Ecosystem

Today's lecture

- Terminologies related to ecosystems
- Human influence on ecosystems
- Nutrient cycle
- Lake dynamics
- Bacterial population growth

Some terminologies

- Ecosystems: communities of organisms that interact with one another and with their physical environment
- Habitats: the place where a population of organisms lives
- Population: a group of organisms of the same species living in the same place at the same time

Human influence on ecosystems

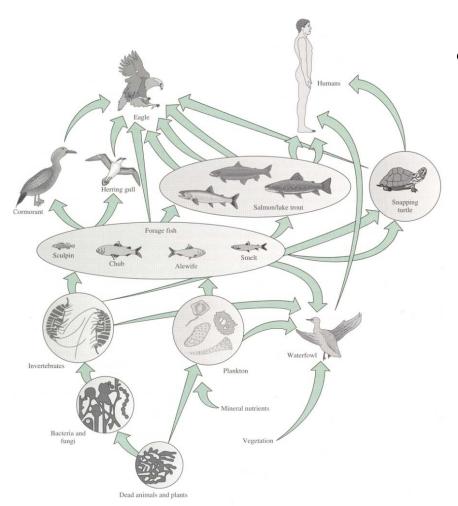
- Destruction of habitats: deforestration, dam construction, road construction, etc.
- Changes in species population: toxic chemical release, introduction of nonnative species, excessive hunting, etc. (can lead to species extinction)
- Shifts in living conditions: global warming, acid rain, eutrophication, etc.

DDT and Silent Spring

SILENT SPRING Rachel Carson

1874: DDT first synthesized by O. Zeidler

1939: P. H. Müller discovered the insect killing ability and won Nobel Prize (1948)

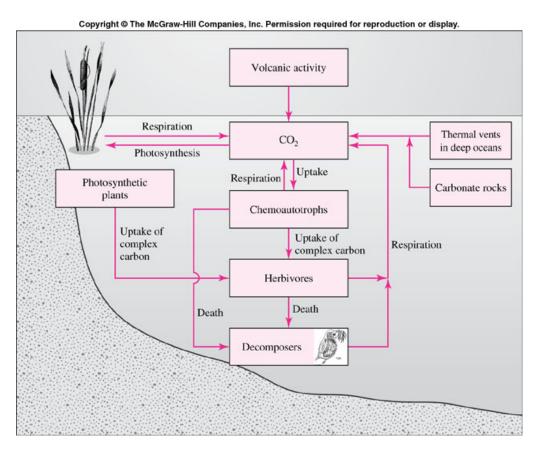

1940s: Widely used as an insecticide (especially for lice-Typhus and mosquito-malaria)

1962: Rachel Carson published "Silent Spring" - described how DDT accumulates in organisms and affect wildlife

1960s: Environmental scientists published researches to support R. Carson's argument (egg shell thinning by DDT)

1972: DDT banned in the U.S.

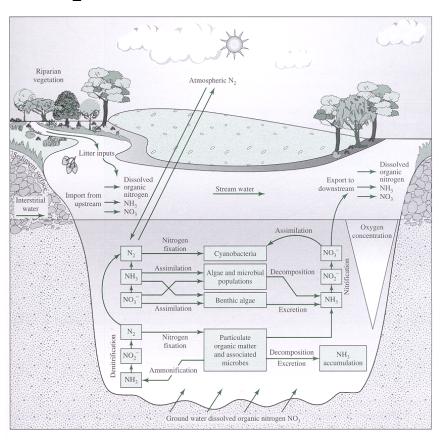
Food web and bioaccumulation


 Chemical accumulation in organisms can result in much higher concentrations in higher trophic level organisms (ex: DDT is stored in the body's fat and is excreted very slowly)

Terminologies related to bioaccumulation

- Bioaccumulation: total uptake of chemicals by an organism from either water or food
- Biomagnification: a process that results in accumulation of a chemical in an organism at higher levels than are found in its own food
- Bioconcentration: the uptake of chemicals from the dissolved phase

Nutrient cycle: C cycle


- Basic building block of life
- Major carbon sink: ocean

- Relevant processes
- photosynthesis: convert
 CO₂ to organic matter
- respiration/decay:
 convert organic matter
 to CO₂
- fossil fuel combustion:
 significant input of CO₂
 by humans
- settling of dead organisms

Nutrient cycle: N cycle

- Critical element for all lives (protein)
- N_2 in the air: abundant, but not easily available to organisms

