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. Chap. 4. Solution of Sch

4.1 Free Electrons

Suppose electrons propagating freely (i.e., in a potential-free space) to the
positive x-direction.
Then V = 0 and thus
2m d’w 2m_
Vzl//‘l'?(E—V)W:O —> dxz +h2 EW—O
The solution for the above differential equation for an undamped vibration with
spatial periodicity, (see Appendix 1)

w(X) = Ae'”

2m 2m P
where a= ?E — » a= ?E:%: =k \k\:_

Thus \‘P(X) _ Aeiax . eia)t
2 2
h 2 — E :h_k2
2m 2m

“energy continuum”

Figure 4.1. Energy continuum of a free electron (compare with Fig. 4.3).



4.2 Electron in a Potential Well (Bound Electron)

Consider an electron bound to its atomic nucleus. Suppose the electron can move
freely between two infinitely high potential barriers

Vf' |

w =0 y =0

e . .« 1
nucleus A

Figure 4.2. One-dimensional potential well. The walls consist of infinitely high
potential barriers.

At first, treat 1-aim propagation along the x-axlIs inside the potential well

2m d’ v 2m
Viw+—(E-Vw=0 —» E 0
v+ ( )17 v h W =
- i ax —iax 2m
Thesolution 1 = Ae'™ + Be where a=.—E



- Chap. 4. Solution of Schrm

4.2 Electron in a Potential Well (Bound Electron)
Applying boundary conditions,

X = O’ /4 =0 —> B — _A
X=a l//:O O: Aeiaa + Be—iaa _ A(eiaa _e—iaa)

—>

With Euler equation, Sin p = %(eip —e™)
I
Ale'™ —e7'1=2Ai-sinca=0
aa=nNr, n=0,12_3,...

e, Br’ 2

“energy levels”

Finallyy, E =—a° =
’ E
"o2m 2ma’
Es=26C { — n=5
n=1 2, 3,..
E,=16C A - n=4
11 - - 1] E,=9C - - n=3
energy quantization e -
E,=1C - n=1
The SO|U'[IOI’] l// — 2 Ai ° Si n ax Figure 4.3. Allowed energy values of an electron that is bound to its atomic nucleus.

E is the excitation energy in the present case. C = h’n?/2ma?, see (4.18). (E) is the
zero-point energy.)
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4.2 Electron in a Potential Well (Bound Electron)

Now discuss the wave function
w =2Ai-sinax y =-2Ai-sinax
wy =4A%sin® ax

a * a . 2 - 1
jo wy dr :4A2'[O sz(OCX)dx _ 4A [_%sm aXCOSOlX-I-%X]g =1 A= 2_a
27 =nA

N n=3 "

l—-———u——i’! L———o ’——J
(a) (b) (c)

Figure 4.4. (a) ¥ function and (b) probability function yy" for an electron in a
potential well for different n-values. (c) Allowed electron orbit of an atom.




a Chap. 4. Solution of Scm

4.2 Electron in a Potential Well (Bound Electron)

me* 1 1
For a hyd_rogen at(_)m, E— = —13.6-—2(eV)
Coulombic potential 2(4re,h)” n n
2
Vo__° b i
Are,r . 0= 3
n=2
366V

n=1

(lonization energy)

Figure 4.5. Energy levels of atomic hydrogen. E is the binding energy.

2 2

In 3-dim potential E =

2 2 2
_Zma(m(+ny+nz)

2

The same energy but different quantum numbers: “degenerate” states



Chap. 4. Solution of Scm

4.3 Finite Potential Barrier (Tunnel Effect)

Suppose electrons propagating in the positive x-direction encounter a potential
barrier V, (> total energy of electron, E)

Region (1) x<0 A
2

dy N 2m

dx*  A°

Ey =0

Region (Il) x>0

dw 2m
™ + Y (E-V,))w =0

The solutions (see Appendix 1)

W| _ Aeiax + Be—iax o= ?E

Y= Ce” + De " p= Z—m(E —Vo)
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4.3 Finite Potential Barrier (Tunnel Effect)

Since E — V,is negative, [ = \/Zh—T (E-V,) becomes imaginary.

To prevent this, define a new parameter, ¥ =10

2m i _j _
Thus, y = h—z(\/O—E),and v, =Ce” +De™ » y, =Ce” +De™”

Determinationof CorDbyB.C. Forx— o ,, =C-0+D-0

Since ¥ ¥ can never be lager than 1, ¥1 — « is no solution, and thus C — 0
, which reveals ¥-function decreases in Region 11

— —X
y, = De
Using (A.27) in textbook, the damped wave becomes

|\ 7 De—;fx . ei(a)t—kx)
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4.3 Finite Potential Barrier (Tunnel Effect)

As shown by the dashed curve in Fig 4.7, a potential barrier is penetrated by
electron wave : Tunneling

* For the complete solution,

(At x=0 w, =y, :continuity of the function

Ae'™ + Be"'* = De — A+B=D

_ dy, _ dy, _ . .
(2) Atx=0 = . continuity of the slope of the function
dx dx
Aige'” —Bige " = —yDe " j
With x=0 Ala—-Bia=-)D
Consequently,

A=La4ily B_——(l—l—)
2 o

Figure 4.7. l,l/ function (solid line) and electron wave (dashed line) meeting a finite
potential barrier.
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4.3 Finite Potential Barrier (Tunnel Effect)

=

VO
%
N W

NN\
<
AN

VoA

A,

< a - X

Figure 4.8. Square well with finite potential barriers. (The zero points on the vertical
axis have been shifted for clarity.)

