Reactors II

Today's lecture

- Reactor analysis (continued)
 - Plug flow reactor
 - Completely mixed flow reactor
 - Detention time

Review – CMBR, 1st order reaction

Completely mixed batch reactor (CMBR)

- Fill-and-draw type
- No flow in or flow out

- 1) define control volume
- 2) write a mass balance eq.

3

Review - CMBR, 1st order reaction

3) solve the equation

$$\frac{dC}{dt} = -kC$$

integrating over t=0 to t_{final} :

$$\frac{C_{final}}{C_{initial}} = e^{-kt_{final}}$$

Plug-flow reactor (PFR)

1) define control volume:

the moving "plug": a very thin, homogeneous plate moving in the direction of flow

2) write a mass balance eq.:

$$V \frac{dM}{dt} = \frac{d(in)}{dt} - \frac{d(out)}{dt} + R$$

$$V \frac{dC}{dt}$$

3) solve the equation: $\frac{dC}{dt} = -kC$

integrating over t=0 to t_0 (= $L/v_{flow} = V_{reactor}/Q$):

$$\frac{C_{out}}{C_{in}} = e^{-kt_0}$$

 $\frac{C_{out}}{C_{in}} = e^{-kt_0}$ \rightarrow same form as the batch reactor! (why??)

Examples of PFRs

Disinfection

Rivers and streams

Reactor analysis - PFR

Q: In the U.S., a wastewater treatment plant must disinfect its effluent before discharging the wastewater to a stream. The wastewater contains 4.5 x 10⁵ CFU/L of fecal coliform. The effluent standard for fecal coliform is 2 x 10³ CFU/L. Assuming that the disinfection facility is a PFR, determine the length of pipe required if the velocity of the wastewater in the PFR is 0.75 m/s. Assume that the PFR is at steady state and the first-order reaction rate constant for destruction of the fecal coliforms is 0.23 min⁻¹.

- Completely mixed flow reactor (CMFR) (continuous-flow stirred tank reactor, CSTR)
 - 1) define control volume
 - 2) write a mass balance eq.

3) solve the equation:

Because of homogeneous mixing, $C = C_{out}$

$$V \frac{dC_{out}}{dt} = QC_{in} - QC_{out} - kC_{out}V$$

$$V \frac{dC_{out}}{dt} = QC_{in} - QC_{out} - kC_{out}V$$

Special case I: No reaction, initial concentration = C_0

$$V \frac{dC_{out}}{dt} = QC_{in} - QC_{out} - kC_{out}V$$

$$\frac{dC_{out}}{dt} = \frac{1}{t_0} (C_{in} - C_{out}) \qquad (t_0 = V/Q)$$

integrating over *t*=0 to *t*:

$$C_{out,t} = C_0 \left[exp\left(-\frac{t}{t_0}\right) \right] + C_{in} \left[1 - exp\left(-\frac{t}{t_0}\right) \right]$$

when $C_{in} = 0$,

$$C_{out,t} = C_0 \left[exp\left(-\frac{t}{t_0}\right) \right]$$

$$V \frac{dC_{out}}{dt} = QC_{in} - QC_{out} - kC_{out}V$$

Special case II: Steady state

$$V \frac{dC_{out}}{dt} = QC_{in} - QC_{out} - kC_{out}V$$

$$C_{out} = \frac{C_{in}}{1 + kt_0} \qquad (t_0 = V/Q)$$

 \rightarrow influent concentration (C_{in}) is reduced in the effluent by a factor of (1+ kt_0)

Examples of CMFRs

Biological wastewater treatment

Lake

14

Reactor analysis - CMFR

Q: Activated sludge is a key process for most wastewater treatment facilities. The process is often run as a CMFR. Assume a 400 m³-sized CMFR for an activated sludge process receiving 2000 m³/d of wastewater. If a terrorist dumped 10 kg of a non-biodegradable toxic chemical to the reactor, how long will it take for the toxic chemical concentration in the reactor to a safe level (1 mg/L)?

Reactor analysis - CMFR

Q: A chemical degrades in a steady-state CMFR according to first-order reaction kinetics. The upstream concentration of the chemical is 10 mg/L and the downstream concentration is 2 mg/L. Water is being treated at a rate of 29 m³/min. The volume of the tank is 580 m³. What is the rate of decay? What is the rate constant?

16

Retention time

• Retention time (detention time), t_0

$$t_0 = V / Q$$

- The average time the fluid particles spend in the reactor
- PFR: the time that fluid particles spend in a reactor is the same $(=t_0)$ for all particles
- CMFR: the time that fluid particles spend in a reactor is different

PFR vs. CMFR

- At the same t₀,
 PFR shows
 better
 performance
- Advantage of using CMFR: less sensitive to shock loads and toxic compounds

Reading assignment

Textbook Ch4 p. 162-168