Solid waste management II

Today's lecture

- Solid waste management
 - Recycling
 - Composting
 - Incineration
 - Sanitary landfill

Reduce, reuse and recycling (3R)

- Reduce: minimize the production of wastes (most preferred)
- Reuse: use products or materials again for the same purpose for which they are intended
- Recycle: collect used, reused, or unused items, make them into raw material, and re-manufacture the raw material into new products

Recycling

- Closed-loop (primary) recycling
 - Use of recycled products to make the same or similar products
 - Example: use of used glass bottles to make new glass bottles
- Secondary recycling
 - Use of recycled products to make new products with different characteristics than originals
 - Example: use of polyethylene milk jugs to make toys
- Tertiary recycling
 - Use of recycled products to recover chemicals or energy
 - Example: recovery of solvents from manufacturing with distillation so they can be reused in same or other operations

4

Composting

- Controlled decomposition of organic materials such as plant materials, animal waste, food waste, and wastewater sludge by microorganisms
- By the composting process, the microorganisms degrade easily degradable organic materials, odorgenerating compounds, and toxic compounds into stable and non-toxic materials
- The product is a crumbly, earth-smelling, soil-like material that can serve as carbon and nitrogen source for crops

Incineration (combustion)

- Definition: a chemical reaction in which the elements in materials are oxidized in the presence of excess oxygen
- Effective for reducing the amount of solid wastes
- Major elements to be oxidized: carbon and hydrogen (and some sulfur) → major product of oxidation: CO₂ and H₂O (and some SO₂)

Incineration (combustion)

Advantages

- Can minimize the solid waste generation → save landfill space (good when land use is restricted)
- Can recover heat (energy) from waste if the waste has a relatively high heating value

Disadvantages

- Requires additional energy input if wastes have low heating value
- Health and environmental issues
 - Emission of air pollutants such as particulates, acid gases (SO_x , HCl, HF), NO_x , CO, organics, heavy metals
 - Emission of carcinogenic compounds such as dioxins and PAHs (polycyclic aromatic hydrocarbons)

2014-11-24

Sanitary landfill disposal

- Landfill of some solids wastes is inevitable
- Landfill site selection is not easy (esp. in Korea!)
- Things to consider for site selection
 - Restricted locations, including wetlands, flood plains, seismic impact areas
 - Public opposition
 - Proximity to major roadways
 - Load limits on roads and bridges
 - Underpass limitations
 - Traffic patterns and congestion
 - Location of groundwater table and sole-source aquifers
 - Soil conditions and topography
 - Availability of cover material
 - Climate
 - Zoning requirements
 - Buffer areas surrounding the site
 - Location of historic buildings, endangered species, and similar environmental factors

2014-11-24

Operation of sanitary landfills

- Area method
 - Most common method of operation
 - Three step process (usually done on a daily basis)
 - Spread the waste
 - Compact the waste
 - Cover the waste with soil (daily cover)

Operation of sanitary landfills

Area method

- The waste and daily cover placed in a landfill during one operational period (commonly one day) form a cell.
- The waste is dumped onto the working face.
- A lift refers to the placement of a layer of waste or the completion of a horizontal active area of the landfill

Operation of sanitary landfills

- Area method
 - The first lift is called a **fluffy lift** because the waste is not compacted until 2 m of waste is deposited. This is done to protect the liner.
 - Benches are used where the height of the landfill > 15-20 m.
 - The **final cover** is applied after all land-filling operations are complete.

Landfill leachate

- Leachate is the liquid that passes through the landfill, extracting dissolved and suspended matter from the landfill.
- The liquid enters the landfill from rainfall, surface drainage, groundwater or is present or produced within the landfill.
- The leachate usually has a high BOD and COD, ammonia, and may contain heavy metals. The characteristics of the leachate vary with age.

Landfill leachate control

- Landfill must be designed to prevent the seepage of leachate from the landfill into underground and finally to groundwater
- The leachate is collected to the ground and treated
- The final cover must also prevent the seepage of surface water to landfill

Landfill leachate control

Landfill liner to prevent seepage of leachate

Landfill gas control

- Landfill produces CO₂, CH₄, NH₃, and other toxic trace gases
- High CH₄ content (45-60%) explosive, greenhouse effect, damage crops
- So, landfill gas collection systems should also be installed
- Treatment of landfill gas
 - Recover CH₄ for fuel
 - Combustion to CO₂

Reading assignment

Textbook Ch 13 p. 661-686