Application of biogas plant to recycle organic wastes

2014. 10. 14

YOUNG-O KIM

INOVATION for Eco-SUSTAINABILITY

"Harvesting Clean Energy & Clean Water from Wastewater"

Talk outline

- 1. Value of Organic Wastes
- 2. <u>Anaerobic Digestion</u> description.
- 3. <u>Stage</u> of Biogradation
- 4. Anaerobic Membrane Bioreactor (AnMBR)
- 5. See Hyundai Biogas Plant (HAnDs)
- 6. <u>Opportunity</u> for Application

Where do organic wastes come from?

Industrialization

Urbanization

Population

Paradigm of organic wastes treatment

Value Chain

High Volatile Solid Content

High Moisture Contents Readily biodegradable
 → Easy corruption
 Renewable energy source

Hard to apply physical and chemical treatment such as incineration etc.
High cost for management

Heterogeneous Bacteria/ Pathogens

- Necessity of pretreatment
 Hard to apply microbial
 /enzyme treatment techniques
 - → due to contamination or competition between microorganisms

Year's Generation and Discharge

Anaerobic Digestion : Biogas History

What is Biogas Digestion

- Reduce
 - Smell
 - Greenhouse gas
 - Pathogen level
- Produce biogas
- Improve fertilizer value of manure
- Protect water resources
- Biogas Digestion is the process of taking biogas to produce electricity, heat, or hot water
- Biogas means a gas formed by carbon dioxide and methane from breakdown of organic materials such as manure.

• Basic of digestion

Substrates must be degradable

Substrates must/should be available at a constant mass/volume flow

Substrates should have a nearly constant composition

Concentration of organic dry matter should be higher than 2 %

Substrates should be a liquid slurry

Digester volume should be more than about 100m³

What is a Digester?

- Digester is a vessel or container where the biogas process takes place. Bacteria breaks down waste products to create biogas. Products may be fed into the chamber such as manure and food waste or the container could be used to cover a place that is already giving off biogas such as a swamp or a landfill.
- Biodigester is a system that promotes decomposition of organic matter.
- It produces biogas, generated through the process of anaerobic digestion.
- Biogas generated can be used for cooking, heating, electricity generation, and running a vehicle.

Basic Designs of Digester

- Continuous-fed
- Batch-fed

What is Biogas ?

• A mixture of methane and carbon dioxide

• Methane or 'swamp gas', prod**uceat nathraf**ly in swampy ponds

What is it used for ?

• Biogas is a fuel used as an energy source for light, heat or movement

Potential of Biogas

C	
	1
L	7

Biogas potential:	total organic solids (%)	m ³ CH ₄ /m ³ substrate	
Waste water, municipal	0.05	0.15	
Waste water, food industry	0.15	0.5	
Sewage sludge	2	5 to 10	
Cow manure	8	20 to 30	
Pig manure	6 to 8	30 to 50	
Food waste	15 to 20	100 to 120	
Food waste leachate	6 to 14	30 to 60	

Anaerobic Membrane Bioreactor(AnMBR)

- Providing long SRT needed while operating at short HRT as required to reduce reactor size
- Pressurized type use more since membrane cleaning is easier to perform

Wastewater	Volume (㎡)	Temp. (℃)	MLSS (g/L)	OLR (g/㎡/d)	Removal (%)	Reference
Sweet factory	0.09	35~37	-	8~9	97~99	Defour et al., 1994
Feed industry	0.4	37	6~8	4.5	81~94	He et al., 2005
Soybean processing	2	30	-	2.5	71	Yushina and Hasegawa, 19 94
Brewery	0.12	36	> 50	>28.5	97~99	Ince et al., 2000, 2001
Potato starch bleaching	4	-	15~100	1.5~5	65~85	Brockmann and seyfried, 19 96, 1997
Palm oil mill	0.05	35	50~57	14.2~21.7	91.7~94.2	Fakhru'l-Razi and Noor, 199 9
Kraft pulp mill	5	53	8	9~28	86~89	Imasaka et al., 1993
Sewage	0.018	24~25	16~22	0.4~11	60~95	Wen et al., 1999
Primary sludge	0.12	35	-	0.4~0.68	25~57	Ghyoot and Verstraete, 199 7
Heat treated sewage	0.2	35~38	10~20	4~16	79~83	Kayawake et al., 1991
Swine manure	0.006	37	20~40	1~3	-	Padmasiri et al., 2007

