

Seoul National University Seminar

Gasification Technology of Solid wastes

November 11. 2014

KOLON GLOBAL Corp., R&D department

KWAK YEON HO

본 문서는 영업상 주요 자산으로서 부정경쟁방지 및 영업비밀보호에 관한 법률을 포함하여 관련 법령에 따라 보호되는 중요한 정보를 포함하고 있으므로, 그 전부 또는 일부를 무단으로 열람하거나 공개, 사용, 복제, 유출 등을 하는 행위는 엄격히 금지됩니다.

+ * *

[Overview]

► KOLON GLOBAL CORPORATION

Address

- KOLON TOWER (Main building) 11 kolon-ro Gwacheon-si, Gyeonggi-do, Korea
- Song-Do Technopark IT Center 32 Song-Do science-ro YeonSu-Gu, Incheon, Korea
- Employee : 2,500 people
- Revenue : 3 Billion Dollars (2013)

[Gwacheon]

[Songdo]

KOLON GROUP

- Established in 1954
- Over 12,000 employees with 36 Subsidiaries
- Sales Revenue US\$ 11 Billion (2013)

[History of Company]

[Business Area]

Construction

- Construction, Development, EPC & O&M
- Power plant, Environmental plant
- New regeneration energy
- Overseas

Trading Service

- Steel
- Energy, Heavy chemistry
- Fashion, Leisure, Fiber
- General products

Auto distribution

- BMW Dealing (No.1 in domestic)
- A/S Factory
- BMW Rental, Lease
- BPS service
- MINI, R/R, BMW Motorrad

Health care

- Sport center (KOLON Sporex)
- Lifestyle Business (Bang&Olufsen)

[Environment Business Area]

Future Environmental Technology for Human

Base on environment friendly technologies and abilities, KGC provides total solution for all environmental facilities from EPC to O&M.

Our sewage water treatment technology is selected as new environmental technology and we're endeavoring to improve high water treatment facilities business.

Business Brief

- Water treatment
- Waste treatment(Incineration, Sanitary landfill)
- Waste to Energy
- Recovery works, etc.

Green technology for the future

• Thermal treatment technology of wastes

• Thermal Conversion Processes : Combustion, Gasification, Pyrolysis

KOLON GLOBAL CORP.

. ×▲÷ × dP

• Thermal Conversion Processes : Combustion, Gasification, Pyrolysis

• Purpose : To convert wastes or low-value fuels to higher value energies

- The feedstock is prepared and fed into a gasifier with the reactants
- Combustible gas called syngas is produced
- These gases are available to produce the electricity or heat after gas cleaning
- They can also be used for the production of chemicals

KOLON GLOBAL CORP.

• Main gasification reaction and gas composition

Ash / Slag / PM / Tar

• Advantages of Gasification in compare to incineration

Environmental standpoint

- Iow SOx / NOx emissions(reducing atmosphere)
- Dioxin compounds are not formed during gasification
- Reduction of CO2 emissions (Exhaust gas is much less than its of combustion)

Energy standpoint

- Possible to a various applications(Power/Heat/Chemicals/Oil)
- Power efficiency is high

By-product utilization standpoint

Reuse of slag as construction materials

• Reduction effect of greenhouse gas according to waste to energy types

Classification	Reduction of greenhouse gas (TC/ton)	Reduction of others (TC/ton)	Total (TC/ton)
Incineration (No heat recovery)	0	-	0
Incineration (With Heat recovery)	0.19	-	0.19
SRF (Solid refused fuel)	0.21	-	0.21
Gasification	0.27	0.4	0.67

4. What do we develop?

• Development of gasifier

type	Fixed bed	Fluid bed	Rotary kiln
Advantage	Simple of gasifier	High heat transfer Large scale upgrading	High syngas quality (indirect heating)
Disadvantage	Limited capacity	Low syngas quality (high air injection)	Low heat transfer

• Development of gas cleanup system

Contaminant	Examples	Examples Problems	
Particles	Ash, char, fluid bed Erosion		Filtration, scrubbing
Alkali Metals	Sodium and potassium compounds		Cooling, condensation, filtration, adsorption
Fuel nitrogen	Mainly NH ₃ and HCN NOx formation		Scrubbing, SCR
Tars	Refractory aromatics	Clog filters, difficult to burn, deposit internally	Tar cracking, Tar removal
Sulfur, Chlorine	H₂S, HCI	Corrosion, emissions	Lime or dolomite scrubbing or absorption

4. What do you develop?

Development of gas cleanup system

Structure of tar

• As complex aromatic compounds are connected with many benzene rings, tar is very difficult to remove completely.

