

Organic waste & Biomass to Energy Technologies

2014.10

2. Biomass as Clean Energy

3. Treatment Technology of Organic Waste

4. Characteristic of Organic Waste

5. Technology for Organic Waste Energization

6. Cases in Domestic of Organic Waste Energization

Background of Renewable Energy

Annual change in oil prices

recently 4 years

Year	Cost (\$/bbl)
2003	26.80
2004	33.77
2005	49.37
2006	61.55
2007	68.43
2008	94.29
2009	61.92
2010	78.13
2011	105.98
2012	109.03
2013	105.25

International oil price is 105.39 \$/bbl(2014.08)

> 10th largest energy consumer of the world

> relies on imports for 97%

EU	The goal of renewable energy supply in 2020 is 20 % of total energy 34 % of generation , 10 % of transportation fuel							
Japan	The goal of renewable energy supply in 2020 is 20 % of total energy (MOE, '10.1) (Reopen to give solar energy subsidy('09.1) Mandatory for purchase remain solar energy ('09.11)							
USA	Provide renewable energy which is 25% of electric power in 2025 (Announcement of Obama Government)							
China	The goal of re (300GW of Wa Develop and s	newable energy ater, 30GW of W supply plan of W	v supply in 2020 ind, 1.8GW of Sc Vind, solar, water	is 15% of Prima blar, 30GW of Bi cetc.	ry Energy iomass)			
Germany	The gold of renewable energy supply in 2020 is 18% of Final Energy (30% of generation amount)							
Div.	USA	Japan	Germany	Denmark	UK	Korea		
Supply rate('07)	5.0%	3.4%	8.6%	18.1%	2.4%	2.4%		
Goal	10.9%('30)	20%('20)	18%('20)	30%('20)	15%('20)	11%('30)		
Data: Energy Balance of OECD Countries ('09), IEA								

Set the goal of renewable energy supply and under continuous efforts

Policy of Renewable Energy in Domestic

Composition of Renewable Energy>

- Renewable energy using Bio is 5.3% of total energy
- Plan to increase rate of bio-energy up to 30% by 2030
- Production cost of bio energy among national renewable energy is similar with 10% of solar and 70% of wind

(단위 : Won/kwh)

Div.	Solar	Wind	Water	Waste	Bio
Unit cost of production	716	107	70	71	75

Establish goal plan in supply structure of Bio-Energy among renewable energy

Alternative Clean Energy in Domestic

> To address global warming, the development of alternative clean energy source like

biomass must accelerate to reduce our dependence on fossil fuel.

> Korean power demand ranked third place of electricity consumption rate among global

top 8 major countries (International Energy Agency(IEA))

> A steep increase of power demand especially on specific time (summer and winter)

can le	ad to	electricity	crisis	like	Blackout
--------	-------	-------------	--------	------	----------

(unit : 1,000TOE)

Remark	2020	2030	2050
Primary Energy Demand Forecast	287,976	300,417	373,872
Long—term goal of renewable energy supply	5.6%(16,241)	11.0%(33,027)	20.0%(74,774)
Goal of waste resources and biomass energy supply	4.7%(13,383)	7.0%(21,000)	10.0%(37,387)

Alternative Clean Energy in Domestic

> To address global warming, the development of alternative clean energy source like

biomass must accelerate to reduce our dependence on fossil fuel.

> Korean power demand ranked third place of electricity consumption rate among global

top 8 major countries (International Energy Agency(IEA))

> A steep increase of power demand especially on specific time (summer and winter)

can	lead	to	electricity	crisis	like	Blackout
-----	------	----	-------------	--------	------	----------

(unit : 1,000TOE)

	Remark	2020	2030	2050
Primary Energy Demand Forecast		287,976	300,417	373,872
	Long—term goal of renewable energy supply	5.6%(16,241)	11.0%(33,027)	20.0%(74,774)
	Goal of waste resources and biomass energy supply	4.7%(13,383)	7.0%(21,000)	10.0%(37,387)

Domestic Policy for Alternative Clean Energy

- Government needed alternative clean energy and introduced the "Renewable energy Portfolio Standard(RPS)" to satisfy power demand and reduce greenhouse gas emissions and opened the new RECs(Renewable Energy Certificates) market
 - -RPS duty supply: 2.0% by 2012, 2.5% by 2013, 3.0% by 2014, 10% after 2022 of total electricity generated
 - 2012year result: KEPCO subsidiaries(6 companies) are carrying out 64% (3,808 GWh out of total 5,911 GWh)
- REC Performance in 2012Unit(GWh)