Operating Conditions of Membrane system

Туре					Membrane		linear			
of		Temp.	Membrane	Pore	area	TMP	velocity	Initial flux	Final flux	
wastewater	Scale ^a	(°C)	Material	size ^c	(m²)	(kPa)	(m. s ⁻¹)	(L. m ⁻² . h ⁻¹)	(L. m ⁻² . h ⁻¹)	Reference
Wheat starch	Р	40	-	18,000 D	144	690	_d	-	14~25	Butcher et al, 1989 Choate et al, 1983
Brewery effluent	Р	35	Poly-ethersulfone	40,000 D	0.44	140~340	1.5~2.6	-	7~50	Strohwald et al, 1992
Maize processing	Р	-	Poly-ethersulfone	20,000~80,000	668	450	1.6	-	8~37	Ross et al, 1992
				D						
Wool scouring	Р	40~47	Poly-acrylonitrile	13,000 D	3.1	2~2.2 ^e	-	30~45	17~25	Hogetsu et al, 1992
Glucose, peptone	L	35~38	Ceramic	0.2	0.4	30~200	0.5~4	-	12.5~125	Shimizu et al, 1992
Kraft mill effluent	Р	48.4	Ceramic,	0.16	1×24	60	1.75	50	27	Imasaka et al, 1993
omdont			aluminum oxide							
Acetate	L	35	Ceramic	0.2	0.20	25~150	0~3.5	-	18~127	Beaubien et al. 1996
Sewage sludge	L	30~35	Poly-ether sulfone	60,000 D	0.3	375	0.75	31	19	Ghyoot et al, 1997
Molasses ^f	L	20	Polypropylene	10	0.051	-	-	100~160	10~80	Hernandez et al, 2002
Sewage	Р	10~28	Ceramic	13,000 D	13.6	1~2 ^e	2	-	15~20	Tanaka et al, 1987
Heat-treated liquor from sewage sludge ^f	Ρ	35~38	Ceramic	0.1	1.06	200 ^g	0.2~0.3	8~13	3~8	Kayawake et al, 1991
Food waste leachate	Р	55	Polyvinylidene	0.04	13.1	100~300	1~3	-	15	Kim et al, 2011
			fluoride							

^aAll membranes were external cross-flow unless otherwise noted. ^bL = laboratory/bench scale, P = pilot scale.

^cD = Daltons (molecular weight cutoff).^d-Indicates value not reported.

^ePressure reported as kg/cm².^fSubmerged membrane.

g-Indicates value not reported

- Membrane fouling is an inevitable and complex phenomena
- Biogas sparging, fluidized media for submerged system
- TMP, cross-flow velocity for pressurized system Effectiveness varies depending upon foulant materials (e.g., particle size distribution) and module design (e.g., channel height etc)

Application of AnMBR

New: Memthane®, for industrial high-strength wastewater

"The valuable methane-rich biogas produced can cover

Biothane's anaerobic biological

wastewater treatment and a Pentair's X-Flow Ultra Filtration membrane separation process. Influent is fed to the anaerobic bioreactor where the organic components are converted into energy-rich biogas. Next, the anaerobic effluent is processed through the UF membrane unit, separating the 'clean' permeate from the biomass. The biomass is

> returned to the bioreactor, while the ultraclean filtrate is

discharged as

particle-free, low BOD/COD

effluent, often at levels low

Membhane*, Veolia's Anaerobic Membrane Bio-Reactor (AnMBR), delivers high-energy efficiency and

Pilot-plant of AnMBR : HAnDs

Anaerobic Membrane Bioreactor (AnMBR, Korean NET No.352)

- Maximizes biogas energy
- Excellent effluent quality
- Easy nutrient recovery as fertilizer

- Odor-free
- Vastly reduces biosolid disposal costs
- Reduces the facility footprint

Specifications of Membrane Unit

	Shape	Tubular	
Spec.	Material	PVDF	
	Diameter	11 mm	
	MWCO	100 k Dalton	
	Max. working Temp.	90 ℃	
	Total membrane area	13.1 m ²	
Operating condition	Operating pressure	1~3 kgf/cm ² (In-Out)	
	Cross-flow velocity	1~2 m/sec	

Why Crossflow Membrane ?