N N § N
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4.4 Electron in a Periodic Field of Crystal (the Solid State)

The behavior of an electron in a crystal — A motion through periodic

repetition of potential well %
well length : a 1% B ¥
g ' RS S | SO N E <V
barrier height : V,
barrier width : b
~b 0 a Tk x

Region (1) Figuee 45, Oefupacaiopil o TR almiion Tampliied) (Kiucg
dw 2m

f+ —Ey =0 "
dX h - Surface potential
Region (11)
d’y 2m

7ty (E-Vo)y =0
dX ' nuclel #‘"’

Figure 4.10. One-dimensional periodic potential distribution for a crystal (muffin tin
potential ).



4.4 Electron in a Periodic Field of Crystal (the Solid State)

For abbreviation

The solution of this type equation (not simple but complicated)

w(X) =u(x)-e"  (Bloch function)

Where, u(x) is a periodic function which possesses the periodicity of the lattice in
the x-direction : u(x) = u(x + a + b),

In 3-d, u(r) = u(r + R), R = Bravais lattice vector
The final solution of the Schrodinger equations;

+CcoSaa =coska where P= 0

P 2
oa h
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4;4 Electron in a Periodic Field of Crystal_(the Solid State)

Mathematical treatment for the solution : Bloch function

w(x)=u(x)-e"

Differentiating the Bloch function twice with respect to x

2 2
d '72” — d l; + du 2ik—k2u)eikX
dx dx° dx

Insert 4.49 into 4.44 and 4.45 and take into account the abbreviation

d’u .. du dZu du
) —— +2ik——(k>—a?)u=0 (I ik 2 (k242U =
(N > o (k®—a®) ( )dx2+2lk ™ (k?+7*)Ju=0

The solutions of (1) and (1)

(1) U=e"(Ae'™ +Be ) () u=e"(Ce” +De”)



.. Chap. 4. Solution of Schrbm

4 4 Electron in a Periodic Field of Crystal (the Solid State)

(Continued) From continuity of the function and d_l//

dx
A+B=C+D

du/dx values for equations (1) & (Il) are identical atx =0
A(la —ik) + B(—la —1k) =C(=y —1k) + D(y —ik)
Further,? and u is continuous at x = a + b — Eq. (I) at x = 0 must be equal to
Eq. (II) atx=a+ b, Similarly, Eq. (I) at x=aisequal to Eq. (Il) atx =D

Aglia-i)a | pal-ia-ika _ ~alik+n)b | Hglik-7)b
Finally, du/dx is periodicina + b
Ai(a —k)e"“™ —Bi(a +k)e ™) = —C(y +ik)e™" + D(y —ik)e™ 7"

limiting conditions : using 4.57- 4.60 in text and eliminating the four constant A-D, and

using some Euler eq.(see Appendix 2)
2

7/22— o sinh(sb) - sin(aa) + cosh(sh) - cos(aa) = cosk(a+b)
ay
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4.4 Electron in a Periodic Field of Crystal (the Solid State)

If VV, is very large, then E in 4.47 is very small compared to V, so that

2m 2m
y = ?M xbh — yb= ?«/(\/Ob)b

Since Vb has to remain finite and b — 0, yb becomes very small.

For a small yb, we obtain (see tables of the hyperbolic function)

cosh(sb) 1 and sinh(yb) ~ b

Finally, neglect o2 compared to y? and, b compared to a so that 4.61 reads as follow

m .

-V, bsin aa +cos aa = coska
ah

_ mavVgb then  pSinea

ik oa

Let P + CcoSaa = coska




4.4 Electron in a Periodic Field of Crystal (the Solid State)

“Electron that moves in a periodically varying potential field can only occupy
certain allowed energy zone”

o In
I brt od

L\

-3n -7
bn -

Figure 4.11. Function P(sinaa/oa) + cosoa versus aa. P was arbitrarily set to be
(3/2)m.




4.4 Electron in a Periodic Field of Crystal (the Solid State)

The size of the allowed and forbidden
energy bands varies with P.

For special cases

* If the potential barrier strength, 0
Vb is large, P is also large and the
curve on Fig 4.11 steeper. The
allowed band are narrow.

* V,band P are small, the allowed
band becomes wider.

* If V,bgoesO, thus,P — 0
From 4.67, COS @ = cos ka

E

hok?
T om

)

p AL, cosaeg

2..

=
1

-1

(a)

Figure 4.13. Allowed energy levels for (a) bound electrons, (b) free electrons, and
(c) electrons in a solid.



4.4 Electron in a Periodic Field of Crystal (the Solid State)

See Fig. 7.2 of Bube

N N § N

L \ \ Allowed energy ranges

77777770 T PR 77 P o= |

227272 777 P=3
777 P =6

+ cos Ba

sin Ba
Bo
(@]
"o

_2;._.

FIG.7.2 Allowed and forbidden bands for the Kronig-Penney approximation to the periodic
series of square-well potentials, for various values of the ‘‘strength of binding’’ parameter P.




4.4 Electron in a Periodic Field of Crystal (the Solid State)

* [Ifthe V,bisverylarge, P —

Sin aa
> =50
o
Ssinca — 0 aa = nm
. ! Other model:
Nz E
a’=—— for n=123,... The tight-binding
d approximation
Combining 4.46 and 4.69
T°ht
E= ~-N = -
2ma Tb T Ta

Figure 4.14. Widening of the sharp energy levels into bands and finally into a quasi-
continuous energy region with decreasing interatomic distance, a, for a metal (after
calculations of Slater). The quantum numbers are explained in Appendix 3.



% Chap. 4. Solution of

See Fig. 7.3 of Bube
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4.4 Electron in a Periodic Field of Crystal (the Solid State)
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(a) (b)

FIG. 7.3 (a) Energy bands developing in metallic sodium as a function of the interatomic distance R. (From J. C. Slater,
(1934).) (b) Specific energy-band formation for three values of R.

Phys. Rev. 45, 794
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