

# **Polymer Pyrolysis**



2014. 9. 23. SNU Presentation

Seungdo KIM, Professor/Director Pyrolysis Research Laboratory Hallym University





Pyrolysis Research Laboratory

# 1. Introduction



# Introduction: Definition of pyrolysis

# Pyrolysis = Pyro + Lysis

# Thermal cracking of polymers into smaller molecules



# Polymerization



# **Introduction: Basic Principles**

# Attacking the weakest bond

- Related to bond dissociation energy
  - C-C, C-H, C-O, C-CI
- More thermal energy input yields lower molecular weight compounds
  - ✓ Crashing walnut with hammer!

# **Introduction: Conceptual Reaction**



# **Design Target of Pyrolysis Reaction**

# Minimization of Energy Input

# Maximization of Valuable by-products



# 2. Pyrolysis Mechanisms

# Why pyrolysis mechanism is important?





# Why pyrolysis mechanism is important?



10

# **Pyrolytic Degradation Pathways of Polyethylene**



#### 2A. Propagation : Intermolecular reaction





# **Pyrolytic Degradation Pathways of Polyethylene**

### 2B. Propagation : Intramolecular reaction



# 3. Termination $R \cdot + \cdot R^{2} \longrightarrow R \longrightarrow R^{2}$



## **Pyrolytic Degradation Pathways of Polypropylene**



# **3. Pyrolysis Kinetics**



# Why pyrolysis kinetics is important?

Pyrolysis kinetics can elucidate 1) how fast the reaction is completed and 2) how the production rate of desirable products can be increased





**MODEL III** 



**MODEL IV** 



**MODEL V** 



## **Pyrolysis Kinetic Model of Thermoplastics**





 $\frac{d\alpha}{dt} = k(T)f(\alpha)$ ArrHeinkiti@Tranleters  $k(T) = A \exp(-E) RT$ 



# **Pyrolysis Kinetic Equation**

# A Unique Thermal Reaction can be characterized by one set of Kinetic Triplet

# Incorrect reaction model can mislead the Arrhenius Parameters as well



# What is the reaction model commonly $f(\alpha) = (1 - \alpha)$ used for the pyrolysis of Polypropylene?



# Substitution States States



Solution Strategy Values
Solution Strategy Values</p

The reaction order function is usually applicable for homogeneous gas-phase kinetics, but the thermal degradation of polymers is accounted for by heterogeneous solid state mechanisms

### Activation Energy Values derived from model-fitting and model-free Methods

| Me                                | Methods          |      | E (kJ. mol-1) |  |
|-----------------------------------|------------------|------|---------------|--|
| Freeman-Carroll                   |                  |      |               |  |
|                                   | at 5 K/min       | 1.57 | 338.15        |  |
|                                   | at 10 K/min      | 1.69 | 346.63        |  |
|                                   | at 20 K/min      | 1.38 | 290.13        |  |
|                                   | average          | 1.55 | 324.97        |  |
|                                   | Catterjee-Conrad |      |               |  |
| Model-fitting<br>Methods          | at 5 K/min       |      | 340.90        |  |
|                                   | at 10 K/min      |      | 351.16        |  |
|                                   | at 20 K/min      |      | 293.65        |  |
|                                   | average          |      | 328.57        |  |
| Discussion of                     | Coats-Redfern    |      |               |  |
| Discrepancy of                    | at 5 K/min       |      | 316.71        |  |
| E values<br>Model-free<br>Methods | at 10 K/min      |      | 315.62        |  |
|                                   | at 20 K/min      |      | 321.02        |  |
|                                   | average          |      | 317.78        |  |
|                                   | Friedman         |      | 189.18        |  |
|                                   | Kissinger        |      | 183.62        |  |
|                                   | Ozawa            |      | 186.75        |  |

# How to Identify the Pyrolysis RedimeticeTripletd its Arrhenius Parameters



# **How to identify Kinetic Triplet**

# **Procedures Estimating Kinetic Triplet**



How to derive g(a)

# **Derivation of** $g(\alpha)$

### **Kinetic equation**

### Integrating the kinetic equation

$$\frac{d\alpha}{dt} = k \cdot f(\alpha)$$

$$\frac{d\alpha}{f(\alpha)} = kdt$$
$$\int_{0}^{\alpha} \frac{d\alpha}{f(\alpha)} = \int_{0}^{t} kdt$$
$$g(\alpha) = kt$$

