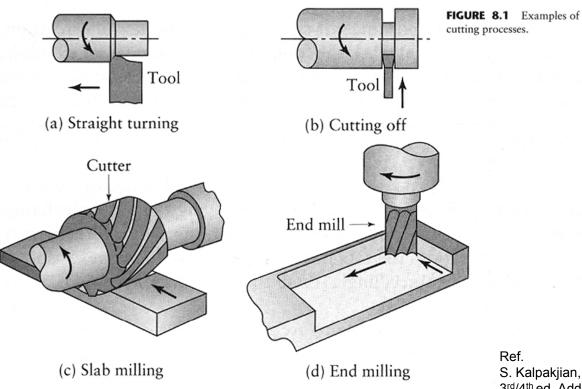
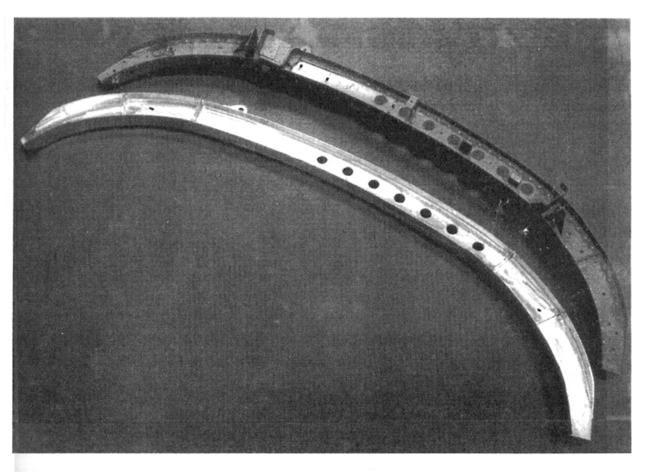
446.305A MANUFACTURING PROCESSES

Chapter 8. Material-Removal Processes: Cutting

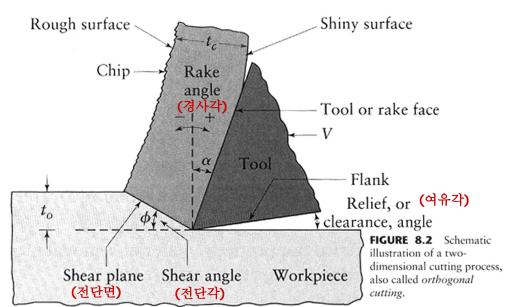

Sung-Hoon Ahn

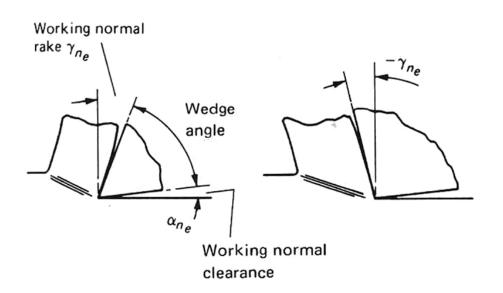
School of Mechanical and Aerospace Engineering Seoul National University

Machining (기계가공)


- Machining is the broad term used to describe removal of material from a workpiece.
 - Cutting (절삭가공)
 - Abrasive processes (입자가공)
 - Advanced machining processes (특수기계가공)