	Total amount of	Performa	nce result	Implementation	Penalty (0.1 billion won)	
Generator	duty (photavoltaic)	Self-supply	Outside purchase	delay		
Kosep(남동)	834(43)	62(18)	302(23)	470(2)	105	
Komipo(중부)	738(43)	89(6)	303(36)	346(1)	59	
Kowepo(서부)	761(43)	72(6)	366(33)	323(4)	45	
Kospo(남부)	834(43)	115(13)	451(29)	268(1)	8	
EWP(동서)	734(43)	72(13)	351(30)	311(0)	44	
KHNP(한수원)	2,010(43)	1,291(2)	333(37)	386(4)	0	
Total	5,911(258)	1,702(58)	2,106(188)	2,103(12)	261	

Increased buying biomass fuel and RECs for the effective implementation of the RPS to avoid penalty

What is Biomass?

Biomass is derived from sources of various types, such as agricultural, forestry, fishery, stockbreeding, and Organic waste resources, and the technologies to use those various types also vary widely.

Biomass as a Renewable Energy Source

Biomass can either be used directly via combustion to produce heat, or indirectly after converting it to various forms of biofuel such as biodiesel, bioethanol and biogas.

3. Treatment Technology of Organic Waste

Treatment Technology of Food Waste in Domestic

Feeds	Installation cost is cheap but expensive production cost , odor from dehydration process and difficult to look for source of fodder demand				
Compost	Many facilities are already installed because of easy access, but low additional value of by-product and need a wide area				
Combine to sewage treatment	Low installation cost because of using the existing sewage plant, but low operation result and need high-level treatment process				
	"Waste to Energy" National policy change				
Anaerobic Energization	Low odor and possible to be energization by manufacturing bio- gas Low operation cost , preparing for climate changes and suitable for low carbons policy				

Change into Anaerobic energization is coincide with government policy

4. Characteristic of Organic Waste

Characteristic of Food Waste in Domestic

Food w	vaste				🖲 Food	waste	leacha	te		
Div.	Moisture (%)	TS (%)	VS (%)	VS/TS (%)	Div.	BOD (mg/L)	COD (mg/L)	SS (mg/L)	T-N (mg/L)	T-P (mg/L)
K city	82.35	17.65	14.33	81.19	K city	97,856	138,417	68,042	8,289	672
D city	83.49	16.51	14.29	86.55		0.0 0.17	141.000	40.052	2.040	400
I city	76.26	23.77	17.45	73.41	1 CITY	83,017	141,393	42,003	3,240	498
Literature	74 ~ 85	15 ~ 26	13 ~ 19	73 ~ 86	Literature	61,097 ~ 82,501	136,570 ~ 160,146	16,385 ~ 50,984	2,527 ~ 2,835	226 ~ 656

Data : K city, D city, I city, basic design report, literature : feasibility study of biogas development using organic waste, 2008, SLC

Moisture and VS rate is high, High concentration leachate is generated

4. Characteristic of Organic Waste

Characterization of Food Waste in Domestic

Need high efficiency energization facility

Biogas is generated by anaerobic digestion process

Input & Pre-Treatment Process

Process for micro-organism to be easy to use

Anaerobic Digestion Process Types

Select Anaerobic digestion process according to operation condition

Operating Condition of Anaerobic Digestor

Div.	Condition	Remarks
Temp.	middle: 30~ 40℃ high: 50~ 60℃	Additional heating cost of reactor when temperature increases
HRT	15~30 days	CSTR process
pH	Near 7.0	Optimal condition of methanogen
ORP	Less than -300 mV	Organic carbon's reduction condition
Removal rate of VS	70~ 85%	Differences depend on characteristics of food waste
Removal rate of COD	40~95%	Big differences depend on characteristics of food waste

Basic conditions to maintain high activity of Anaerobic micro-organism

Biogas Utilization Process

Generated biogas can be utilized to various energy sources

Waste water treatment process

Digested waste water are treated independently or ties to sewage plant

Odor Treatment Process

Removal odor by separating high and low concentration

6. Example of Organic waste to energy in domestic DOHWA

Process diagram

6. Example of Organic waste to energy in domes

Case of underground(P city-Private investment business)