- Flat-sheet membranes can only be installed in a submerged tank, which client pays to build
- For membrane cleaning, the entire membrane tank must be drained, halting treatment of wastewater
- Crossflow membranes are installed on skids with minimal footprints, and require no storage tank of any kind
- Much easier cake-fouling control just by adjusting the crossflow velocity
- Possible clean-in-place, meaning any individual membrane can be bypassed and removed from the system for cleaning without even pausing treatment

Picture of Plant

Properties of food waste leachate

Qualities of food waste leachate

X Source:

SUDOKWON Landfill Site Management Corp. (2008), "The feasibility study of biogas production with organic waste"

Change of Floc Size Distribution in Membrane Concentrate Stream

Shear rate played critical role in controlling membrane fouling

Biogas Production Potential and Compostion

(단위	:	Nm ³	CH₄/kg	COD)
-----	---	-----------------	--------	------

	Before	After	Variation
CH ₄ production/	0.28	0.32	∆22.1%
COD _{loading}	(0.25~0.29)	(0.29~0.36)	
CH ₄ production/	0.34	0.36	△6.0%
COD _{Rem} .	(0.30~0.38)	(0.32~0.38)	

Compositio	CH ₄	CO ₂	H ₂ S
n	(%)	(%)	(ppm)
Content	63	37	1,582
	(56~68)	(32~44)	(1,100~2,360)

1. Biogas Production : 567 Nm³/ton_COD_{Rem}

2. Methane Yield : $359 \text{ Nm}^3/\text{ton}_{\text{COD}_{\text{Rem}}}$

11-05-01

COD Removal Efficiency

Operating Time(days)

MLVSS has been increasing continuously since the digester was integrated with UF membrane

Operating time (days)

Relationship between Cross-flow velocity and Power Requirement in AnMBR

• The more fouling progressed, the more required electrical power to get the constant flux

Membrane Autopsy Works-FTIR Observation on Membrane Surface

Cake Layer after chemical cleaning

after NaOCI chemical cleaning

	Foodwaste Leachate	Methanogenic Sludge			
Ca ²⁺ (mg/L)	>1,000	> 800			
pН	< 4.0	> 7.5			
Alkalinity (mg CaCO ₃ /L)	-	>10,000			
LSI	< - 4.0	>+4.0			

after NaOH chemical cleaning

- At an LSI value greater than zero, the concentrate stream is supersaturated with calcium carbonate and would likely scale membrane surface as cake layer formation
- Strong binding and solidification can lead to pronounced cake resistance

after citric acid chemical cleaning

rate?

Cross-flow velocity = 3 m/s TMP= 0.8 bar

Membrane Scale and Rejection

Water Quality of HAnDS[®]

Sludge

Permeate

Digestate Treatment : Ammonia Stripping

*Recovery can be controlled by the operating conditions: temperature, pH and air volume

(Unit : mg/L)	Food Waste Leachate	Anaerobic Digestion	Ultrafiltration	Aerobic MBR*
BOD ₅	51,000	9,000	6,000	<3.0
COD _{Cr}	120,000	25,000	10,000	300
TN	3,000	4,000	2,000	<60
TS (g/L)	65	25	<10	-
n-Hexane	11,000	380	350	-

(*After ammonia stripping process)

Anaerobic Membrane Bioreactor (AnMBR, Korean NET No.352)

Process flow chart

Pretreatment facility

6

Biogas Production

 Sludge recycle → Providing long SRT needed while operating Biogas more production, reduce sludge discharge

Wastewater treatment facility

Planning of connecting wastewater to STP and recovery of valuable resources

Reduce Nitrogen loading rate by collection ammonia

Planning of connecting wastewater to STP, cost saving

Liquid fertilizer ((NH₄)H₂PO₄), Supply to farm

Field Application : 80 t/d plant

7

QUIZ

1. Biodigestion is the process of breaking down organic wastes in an anaerobic digestion and there is 4 steps biogestion process to produce biogas from organic wastes. Briefly explain biogestion in an anaerobic digestion.

2. AnMBR(anaerobic Membrane Bioreactor) is the state of the art technology in the field of anaerobic digestion. Briefly explain the characteristics of AnMBR and analysis advantages and disadvantages in comparison with conventional anaerobic digestion.