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Chap. 4. Solution of Schrödinger Equation 

4.1 Free Electrons 
Suppose electrons propagating freely (i.e., in a potential-free space) to the 

positive x-direction. 
Then V = 0 and thus 
 
 
The solution for the above differential equation for an undamped vibration with 

spatial periodicity, (see Appendix 1) 
 
 
 
 
 

where 
 
Thus 
 
 
 

 “energy continuum” 

 

02
22

2

=+ ψψ Em
dx
d



0)(2
2

2 =−+∇ ψψ VEm


xiAex αψ =)(

Em
2

2


=α

tixi eAex ωα ⋅=Ψ )(
2

2

2
α

m
E 

=

kpEm
====

λ
πα 22

2


2
2

2
k

m
E 

=

λ
π2

=k

  



4.2 Electron in a Potential Well (Bound Electron) 
Consider an electron bound to its atomic nucleus. Suppose the electron can move 

freely between two infinitely high potential barriers   
          

          
 
 
 
 
 
At first, treat 1-dim propagation along the x-axis inside the potential well 
 
 
 
 

The solution    where 

0=ψ0=ψ
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4.2 Electron in a Potential Well (Bound Electron) 
Applying boundary conditions, 

 x = 0,    B = – A      
 x = a 
 
 

With Euler equation, 
 
 
 
 
Finally,       

        
          
 “energy quantization” 
 

The solution 
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4.2 Electron in a Potential Well (Bound Electron) 
 

Now discuss the wave function 

z
e
r
p 

xAi αψ sin2 ⋅= xAi αψ sin2* ⋅−=

xA αψψ 22* sin4=

λπ nr =2

nr
π
λ

2
=

1]cossin
2
1[4)(sin4 0

2

0

22

0

* =+−== ∫∫ aaa

x
xxxAdxxAd ααα

α
ατψψ

a
A

2
1

=

Chap. 4. Solution of Schrödinger Equation 

  



4.2 Electron in a Potential Well (Bound Electron) 
 

For a hydrogen atom, 
Coulombic potential 
 
 
 
 
 
 
 
 
 
In 3-dim potential  
 
The same energy but different quantum numbers: “degenerate” states  
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4.3 Finite Potential Barrier (Tunnel Effect) 
 

Suppose electrons propagating in the positive x-direction encounter a potential 
barrier V0 (>  total energy of electron, E) 

 

  Region (I)  x < 0 
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The solutions (see Appendix 1) 
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4.3 Finite Potential Barrier (Tunnel Effect) 
 
Since E − V0 is negative,                                    becomes imaginary. 
 

To prevent this, define a new parameter, 
 
Thus,                                    , and      
 
 

Determination of C or D by B.C. For x → ∞                                              
 

Since  Ψ Ψ* can never be lager than 1,        → ∞ is no solution, and thus 
 , which reveals Ψ-function decreases in Region II 
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Using (A.27)  in textbook, the damped wave becomes 
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4.3 Finite Potential Barrier (Tunnel Effect) 

As shown by the dashed curve in Fig 4.7, a potential barrier is penetrated by 
electron wave : Tunneling 

* For the complete solution, 

(1) At  x = 0                        : continuity of the function III ψψ =
xxixi DeBeAe γαα −− =+ DBA =+

(2) At x = 0                              : continuity of the slope of the function 
 
 
 
 

With  x = 0                                                     
 

Consequently, 
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4.3 Finite Potential Barrier (Tunnel Effect) 
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4.4 Electron in a Periodic Field of  Crystal (the Solid State) 
The behavior of an electron in a crystal → A motion through periodic 
repetition of potential well 

well length : a 

barrier height : V0 

barrier width : b 
 

Region (I) 

 
 

 

Region (II) 
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4.4 Electron in a Periodic Field of  Crystal (the Solid State) 
For abbreviation 

                                                   
 

The solution of this type equation (not simple but complicated) 

 

 

Where, u(x) is a periodic function which possesses the periodicity of the lattice in 
the x-direction : u(x) = u(x + a + b),   

 In 3-d, u(r) = u(r + R), R = Bravais lattice vector 

The final solution of the Schrödinger equations; 
 

             where 
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4.4 Electron in a Periodic Field of  Crystal (the Solid State) 

Mathematical treatment for the solution : Bloch function 

 
Differentiating the Bloch function twice with respect to x 

 

 

Insert 4.49 into 4.44 and 4.45 and take into account the abbreviation 
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The solutions of (I) and (II) 
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4.4 Electron in a Periodic Field of  Crystal (the Solid State) 

(Continued)  From continuity of the function  

 

    du/dx  values for equations (I) & (II)  are identical at x = 0 

  

Further,Ψ and u is continuous at x = a + b → Eq. (I) at x = 0 must be equal to 
Eq. (II) at x = a + b, Similarly, Eq. (I) at x = a is equal to Eq. (II) at x = b 

 
 

Finally, du/dx is periodic in a + b 

  

limiting conditions : using 4.57- 4.60 in text and eliminating the four constant A-D, and 
using some Euler eq.(see Appendix 2) 
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4.4 Electron in a Periodic Field of  Crystal (the Solid State) 

If V0 is very large, then E in 4.47 is very small compared to V0 so that 

 

 

Since V0b has to remain finite and b → 0, γb becomes very small.  

For a small γb, we obtain (see tables of the hyperbolic function) 

 
 

Finally, neglect α2 compared to γ2 and, b compared to a so that 4.61 reads as follow 
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4.4 Electron in a Periodic Field of  Crystal (the Solid State) 

“Electron that moves in a periodically varying potential field can only occupy 
certain allowed energy zone” 
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4.4 Electron in a Periodic Field of  Crystal (the Solid State) 

The size of the allowed and forbidden 
energy bands varies with P.  

For special cases 

• If the potential barrier strength, 
V0b is large, P is also large and the 
curve on Fig 4.11 steeper. The 
allowed band are narrow. 

•  V0b and P are small, the allowed 
band becomes wider. 

• If  V0b goes 0, thus, P → 0 
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4.4 Electron in a Periodic Field of  Crystal (the Solid State) 

See Fig. 7.2 of Bube 
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4.4 Electron in a Periodic Field of  Crystal (the Solid State) 

• If the  V0b is very large, P → ∞ 
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Combining 4.46 and 4.69 

Other model:  

The tight-binding 
approximation 
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4.4 Electron in a Periodic Field of  Crystal (the Solid State) 
See Fig. 7.3 of Bube 
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