Basic Chemistry Concepts II

Today's lecture

- More on equilibrium chemistry
- Reaction kinetics
- Concentration units in water
- Carbonate system

Chemical equilibrium: acid-base equilibria

• Ionization of water: $H_2O + H_2O = H_3O^+ + OH^-$

$$K = \frac{\{OH^{-}\}\{H_{3}O^{+}\}}{\{H_{2}O\}^{2}}$$

$$\{H_2O\} = \gamma_{H_2O} \cdot [H_2O], \quad \gamma_{H_2O} \approx 1, \quad [H_2O] = 55.6 M$$

• Dissociation constant of water, K_w

$$K_w = K \cdot \{H_2O\}^2 = \{OH^-\} \{H_3O^+\}$$

Chemical equilibrium: acid-base equilibria

$$K_w = \{OH^-\}\{H_3O^+\}$$
 or $K_w = \{OH^-\}\{H^+\}$
 $pK_w = 14$ (at 25°C)

$$pH < 7 \longrightarrow \{H^+\} > \{OH^-\},$$
 acidic
 $pH > 7 \longrightarrow \{H^+\} < \{OH^-\},$ basic

$$HA = H^+ + A^-$$

• Acid dissociation constant, K_a

$$K_a = \frac{\begin{bmatrix} H^+ \end{bmatrix} A^-}{\begin{bmatrix} HA \end{bmatrix}}$$

- Strong acid = strong tendency to dissociate = high K_a = low pK_a
- Weak acid = only a small fraction dissociates = low K_a = high pK_a

Acid	Reaction	рКа	•
Hydrochloric acid	HCl = H ⁺ + Cl ⁻	≈-3	
Nitric acid	$HNO_3 = H^+ + NO_3^-$	-1	Strong
Sulfuric acid	$H_2SO_4 = H^+ + HSO_4^-$	≈-3	Strong
Bisulfate	$HSO_4^- = H^+ + SO_4^{2-}$	1.9	
Acetic acid	$CH_3COOH = H^+ + CH_3COO^-$	4.75	·]
Carbonic acid	$H_2CO_3^* = H^+ + HCO_3^-$ $HCO_3^- = H^+ + CO_3^{2-}$	6.35 10.33	. – Weak
Phosphoric acid	$H_3PO_4 = H^+ + H_2PO_4^-$ $H_2PO_4^- H^+ + HPO_4^{2^-}$ $HPO_4^{2^-} = H^+ + PO_4^{3^-}$	2.12 7.20 12.32	VVCak

Q: If 100 mg of H_2SO_4 (MW=98) is added to water, bringing the final volume to 1.0 L, what is the final pH?

Q: A solution of HOCl is prepared in water by adding 15 mg HOCl to a volumetric flask, and adding water to the 1.0 L mark. The final pH is measured to be 7.0. What are the concentrations of HOCl and OCl? $(T = 25^{\circ}C)$

Chemical equilibrium: gas dissolution

 Henry's Law: partial pressure of a chemical in the gas phase is linearly proportional to the concentration of the chemical in the aqueous phase

```
P_{gas} = kC^*
         P_{aas} = partial pressure in the gas phase
           C^* = concentration in the water
           k = constant
```

Reaction kinetics

 Reaction kinetics: study of the speed at which reactions proceed

$$aA + bB \rightarrow cC$$

$$r_A = \frac{d[A]}{dt} = -k[A]^{\alpha}[B]^{\beta}$$

 r_A = reaction rate w.r.t. chemical A [conc./time]

k = reaction rate constant

 $\alpha + \beta$ = reaction order

Reaction kinetics

Reaction order	Rate expression	Units on k	
Zero	$r_A = -k$	(conc.)(time) ⁻¹	
First	$r_A = -k[A]$	(time) ⁻¹	
Second	$r_A = -k[A]^2$	(conc.) ⁻¹ (time) ⁻¹	
Second	$r_A = -k[A][B]$	(conc.) ⁻¹ (time) ⁻¹	

• Half-life $(t_{1/2})$: time required for the concentration to reach ½ of its initial conc.

Concentration units in water

Weight percent, P

$$P = \frac{W}{W + W_0} \times 100\%$$
 $W = \text{mass of substance (g)}$ $W_0 = \text{mass of solute (g)}$

- ppm, ppb, ppt
- Molarity, M
- Normality, N (acid-base reaction)

$$N = nM$$

n = no. of protons transferred

Concentration units in water

Q: Commercial H_2SO_4 is often purchased as a 93 wt% solution. Find the concentration of this solutions in units of mg/L, molarity, and normality.

 $(H_2SO_4 \text{ specific gravity} = 1.839, T=15^{\circ}C)$

- Buffer: a solution that resists large changes in pH
- A solution of weak acid and its salt is a buffer
- Atmospheric CO₂ produces a natural buffer:

$$CO_2(g) = CO_2(aq) + H_2O = H_2CO_3^* = H^+ + HCO_3^- = 2H^+ + CO_3^{2-}$$

 $H_2CO_3^* = \text{sum of true } H_2CO_3 \text{ and } CO_2(aq)$

Acid dissociation:

$$H_2CO_3 *= H^+ + HCO_3^-, K_{a1} = 10^{-6.35}$$
 (at 25°C)

$$HCO_3^- = H^+ + CO_3^{2-}, K_{a2} = 10^{-10.33} (at 25^{\circ}C)$$

1. Closed system: constant C_T

$$[H_2CO_3*]+[HCO_3^-]+[CO_3^{2-}]=C_T$$

$$[H_2CO_3*] = C_T \left(1 + \frac{K_{a1}}{[H^+]} + \frac{K_{a1}K_{a2}}{[H^+]^2}\right)^{-1}$$

1. Closed system

$$pH < pK_{a1}$$
: $log[H_2CO_3^*] \approx log C_T$
 $pH = pK_{a1}$: $log[H_2CO_3^*] \approx log(0.5C_T)$
 $pK_{a1} < pH < pK_{a2}$: $log[H_2CO_3^*] \approx pK_{a1} + log C_T - pH$
 $pH = pK_{a2}$: $log[H_2CO_3^*] \approx pK_{a1} + log(0.5C_T) - pH$
 $pH > pK_{a2}$: $log[H_2CO_3^*] \approx pK_{a1} + pK_{a2} + log C_T - 2pH$

1. Closed system

2. Open system: constant $[H_2CO_3^*]$

$$[H_2CO_3*] = K_H P_{CO_2} = (10^{-1.47} M \cdot atm^{-1})(10^{-3.53} atm)$$

= $10^{-5.0} M$ (at 25°C), ambient air

$$log[HCO_3^{-}] = -pK_{a1} + log(K_H P_{CO_2}) + pH = -11.35 + pH$$

$$log[CO_3^{2-}] = -pK_{a1} - pK_{a2} + log(K_H P_{CO_2}) + 2pH$$

$$= -21.68 + 2pH$$

2. Open system

Alkalinity

 Alkalinity: sum of all titratable bases to a pH of approximately 4.5 (in N)

Alkalinity =
$$[HCO_3^-] + 2[CO_3^{2-}] + [OH^-] - [H^+]$$

Carbonate alkalinity =
$$\left[HCO_3^{-}\right] + 2\left[CO_3^{2-}\right]$$

(bicarbonate and carbonate are major contributors of alkalinity in natural waters)

Reading assignment

• Textbook Ch2 p. 52-75