- The tar is present in the gaseous state at a high temperature.
- However, tar is changed in a limy liquid when cooled.
- This can cause the damage to the engine or turbine equipment

4. What do you develop?

+ * *

Development of gas cleanup system

Tar removal method

Physical removal method

To directly remove the tar

Filter Scrubber Adsorption

Low cost Low removal efficiency Reduction of syngas heating value

Steam reforming method

Tar was converted into syngas by a thermochemical conversion

Steam of a high temperature

High value syngas High removal efficiency High cost

• Development of gas engine

• the gas engine for LNG was generally developed

- Heating value of syngas is very lower than its of LNG (1,500kcal/Nm3)
- When heating value of syngas is low, techniques for controlling the mechanical characteristics of engine is needed.

KOLON GLOBAL CORP.

Research Project

Project Title	Eco-STAR Project Center for Waste Eco-Energy and non-CO ₂ Green House Grasses
Research Title	Development of energy conversion technology from waste through application of pre-treatment & gasification
Total Research Period	2008. 2.1~2012. 12.31 (4 year 10 month)
Total Research fund	8.2 billion won
Major Research Institute	KOLON E&C
Participating firm	KOLON E&C, EFMC, KOREA DISTRICT HEATING CORP, SUDOKWON Landfill Site Management Corp., SEOHUNG EN-TECH LTD., U SENTECH
Consignment research institution	Korea Testing Laboratory, THE UNIVERSITY OF SEOUL

Objectives

Concept : E³ TECHNOLOGY

Eco – friendly : Developing technologies to minimize contaminants

Energy efficient : Maximizing recovery of energy by increasing gasification conversion rate

Economic : Saving cost of facilities and operation by integration and localization

Application in full-scale plant

Developing energy conversion system from waste by pretreatment / gasification / energy recovery technologies

Research history

WKOLON GLOBAL CORP.

Prototype rotary kiln gasifier(20kg/hr)

Testing procedure in a rotary kiln gasifier

✓ Air ratio : 0.05 – 0.15

Sample used in this Test

Pelletized RDF

Proximate analysis (wt%)		Ultimate analysis (wt%)	
Moisture	9.0	С	40.63
Volatile matter	53.0	Н	5.74
Fixed carbon	11.5	0	23.97
Ash	25.8	Ν	1.33
High Heating value	3,850	S	0.01
(kcal/kg)		* Dry basis,	**Wet basis

TG and DTG curves of Sample

2nd stage pyrolysis

- 1st(300-410°C) : Paper, Wood, Food waste, Textile
- 2nd(420-510°C) : Rubber, Plastics

Result of gasification experiment - gas composition

Hydrocarbons were converted into CO or CO₂ by oxidation reaction as AR increased

KOLON GLOBAL CORP.

Result of gasification experiment – Heating value & Cold gas efficiency

An efficient energy generation appears to be possible through results obtained in this experiment

KOLON GLOBAL CORP.

Pilot plant

K-MeGa system(Kolon Mechanical & Gasification system)