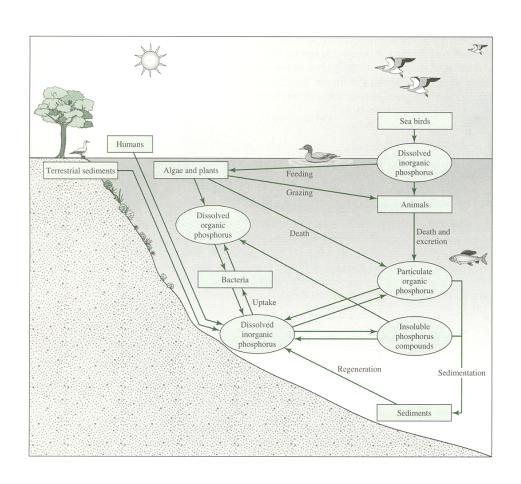
- Relevant processes
- nitrification

$$NH_4^+ + 2O_2 = NO_3^- + 2H^+ + H_2O$$

- denitrification

$$2NO_3^- + organic C = N_2 + CO_2 + H_2O$$

- nitrogen fixation


$$N_2 + 8e^- + 8H^+ + ATP \rightarrow$$

 $2NH_3 + H_2 + ADP + inorganic P$

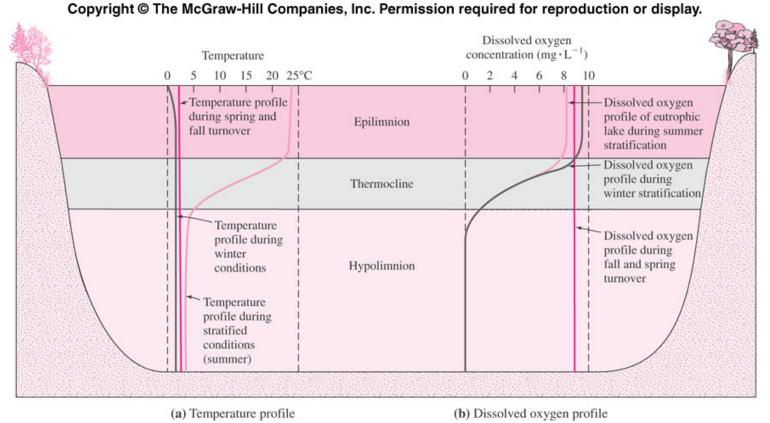
significant human contribution:Haber-Bosch process

$$N_2 + 3H_2 \rightarrow 2NH_3$$

Nutrient cycle: P cycle

Another essential nutrient (DNA, RNA, ATP)

- Relevant processes
- input from mineral weathering or human contribution (fertilizer, etc.)
- uptake by plants and algae in a soluble inorganic form (HPO₄²⁻, PO₄³⁻, etc.)
- loss by sediment burial


Lakes

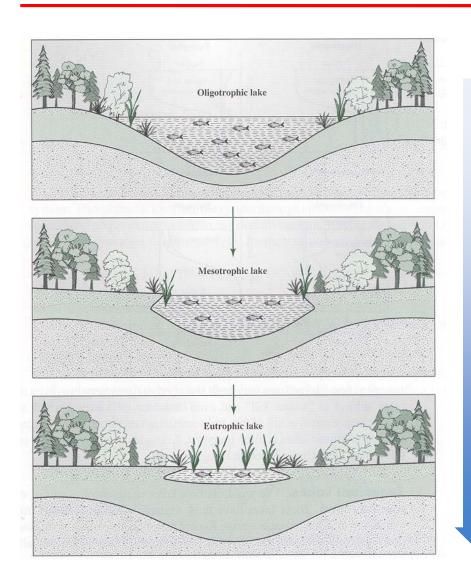
- Seasonal changes
 - responds to seasonal air temperature changes
 - stratified during the summer and overturn in the fall in temperate climates
 - dissolved oxygen profile is created by the stratification

Lakes

Seasonal changes

Lake productivity

- Lake productivity: a measure of a lake's ability to support aquatic life (a more productive lake has a higher biomass concentration)
- Controlled by the limiting factor ("Liebig's law of the minimum"*)


* Liebig's law of the minimum: growth is controlled not by the total amount of the resources available, but by the scarcest resource (limiting factor).

Eutrophication of lakes

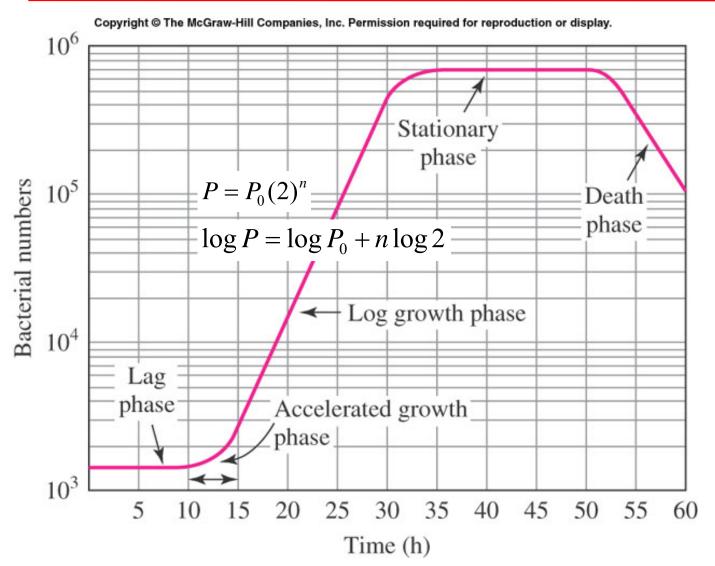
 Natural eutrophication: A natural aging process of a lake; may take over thousands of years (an unpolluted lake)

 Cultural eutrophication: accelerated eutrophication through the introduction of high levels of nutrients (a polluted lake)

Natural eutrophication

lake productivity increases over time

Cultural eutrophication


- Caused by the introduction of high levels of N and P (usually P for lakes and N for coastal waters)
- Sources of nutrients
 - human waste (sewage)
 - animal waste
 - agricultural sites

Cultural eutrophication

- Effect of eutrophication: algal bloom
 - high algae biomass: taste and odor problems, aesthetic problem
 - deposition of dead algae: oxygen depletion in the bottom → fish kills
 - harmful algal bloom: some algal species produce toxic materials (ex: microcystin by cyanobacteria)

Bacterial population growth (pure culture)

Bacterial population growth (pure culture)

Q: If the initial density of bacteria is 10⁴ cells/L at the end of the accelerated growth phase, what is the number of bacteria after 25 generations? (assumption: the bacteria are still at the log growth phase at the end)

Reading assignment

 Textbook Ch5 190-192, 197-205, 206-207, 216-225