High speed machining

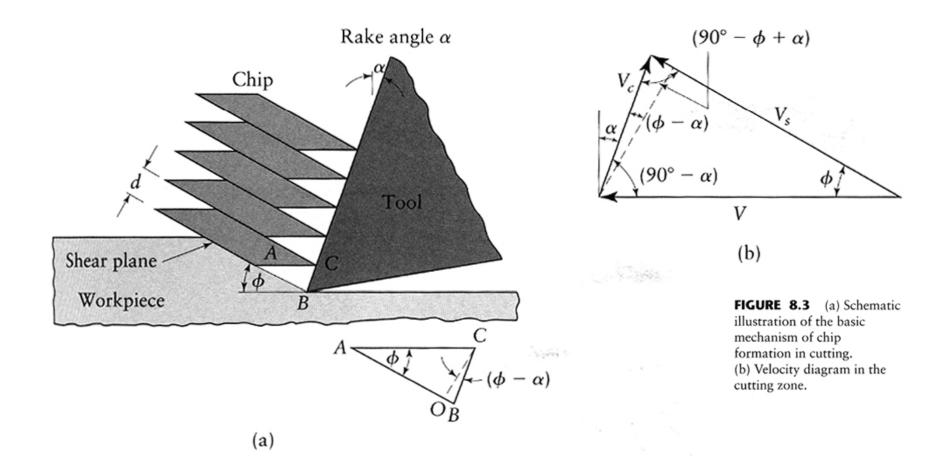



FIGURE 11.1 Integrated product and process design allows this aerospace component to be completely machined from the solid as shown in the lower photograph (Courtesy of Dr. Donald Sandstrom, The Boeing Company)

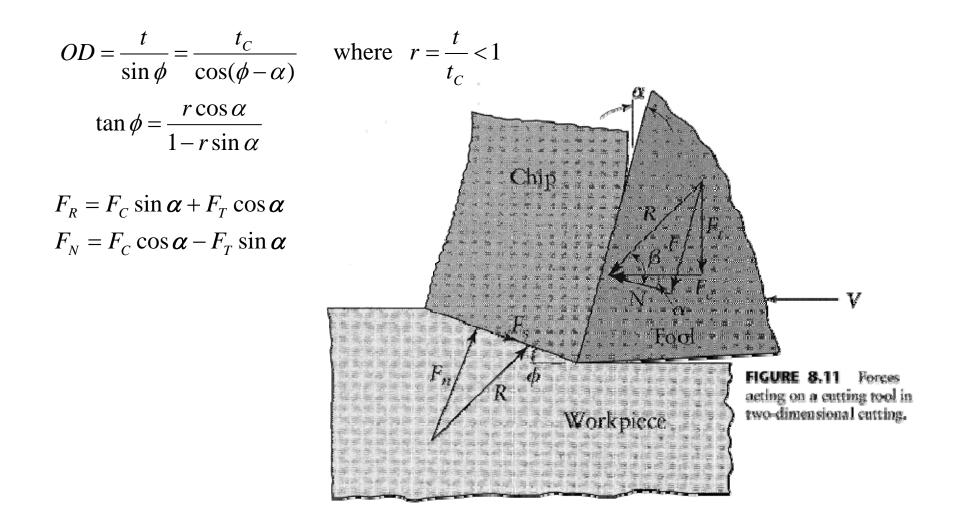
Ref. S. Kalpakjian, "Manufacturing Processes for Engineering Materials", 3rd/4th ed. Addison Wesley

Chip formation (칩형성)

- Orthogonal cutting (직교절삭)
- Oblique cutting (경사절삭)
- Positive Rake angle (경사각)
 - Chip away from the workpiece
- Negative Rake angle
 - Sturdy

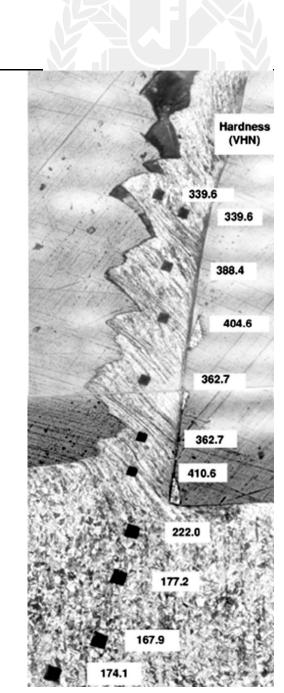


Ref. S. Kalpakjian, "Manufacturing Processes for Engineering Materials", 3rd/4th ed. Addison Wesley

