Nitrogenous BOD

- So far, our assumption was that the oxygen demand is due to carbon oxidation only
- Organic compounds also contain <u>reduced</u> nitrogen
- The reduced nitrogen is released to form ammonium ion (NH_4^+)
- This may contribute significantly to overall oxygen demand by:

$$NH_4^+ + 2O_2 \longrightarrow NO_3^- + H_2O + 2H^+$$

1

Nitrogenous BOD

The BOD curve when NBOD is significant

- Lag time exists because carbon-utilizing bacteria carbon is more prevalent at the beginning
- As CBOD goes down, the population of ammonia-utilizing bacteria increases, leading to NBOD consumption
- For treated sewage, the lag time is shorter, because there's not much food for carbonutilizing bacteria

Water treatment I

Today's lecture

- Goal of water treatment
- Water treatment system overview
- Rapid mix, coagulation, flocculation
- Softening and hardness

2014-10-13

Water treatment

- Goal of municipal water treatment: to provide water that is both potable and palatable
 - potable: safe to drink; palatable: pleasant to drink
- Factors determining drinking water quality
 - Physical: color and turbidity, temperature, taste and odor
 - Chemical: toxic chemicals and chemicals that make water non-palatable
 - Microbiological: pathogens
 - Radiological: ex) uranium

2014-2

Indicator for pathogens

- Indicator is needed for pathogens because it is not practical to analyze all different species
- Total coliforms
 - Most frequently used indicator for pathogens
 - Reasons for using total coliforms as an indicator:
 - Inhabit the intestinal tracks of humans and other mammals
 - Exist in large numbers in individuals
 - Survive in natural waters for relatively long without growth
 - Relatively easy to analyze

6

Water treatment systems

Coagulation plant: conventional surface water treatment

Water treatment systems

Water softening plant: for groundwater with high hardness

2014-10-13

Rapid mix

- To blend chemicals (ex: coagulants, softening agents)
 with water
- Short retention time (10-30 s)

Coagulation-flocculation

- Coagulation-flocculation process is used to remove colloidal particles from water
 - Coagulation: in the rapid mix; intensive mixing; short retention time
 - Flocculation: in the flocculation basin; gentle mixing; longer retention time

Colloids

- Small particles (0.001 to 1 μm)
- Usually negatively charged
- Stability of colloidal suspension
 - "Stable" colloidal suspension: particles are like-charged →
 → particles repel each other → particles do not stick
 together or settle down easily
 - Destabilization of colloidal suspension: neutralizing the particle charge so that the particles can stick together and settle down

Coagulation

- Goal: To alter the surface charge of the particles that contribute to color and turbidity so that the particles adhere to one another and are capable of settling by gravity
- Formation of a "floc" (larger, settleable particle)

Coagulants

- Coagulants: chemicals added to water for coagulation
- Metal salts or polymeric materials are used as coagulants

- Metal salts: compression of electrical double layer + charge neutralization + enmeshment (trivalent ions are most effective!)
- Cationic polymers: charge neutralization + bridging (charge reversal if overdosed)

Coagulants

- Key properties
 - Trivalent cation
 - Nontoxic
 - Insoluble in neutral pH
- Commonly used coagulants
 - Al $^{3+}$ or Fe $^{3+}$ salts
 - Alum $(Al_2(SO_4)_3 \cdot 14H_2O)$: most common
 - Alum dissolution: $Al_2(SO_4)_3 \cdot 14H_2O \leftrightarrow 2Al^{3+} + 3SO_4^{2-} + 14H_2O$
 - Ferric (Fe³⁺) cations: $Fe_2(SO_4)_3 \cdot 7H_2O$, $FeCl_3 \cdot 7H_2O$

Flocculation

- Goal: allow particles to grow by gentle mixing so that they can easily settle
- Usually configured as a three step process
- Too little mixing not
 enough energy for particles
 to stick together
- Too much mixing → particles break down

http://chemistry.tutorvista.com

http://www.tech-faq.com

Softening

- Goal: to reduce hardness of water
- Hardness
 - The term used to characterize a water that does not lather well, causes a scum, and leaves scales
 - Caused by polyvalent cations (+2, +3, ...)

http://www.watersoftenerbest.blogspot.com

http://www.proenv.com

16

Formation of hardness

- As rainwater infiltrates, the water gets CO₂ by the respiration of microorganisms
- Recall $CO_2 + H_2O \rightarrow H_2CO_3$
- Carbonic acid (H₂CO₃) dissolves limestone (CaCO₃, MgCO₃)
- Hardness is of concern in limestone areas

Hardness

- Total hardness
 - Technically: the sum of all polyvalent cations
 - Practically: the sum of Ca²⁺ and Mg²⁺
 - Total hardness (TH) is divided into carbonate (CH) and noncarbonate (NCH) hardness (TH = CH + NCH)

2014-10-13

Hardness

Units

- eq/L or meq/L
- mg/L as CaCO₃ (recall our alkalinity homework)
- Unit conversion: $(mg/L \text{ as } CaCO_3) = 50 \text{ x } (meq/L)$ (as $CaCO_3$ is 50 mg/meq)

Term	Concentration range (mg/L as CaCO ₃)		
Soft	<17.1		
Slightly hard	17.1-60		
Moderately hard	60-120		
Hard	120-180		
Very hard	>180		

Hardness

Q: A sample of water has the following concentration of ions. Calculate the total hardness and the carbonate hardness of the water sample.

Ion	Concentration (mg/L)	lon	Concentration (mg/L)
Ca ²⁺	40	HCO ₃ -	110
Mg ²⁺	10	SO ₄ ²⁻	67.2
Na ⁺	11.8	Cl-	11
K ⁺	7.0		

Lime-soda softening

- Addition of lime (Ca(OH)₂) and soda ash (Na₂CO₃)
- Precipitates Ca²⁺ and Mg²⁺ using following reactions:

$$Ca^{2+} + CO_3^- \rightleftharpoons CaCO_3^-(s)$$

 $Mg^{2+} + 2OH^- \rightleftharpoons Mg(OH)_2(s)$

- Target on Ca²⁺ and carbonate hardness first, leaving as much Mg²⁺ and noncarbonate hardness as possible
 - pH of water should be ~10.3 for Ca²⁺ precipitation and ~11 for Mg²⁺ precipitation
 - Have to provide CO₃²⁻ for noncarbonate hardness

2014-2 21

Lime-soda softening

Let's think about the treatment of the water sample.

The water sample in the previous question has a TH of 100 mg/L as $CaCO_3$ and can be classified as moderately hard water. What is the pH required to reduce the Ca^{2+} -hardness to 0.01 mM (1 mg/L as $CaCO_3$)? What is the pH required to reduce the Mg^{2+} -hardness to 0.01 mM (1 mg/L as $CaCO_3$)? The pK_s of $CaCO_3$ and $Mg(OH)_2$ are 8.34 and 11.25, respectively. The initial pH of the water sample is 7.2. Neglect the effect of ionic strength.

Ion	Concentration				
	In mg/L	In meq/L	In M		
Ca ²⁺	40	2.00	1.00 x 10 ⁻³		
Mg ²⁺	10	0.823	4.11 x 10 ⁻⁴		
HCO ₃ -	110	1.83	1.83 x 10 ⁻³		

Reading assignment

Textbook Ch 10 p. 453-457, 460-479