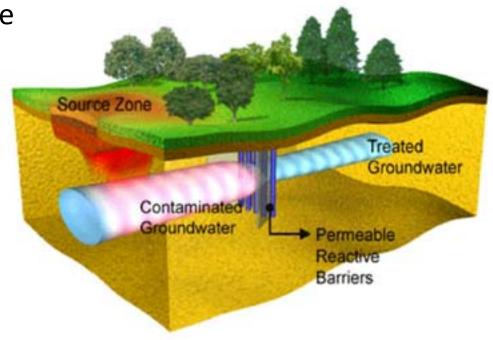
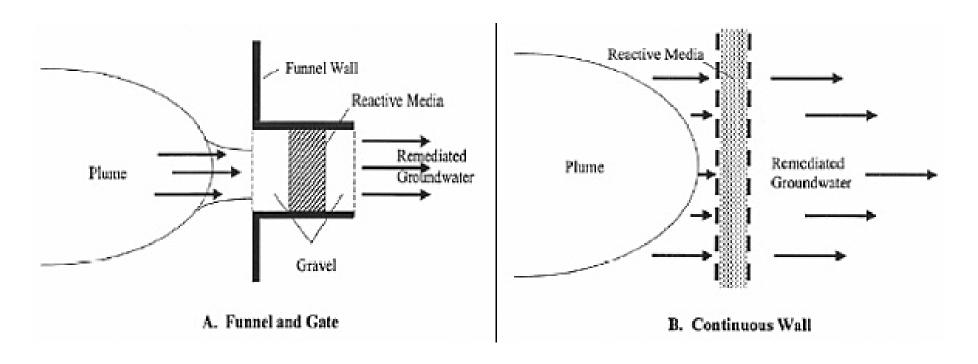
Hazardous waste management II


Today's lecture

- Soil and groundwater remediation techniques
 - Permeable reactive barrier
 - Soil washing
 - Thermal desorption
 - Landfarming
 - In situ bioremediation

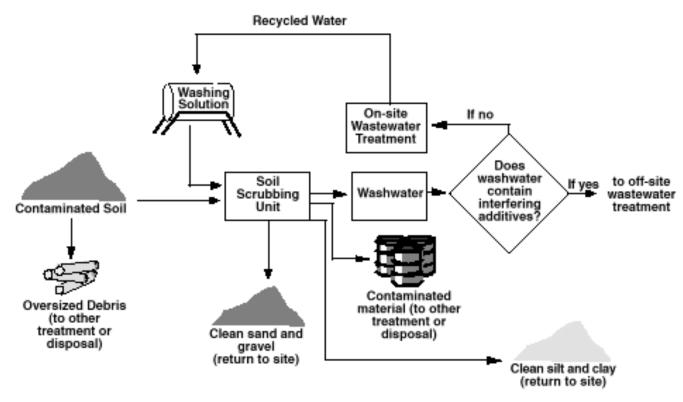
Permeable reactive barrier (PRB)


 Place reactive materials in the subsurface at the pathway of contaminated groundwater

The contaminants in groundwater are transformed into environmentally acceptable forms

- Permeable reactive barrier (PRB)
 - Reactive materials
 - Zero-valent iron (ZVI): works for PCE, TCE, NO₃-, and Cr⁶⁺
 - Zeolite: works for NH₄⁺ and heavy metals
 - Advantages
 - No maintenance cost → cost-effective
 - No equipment necessary on the ground → the site can be used during remediation
 - Disadvantages
 - Cannot eliminate the contaminant source
 - Do not work if the groundwater flow changes