Introduction Techniques of Domestic

	Div.	Dae-woo	Seo-hee	Hallasanup	Ecoday
Te	echnology	Own technology	OWS(Belgium)	OWS(Belgium)	Own technology
	Name	DASB	Dranco Process	Double wet middle temp. digestor	E.PFR-2 SYSTM
	Waste	Leachate, livestock waste water	Food waste	Food waste, livestock waste water	Food waste, Leachate
	Process	Double wet	Single dry	Double wet	Double wet
	Tèmp.	middle(35~40°C)	high(55±2℃)/ middle(35±2℃)	middle(within 35° C)	middle(within 35℃)
	Time	25 ~ 30 days	Within 30 days	(1 st 3 ~ 5days, 2 nd 15 ~ 20days)	Within 15 days
	CH ₄	Within 60%	60 ~ 70%	60 ~ 75%	Within 75%
Ch	naracter of process	No-power stirring by gas pressure	No hydrolysis process	pH control by returned discharge water	High load, Fast treatment
Result		•Nambu waste treatment 1,700m ³ (leachate) •Asan(100 ton/day)	•Busan(200 ton/day) •Dongdaemun(98 ton/d)	 Paju(30 ton/day) milyang(20 ton/day) Sokcho(20 ton/day) 	•Paju(30 ton/day)

Introduction Techniques of Overseas

	Div. ARROWBIO		BTA	OWS	HESE	
Technology		Own technology	Own technology	Own technology	Own technology	
Name		Double wet anaerobic	Single and double wet anaerobic	DRANCO Process	Double wet anaerobic digestion	
Waste		Food Waste	Food waste, livestock waste, sludge	Food waste	Food waste, livestock waste	
	Method	Double wet	Single dry, double wet	Single dry, double wet	Double wet	
	Temp.	middle(35~40°C)	middle(35~40℃)	high(50~65℃)	middle(within 35° C)	
	Time	HRT:1~ 3days SRT:80~ 90days	Single : 14 ~ 16days Double : 5 ~ 7days	15 ~ 30days	19days	
_	CH ₄	81%	65 ~ 75%	50 ~ 60%	Within 60%	
Characteristic of process		UASB	No-power stirring by gas pressure	Directly supply steam to reactor	Maintain Aerobic at hydrolysis	
Performance		•Tel Aviv, Israel(100 Ton/day)	•Kirchstockach, Germany(20,000 Ton/yr) etc.	•Rome, Italy (40,000Ton/yr) •Leonberg, Germany (30,000Ton/yr) etc.	•Leicestershire, UK (40,000 Ton/yr) etc.	

23

Cases of Organic Waste to Biogas in Domestic

Div.	Gwangju	SLC	Dongdaemun gu	
Picture				
Capacity (Ton/day)	150	500	98	
Completion	2007. 02	2013. 08	2010.10	
Treatment	Leachate	Food waste leachate	Food waste	
Utilization of biogas	Heat reactor	Heat reactor and air conditioning and heating	Electronic and steam generation for onsite	
Anaerobic Process	Wet high temp.	Wet double phase	Dry single phase	
Remarks	Anaerobic digestion of food waste leachate	Largest in national of anaerobic digestor	Undergrounding and Making park	

24

Project Plan of Food Waste to Biogas

Local Government	Treatment	Period (year)	Capacity (T/d)	Case of underground
Sokcho	Food waste	09-10	40	_
Daegu	Food waste	09-12	300	Treatment facility(underground), Park(ground)
Goyang	Food waste	09-12	260	Treatment facility(underground), Park(ground)
Kimhae	Leachate	09-12	100	_
Jinju	Leachate	10-11	150	_
Unpyoung	Food waste	10-12	100	Treatment facility(underground), Park(ground)
Gwangju	Leachate	10-12	300	Treatment facility(underground), Park(ground)
Ulsan	Leachate, Livestock	10-12	150	—
Chungju	Leachate	10-12	200	_

25

6. Example of Organic waste to energy in domesti

Case of Changing Facility into Park (K city-300 Ton/day, Detail design)

Possible to make the park being designed with efficiency and environment friendly

6. Example of Organic waste to energy in domestic

Case of Changing Facility into Park (P city-200 ton/day, on going private investment business)

- 1. What is the RPS ?
 - And please explain about relations between RPS and Bio-energy.
- 2. You are assumed to be an engineer of organic waste to energy facility. What are most items can be considered for normal operation?
- 3. Please calculate the yield of Methane gas production(m3/hr) and power generation(MW) for 100 t/d Food waste.

Thank you