15) has solutions which are 

not all zero if and only if the determinant

0=−
rsrs

T λδ (2-16)

The equation (2-16) represents third order polynominal equation w.r.t.      and it has 3 

real roots for      since       represents a real symmetric matrix.

λ
λ T
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� Principal axes of stress, Principal stress, etc.

Determination  of  principal  direction

When we get                    , we can substitute the     into the system of three 

algebraic equations
321  , , λλλλ =

i
λ

0

3

2

1

333231

232221

131211

=

































−

−

−

n

n

n

TTT

TTT

TTT

λ

λ

λ

(2-17)

From these, we get the ratio of                 .  Since                      , we can 

determine                       uniquely.
321 :: nnn 1n == iinn

( )321 nnn

(1) 3 distinctive roots

(2) Two of the roots are the same (cylindrical)

(3) All three roots are the same (spherical)

There can be three different cases;

When the two of the principal stresses, say               , are not equal, the 

corresponding principal directions        and       are perpendicular.
1 2 and σ σ

(1)n
(2)

n
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Proof>

� Principal axes of stress, Principal stress, etc.

Recall eq. (2-15)

0)( =−
rrsrs

nT λδ (2-15)

By substituting        and        , we getiλ (i)
n

0)( )1(

1 =− rrsrs nT δλ

0)( )2(

2 =− rrsrs nT δλ

(2-18)

Note that                         represent a vector.  From eq. (2-18), we can have
)1(

1 )( rrsrs nT δλ−

0)( )2()1(

1 =− srrsrs nnT δλ

0)( )1()2(

2 =−
srrsrs

nnT δλ

(a)

(b)

By subtracting (b) from (a), we get

0)2()1(

1

)1()2(

2

)1()2()2()1( =−+− rrrrsrrssrrs nnnnnnTnnT λλ (c)

The first two terms of eq. (c) become
)2()1()2()1()1()2()2()1(

srsrsrrssrrssrrs nnTnnTnnTnnT −=−

0)( )2()1( =−= srsrrs nnTT
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� Principal axes of stress, Principal stress, etc.

because  T is symmetric.  The remaining terms of eq. (c) become

0)( )2()1(

12 =− rr nnλλ (d)

Since                 and                         ,  eq. (d) implies21 λλ ≠ (1) (2) 1= =n n

(1) (2) (1) (2) 0
r r

n n = ⋅ =n n

Therefore,        and        are perpendicular to each other.
(1)

n (2)
n
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� Principal axes of stress, Principal stress, etc.

Invariants

The principal stresses are physical quantities.  Their value does not depend 

on the choice of the coordinate system.  Therefore, the principal stresses are 

invariants of the stress state.  

That is, they are invariant w.r.t. the rotation of the coordinate axes. 

The determinant in the characteristic equation becomes

0

333231

232221

131211

=

−

−

−

λ

λ

λ

TTT

TTT

TTT

Evaluating the determinant, we get

3 2 0
T T T

λ λ λ− − − =I II III (2-20)
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� Principal axes of stress, Principal stress, etc.

11 22 33
( )

T kk
T T T T tr= + + = =I T

where

2 2 2

11 22 22 33 33 11 23 31 12( )T T T T T T T T T T= − + + + + +II

)(
2

1
jjiiijij TTTT −=

11 12 13

21 22 23

31 32 33

det ( )
T

T T T

T T T

T T T

λ

λ

λ

−

= = −

−

III T

krjqippqrijk
TTTee

6

1
=

Since the roots of the cubic equation are invariants, the coefficients should 

be invariants.
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� Example 1 > Determine the normal and shear stress at the interface

psizzyy 100== σσ

psixx 50011 −== σσ

nnσnsσ

α
Other stress components are zero.

Stress distribution is uniform.

From the figure we can determine

1 2sin cosα α+n = e e

We use eq (2-19),                 to find out surface traction.  That is,( )nT T= n

( )

500 0 sin 500sin

0 100 cos 100cos

100 0 0

       

n
T

α α

α α

− −     
     = =
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� Example 1 > Determine the normal and shear stress at the interface

Therefore, the traction at the surface whose normal is  n given by
( )

1 2
500sin 100cosn

T α α= − +e e

Therefore, the surface traction in  n direction is given by
( )

1 2 1 2

2 2

( 500sin 100cos ) (sin cos )

     ( 500sin 100cos )

n

nn
T T α α α α

α α

= ⋅ = − + ⋅ +

= − +

n e e e e

There may be different ways to obtain shear component of the traction. One 

way may be the vector subtraction. 

Then the shear stress at the interface becomes
( ) 2 2

1 2

2 2

1 2 1 2

3 2

1

2 2

2

( 500sin 100cos )(sin cos )

     500sin 100cos ( 500sin 100cos )(sin cos )

     ( 500sin 500sin 100cos sin )

        (100cos 500sin cos 500sin cos )

    60

n

ns
T T α α α α

α α α α α α

α α α α

α α α α α

= − − + +

= − + − − + +

= − + −

+ + +

= −

e e

e e e e

e

e

2 2

1 20sin cos 600cos sinα α α α+e e

The magnitude of         becomesns
T 600sin cos

ns ns
T T α α= =
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� Example 2

Let,

3000 1000 0

1000 2000 2000

0 2000 2000

T

− 
 = −
 
  

Then determine the normal traction on the surface whose normal is 

2 30.6 0.8= +n e e

Again we use ( )nT T= ⋅n

( )

1 2 3

3000 1000 0 0

1000 2000 2000 0.6

0 2000 2000 0.8

600

     2800 600 2800 2800

2800

n

nnT T T

−   
   = = ⋅ −
   
      

− 
 = = − + +
 
  

n =

e e e

4050nnT = and 1=s e

Then ( )

1 2 3600 2800 2800 ) 600n

ns
T T= ⋅ − + + ⋅ −s = ( e e e s =
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The generalized Hooke’s law

σσσσij=Cijklekl

In as much as σσσσij = σσσσji and eij = eji, CCCCijklijklijklijkl = C= C= C= Cijlkijlkijlkijlk and  Cand  Cand  Cand  Cijklijklijklijkl = C= C= C= Cjikljikljikljikl

According to these symmetry properties, the maximum number of the independent 

elastic constants is 36.