The video to explain K-MeGa system

Research result

전처리 환경신기술 인증 제 373호

	고오몽글로벌, '생활폐기물 패키를 이용한 예너지 확보, 지분양 감소 등 실험 2015년 50월 24일 (공) 15838	전처리 기술' 환경신기술 획득 ^전 ^{201일 78 영·(d)*setting/west at b⁻}	코오롱글로벌, 생활폐기 (@essee 개대로 2012-01-00)	물 처리 신기술 만증
제373호 신기술인증서				
기술명 : 백기문 김림 방지용 브리쉬를 실치한 트롬맨과 Fip-Fion 선명리장을 적용한 선물배기를 전치리 기술 기술 보유자 가, 법명동 코오동클로벌(주)/보오동워티엔이너지(주)/서송인테리(주) 나, 법명동록번호 : 11011-006602/110111-1458730/110111-2142290 다, 소제지 : 경기도 과정치 코오토르 11(법명동, 코오토)/경기도 파친지 코오토르 13 (법명동, 코오토라(법명권 26)/경기도 타친지 주석로 1840년급 4 기술 개요 본 신청기술로 리기운 같이 반지도 프리슈를 성치한 드란별을 시장하여 전달패기들이 려보면 여시는 영지시키고 Fin-Fibre 3년 파동 전쟁과 전들 시장하여 전달패기들이			P	
정상시간 기술 ■ 생명구상 : 정원제가장 → 해당/세계 → 자작성명 → 도립전(18억 제공) - 동관(1900→160mm) - 18월 42(190→160mm) - 16월 19(190mm)(1) - 192(1900→180mm) - 16월 19(190mm)(1) - 192(1900→180)	가수의 확인공항 내부 경고. 고오름규르말은 고오를 확대했네(지, 서울인데 한 트륨별과 Filo-Filo 선물공질을 적용한 생활 인디고 24일 방향().	고오콩글로벌,생활때기물 처리 신기 현목용 전복경 역동, 2번 전목 북수용 8개 지원을 지각 Austral (2004) co. 41 20 20 33 19 00 51	(서울·연합누스) 강간력 가자 데크와 공동 개발한 '영울계기 소 획득	- 코오흑포르보는 코오흑워티엔세네지, 세홈인 물 전체리 거왕'로 환경부에서 신가운 인정용 물질을 고양연교로 전용한 에너지를 만드
신가을 반해 - 비가를 걸린 방지용 보대하를 설치할 부정했을 사용하여 생활해가운의 비약함 항상을 인해시키기 (16) - 생활해가운 전체시 증전에 비해~Fron 신택유정을 사용하여 최종 가인을 회수용을 당상시간 기술 - 유효기간 : 방급별로부터 3년 - 지 다 - 유효기간 인장이 필요한 감우는 기간 민준일 120일 전해지 유효기간 인정신청서를 세술하시기 비랍니다.	이마는 신부분 부산 이가방 대체가 변수가 통해되었다. 수 소전이나 전체가 밝아나 페이가를 예정된다 기본 에너지방의 확실가 오이라는 환가다.			국화 사업의 두장 연구기관으로 참여 동원 표 적활문식 태기를 가스와 거슬로 운공신기
관경가을 및 환경산업 시원법, 세가조, 같은 법 시행정 제18조여541상 및 같은 법 (현규칙 제6조제359에 따라 위의 기술을 환경 분야 신가슬로 연중합니다. 환 경 부 장 관 환 경 부 장 관		· 수 효율에게별 전체의 및 가스와 특징 물란트 탑해도 관 그도	2321	
		고오등글모범이 성 <mark>출했기만</mark> 처리 문이에서 <u>신기술</u> 을 개방 코오름글모범은 25일 코오른위캔(테니지, 서송인테크와) 외론 섬지한 노론필과 문리포통(Hin Hico) 선범금질을 하 바르바티, Mine - 데르바티(Hin Hico) 선범금질을 하	했다. 요즘 개발한 ' <u>폐기를</u> 걸릴 받지용 <u>보</u> 문화 생활제기를 <u>전체인</u> 기술 이 현	7

Certification on environment new technology

Research result

가스화 환경신기술 인증(제364호)

Certification on environment new technology

Research result

Patent application : 36, Patent registration : 12

+ + *

Overview

- Research period : 2013 ~2019(during 9 years)
- Research fund : 68 billion won
- PJT Scale : SRF 120ton/day, gasification & power 80ton/day
- Gasifier type : Fixed bed
- Site : Yeosu city
- Research institute : Samho, Kolon, Advanced tech. Institute

Meaning

- The first full scale commercial plant in Korea
- The next-generation technology alternating incineration

KOLON GLOBAL CORP.

Thank you for your attention