Permeable reactive barrier (PRB)



http://www.geoengineer.org

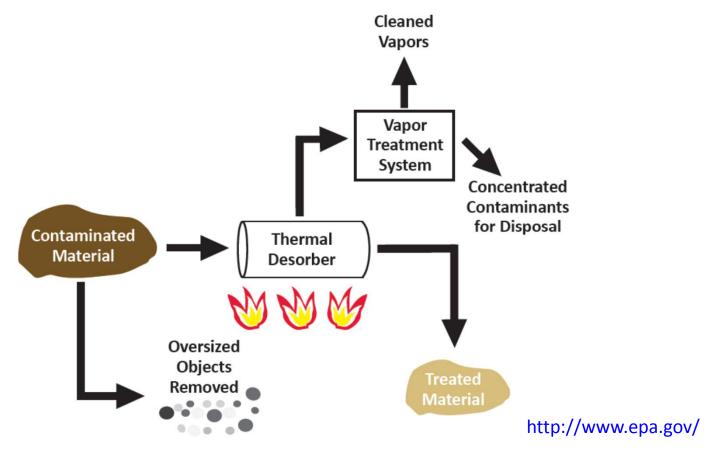
Soil washing

- A mechanical process that uses liquids, usually water, to remove pollutants from soils
- The pollutants are usually attached to small particles such as silt and clay
- Pollutants are removed by i) separating silt and clay from sand or gravel and ii) transfer of contaminants from soil to water
- The wastewater should be treated; the silt and clay should be treated if contaminants are not sufficiently removed

Soil washing

http://infohouse.p2ric.org

Soil washing


- Advantages
 - Simple technique
 - The unit can be made transportable (a soil washing truck)
 - Can make sure that soil is being cleaned
- Disadvantages
 - High excavation cost
 - Additional treatment may be required for wastewater, and silt & clay

2014-11-12

Thermal desorption

- Utilizes heat to increase the volatility of contaminants such that they can be removed from soil
- The produced gas is collected and treated
- Advantages
 - Effective for volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs)
 - Relatively fast
 - Can make sure that soil is being cleaned
- Disadvantages
 - High cost for excavation and treatment
 - Intensive use of energy

Thermal desorption

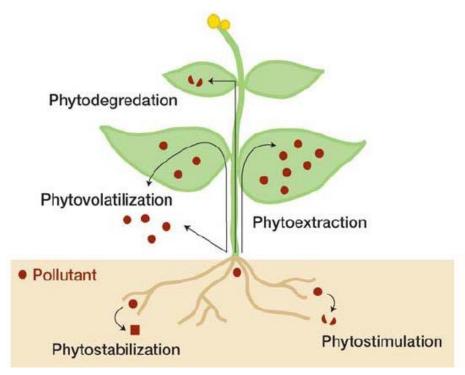
Landfarming

- A type of a bioremediation treatment process
- Contaminated soils are excavated, spread on the ground, and periodically turned over (tilled) for aeration
- Good for petroleum-contaminated soils

http://www.matts-bioremediation.tripod.com

Landfarming

- Advantages
 - Relatively simple design and operation
 - Relatively rapid and inexpensive
- Disadvantages
 - May not be effective for high removal efficiencies (>95%) and high contaminant concentrations
 - Emission of volatile contaminants and dust during treatment
 - Requires a large land area for treatment


In situ bioremediation

- "In situ" means "situated in the original, natural, or existing place or position" (←) ex situ)
- Application of biological treatment for the in situ cleanup of hazardous chemicals present in the subsurface
- Usually for organic contaminants \rightarrow needs electron acceptors (usually O_2), nutrients, and microorganisms!

In situ bioremediation

- Biostimulation: providing nutrients, electron acceptors, or other chemical agents to stimulate biodegradation by microorganisms
- Bioaugmentation: injection of microorganisms that have capability of degrading target contaminants
- Bioventing and bio-sparging: application of soil vapor extraction and air sparging technology, but focus more on stimulating biodegradation by providing O₂
- Monitored natural attenuation (MNA): rely on natural processes of biodegradation with a monitoring plan

- In situ bioremediation
 - Phytoremediation: use of green plants and their associated microorganisms for the treatment of contaminants

http://systemsbiology.usm.edu

In situ bioremediation

- Advantages
 - Environmentally friendly
 - Low cost, and low energy consumption
 - Toxic compounds are not just separated, but transformed to nontoxic materials
- Disadvantages
 - Slow process
 - Mostly not effective for heavy metals
 - Removal efficiency can be low
 - Knowledge gap exists for biodegradation processes in soils and groundwater