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Pyrolysis = Pyro + Lysis 

Thermal cracking of polymers  
into smaller molecules 

Polymerization 

Reverse Reaction 



Pyrolysis Research Laboratory 
 

 Attacking the weakest bond 
✓ Related to bond dissociation energy 

• C-C, C-H, C-O, C-Cl 
 

 More thermal energy input yields lower 
molecular weight compounds 
✓ Crashing walnut with hammer!  
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Energy Input 

Polymers 

Gases 
(CH4, C2H6) 

Liquids 
(Gasoline, Diesel) 

Solids 
(Carbon black,  

Activated Carbon) 

No oxygen 

Reduction 

Endothermic 

400~700℃ 
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Minimization of Energy Input 
 
Maximization of Valuable by-products 
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Pyrolysis mechanism can elucidate 

PATHWAY to Valuable Products 

Pyrolysis Polymers 

Desirable Products 

Undesirable Products 
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Pyrolysis kinetics can elucidate 1) how 
fast the reaction is completed and 2) 
how the production rate of desirable 
products can be increased  

Polymers 

Desirable Products 

Undesirable Products 

kd 

ku 

Maximization of  kd  
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MODEL I MODEL II 
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MODEL III 

Organic 
Wastes 
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MODEL IV 
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MODEL V 

Organic 
Wastes 

Gas 

Liquid 
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Plastics 

Gas 

Liquid 

Molten 
State 
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( ) ( )αα fTk
dt
d

=

( ) ( )RTEATk /exp −=

Kinetic Triplet Arrhenius Parameters 
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A Unique Thermal Reaction can be 
characterized by one set of Kinetic Triplet 

Incorrect reaction model can mislead 
the Arrhenius Parameters as well 
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( ) ( )nf αα −= 1
What is the reaction model commonly  

used for the pyrolysis of Polypropylene? 
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Is Reaction Order Function appropriate for 

representing the pyrolysis reaction model of 

Polypropylene? 
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Discrepancy of Activation Energy Values 
between Model-fitting and Model-free method 
 

The reaction order function is usually 
applicable for homogeneous gas-phase kinetics, 
but the thermal degradation of polymers is 
accounted for by heterogeneous solid state 
mechanisms 
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Methods n E (kJ․mol-1) 

Model-fitting 
Methods 

Freeman-Carroll     

at 5 K/min 1.57 338.15 
at 10 K/min 1.69 346.63 

at 20 K/min 1.38 290.13 

average 1.55 324.97 

Catterjee-Conrad     

at 5 K/min   340.90 

at 10 K/min   351.16 

at 20 K/min   293.65 

average   328.57 

Coats-Redfern     

at 5 K/min   316.71 

at 10 K/min   315.62 

at 20 K/min   321.02 

average   317.78 

Model-free 
Methods 

Friedman 189.18 

Kissinger   183.62   

Ozawa   186.75   

Discrepancy of  
E values 
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How to Identify the Pyrolysis 

Reaction Model of PP and its 

Arrhenius Parameters 
Kinetic Triplet 
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Procedures Estimating Kinetic Triplet 

Determining Reaction Model 

Determining Reaction Constants  
at various isothermal temperatures 

Estimating Arrhenius Parameters 

1st Stage 

2nd Stage 

3rd Stage 

( )αf

( )iTk
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Derivation of  

( )

( )
( ) ktg

kdt
f
d

kdt
f
d
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α
α
α

α
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0

Kinetic equation 
( )αα fk

dt
d

⋅=

where 

Integrating the kinetic equation 

( )αg

( ) ( )[ ]∫ −=
α

ααα
0

1dfg



Pyrolysis Research Laboratory 
 

Reaction Models 

( ) ( )[ ]∫ −=
α

ααα
0

1dfg
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Procedures deriving Reduced Time Plots 

1. Developing the following Relationship 
 
 
 
 

2. Substituting serial numbers(0.1, 0.2 etc) 

  into α in the model equations and then 

 determining  

3. Determining the reduced time from 

   

 

4. Developing the reduced time vs. α  
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Fitting practices of experimental  

RTP to theoretical RTPs 

Best-fit of an experimental RTP  

to a theoretical RTP 
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1. Estimating the reaction constants at various 
isothermal conditions 

 
 

2. Estimating A and E from Arrhenius Plot 

Determination of Arrhenius Parameters 
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Most previous studies have used commercial TGA that allowed  
thermal decomposition that occurred during the course of  
the temperature  rise to the target temperatures 

Time 

Temp 

Target Temperature 

Undesirable decomposition happens  
during the temperature rise 

RTP requires decomposition pattern of polymers 
with time under isothermal conditions 
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Weight Detection Part 

Sample Loading Part 

Pyrolysis Reactor 
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Lower Temperature Zones (650~700K) 
✓Contracting Cylinder Model 
✓E = 155 kJ/mol, lnA = 24.6 (A: min-1) 

 

Higher Temperature Zones (>700K) 
✓Avrami-Erofeev Model 
✓E = 115 kJ/mol, lnA = 19.4 (A: min-1) 
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Model-free methods 

✓Isothermal data 
✓Non-isothermal data 

 

Model-fitting methods 
✓Differential 
✓Integral 
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1. Compiling kinetic data at various isothermal 
operating temperatures 

2. Developing a set of isoconversional data 
(α=0.1, 0.2, 0.3, …) 

3. Determining activation energy from the slope 
of the following equation: 
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Friedman method 

Kissinger method 

Ozawa method 

Revised Ozawa method 
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Model-fitting method 
using Isothermal Data 
(This study) 

Model-free method 
using Isothermal Data 

Model-free method 
using Non-isothermal Data 

Model-fitting method 
using Non-isothermal Data 

Lower temperature regions Higher temperature regions 

103   71 

112   83 

118 

Lower conversion regions Higher conversion regions 

140              112 
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Conversion
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Heat is applied Liquid State Solid State 

Evolution of volatiles at the surface Isotropic shrinkage of melt 
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Liquid State 

Bubble Nucleation is responsible for a major 
pyrolysis mechanism at higher temperatures 

At the critical concentration of volatiles, bubbles 
may begin to nucleate 

There may be a critical temperature where the 
highest molecular size of fragments is small 
enough to be vaporized, thus triggering the 
explosive generation of volatiles 
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Rate of bubble nucleation appears to be limited by  

the kinetics of heat, momentum or mass transfer  

and thermodynamic properties of melt 
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1) Investigating Pyrolysis Mechanism  

Determining REACTION PATHWAY  

2) Estimating Pyrolysis Kinetic Model and Kinetics (Chemical 

Kinetics) 

Determining REACTION TIME 

Controlling REACTION PARAMTERS 

3) Determining Scale-up Factors 

4) Determining Temperature and Pressure Profiles of Reactor 

5) Determining Reaction Rate and Time 
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