where  $g(\alpha) = \int_{0}^{\alpha} [f(\alpha)]^{-1} d\alpha$ 

## **Theoretical 13 models of RTPs**

# **Reaction Models**

 Table 1

 Set of reaction models applied to describe thermal decomposition in solids

 $g(\alpha) = \int_{\alpha}^{\alpha} [f(\alpha)]^{-1} d\alpha$ 

|    | Reaction model              | $f(\alpha)$                                  | $g(\alpha)$              |
|----|-----------------------------|----------------------------------------------|--------------------------|
| 1  | Power law                   | $4\alpha^{3/4}$                              | $\alpha^{1/4}$           |
| 2  | Power law                   | $3\alpha^{2/3}$                              | $\alpha^{1/3}$           |
| 3  | Power law                   | $2\alpha^{1/2}$                              | $\alpha^{1/2}$           |
| 4  | Power law                   | $2/3\alpha^{-1/2}$                           | $\alpha^{3/2}$           |
| 5  | One-dimensional diffusion   | $1/2lpha^{-1}$                               | $\alpha^2$               |
| 6  | Mampel (first-order)        | $1-\alpha$                                   | $-\ln(1-\alpha)$         |
| 7  | Avrami-Erofeev              | $4(1-\alpha)[-\ln(1-\alpha)]^{3/4}$          | $[-\ln(1-\alpha)]^{1/4}$ |
| 8  | Avrami–Erofeev              | $3(1-\alpha)[-\ln(1-\alpha)]^{2/3}$          | $[-\ln(1-\alpha)]^{1/3}$ |
| 9  | Avrami–Erofeev              | $2(1-\alpha)[-\ln(1-\alpha)]^{1/2}$          | $[-\ln(1-\alpha)]^{1/2}$ |
| 10 | Three-dimensional diffusion | $2(1-\alpha)^{2/3}(1-(1-\alpha)^{1/3})^{-1}$ | $[1-(1-\alpha)^{1/3}]^2$ |
| 11 | Contracting sphere          | $3(1-\alpha)^{2/3}$                          | $1 - (1 - \alpha)^{1/3}$ |
| 12 | Contracting cylinder        | $2(1-\alpha)^{1/2}$                          | $1 - (1 - \alpha)^{1/2}$ |
| 13 | Second-order                | $(1-\alpha)^2$                               | $(1-\alpha)^{-1}-1$      |

### **Procedures deriving Theoretical RTPs for 13 models**

## **Procedures deriving Reduced Time Plots**



1. Developing the following Relationship

$$\frac{g_j(\alpha)}{g_j(0.9)} = \frac{t}{t_{\alpha=0.9}}$$

- 2. Substituting serial numbers(0.1, 0.2 etc) into  $\alpha$  in the model equations and then determining  $g_i(\alpha)$
- 3. Determining the reduced time from



4. Developing the reduced time vs.  $\alpha$ 

### How to determine pyrolysis reaction model of polymers



Fitting practices of experimental RTP to theoretical RTPs

# **Determination of Arrhenius Parameters**

1. Estimating the reaction constants at various isothermal conditions

$$g_j(\alpha) = k_j(T_i)t$$

2. Estimating A and E from Arrhenius Plot

$$\ln k_j(T_i) = \ln A_j - \left(\frac{E_j}{R}\right) \frac{1}{T_i}$$

## How to obtain Isothermal Kinetic Data

RTP requires decomposition pattern of polymers with time <u>under isothermal conditions</u>

Most previous studies have used commercial TGA that allowed thermal decomposition that occurred during the course of the temperature rise to the target temperatures



### Thermobalance operated under pure static conditions





### Pyroltic Decomposition of PP under Dynamic Conditions(678~738K)



Pyrolysis Research Laboratory

### **Reaction model of PP**



Pyrolysis Research Laboratory

## **Estimation of Reaction Constant (k): PP**



# Lower Temperature Zones (650~700K) Contracting Cylinder Model $\checkmark$ E = 155 kJ/mol, InA = 24.6 (A: min<sup>-1</sup>) Higher Temperature Zones (>700K) Avrami-Erofeev Model $\checkmark$ E = 115 kJ/mol, InA = 19.4 (A: min<sup>-1</sup>)



Model-free methods ✓ Isothermal data ✓ Non-isothermal data Model-fitting methods ✓ Differential ✓ Integral



# Model-free method using isothermal data

- 1. Compiling kinetic data at various isothermal operating temperatures
- Developing a set of isoconversional data (α=0.1, 0.2, 0.3, ...)
- 3. Determining activation energy from the slope of the following equation:



- Friedman method
- Kissinger method
- Ozawa method
- Revised Ozawa method



# Activation energy(KJ/mol) values of PP

|                                                               | Lower temperature regions | Higher temperature regions |  |
|---------------------------------------------------------------|---------------------------|----------------------------|--|
| Model-fitting method<br>using Isothermal Data<br>(This study) | 140                       | 112                        |  |
| Model-free method<br>using Isothermal Data                    | 103                       | 71                         |  |
| Model-free method<br>using Non-isothermal Data                | 118                       |                            |  |
| Model-fitting method                                          | Lower conversion regions  | Higher conversion regions  |  |
| using Non-isothermal Data                                     | 112                       | 83                         |  |



# Activation energy(KJ/mol) values of PP



# Low Temeratures: Contracting-cylinder model



## **Higher Temperatures: Avrami-Erofeev model**



At the critical concentration of volatiles, bubbles may begin to nucleate

46



## Rate of bubble nucleation appears to be limited by

the kinetics of heat, momentum or mass transfer

and thermodynamic properties of melt



# 4. Pyrolysis Reactor Design



# **Step for Effective Reactor Design**

- 1) Investigating Pyrolysis Mechanism
  - ✓ Determining **REACTION PATHWAY**
- 2) Estimating Pyrolysis Kinetic Model and Kinetics (Chemical Kinetics)
  - ✓ Determining REACTION TIME
  - ✓ Controlling REACTION PARAMTERS
- 3) Determining Scale-up Factors
- 4) Determining Temperature and Pressure Profiles of Reactor
- 5) Determining Reaction Rate and Time