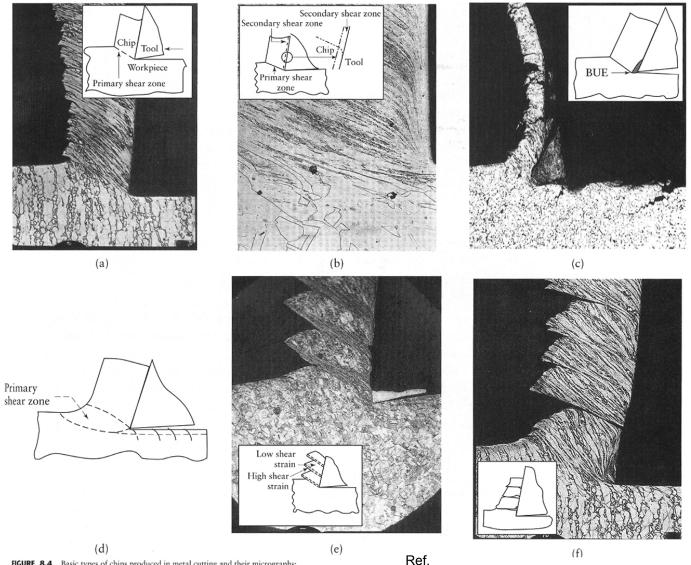

Orthogonal cutting model

Ref. S. Kalpakjian, "Manufacturing Processes for Engineering Materials", 3rd/4th ed. Addison Wesley

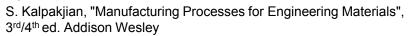
Shear-angle relationships – Merchant model



Ref. S. Kalpakjian, "Manufacturing Processes for Engineering Materials", 3rd/4th ed. Addison Wesley


Strain hardening

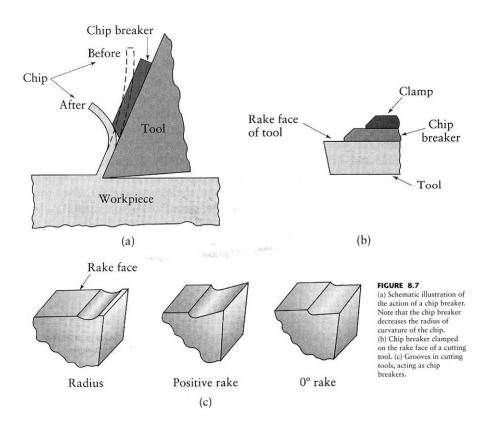
- Machined material (chip) has higher hardness than uncut material due to high strain hardening (shear strain, \u03c7 ~20)
- Vickers indentation test :

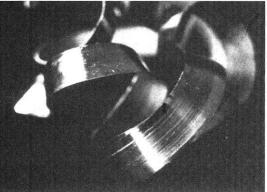


Chip morphology (칩형상) (1)

FIGURE 8.4 Basic types of chips produced in metal cutting and their micrographs: (a) continuous chip with narrow, straight primary shear zone; (b) secondary shear zone at the tool-chip interface; (c) continuous chip with built-up edge; (d) continuous chip with large primary shear zone; (e) segmented or nonhomogeneous chip; and (f) discontinuous chip. *Source*: After M. C. Shaw, P. K. Wright, and S. Kalpakjian.

Chip morphology (칩형상) (2)


- Continuous chips (연속형 칩)
 - High cutting speeds / high rake angles (secondary shear zone)
 - Good for tool life & surface finish (may need chip breaker)
 - Ductile materials with low coefficient of friction
- Built-up Edge chips (BUE, 구성인선)
 - High friction coefficient workpiece weld on the tool edge
 - Periodical separation of material
 → bad
 surface
 - It can be reduced by increasing the cutting speed and the rake angle, decreasing the depth of cut, using a tool with a small tip radius and effective cutting fluid.

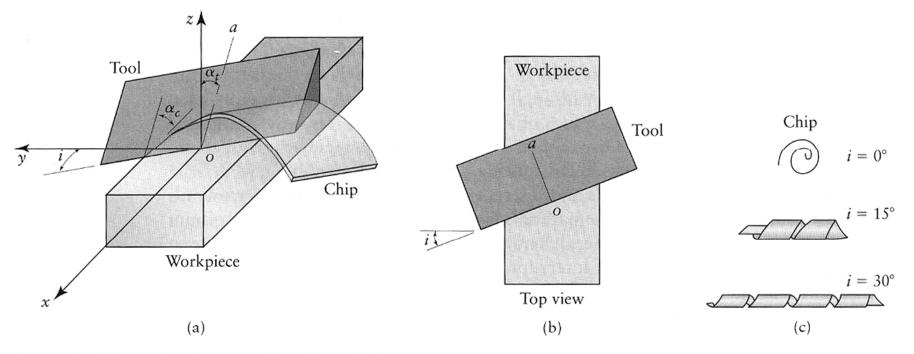

- Serrated chips (톱니형 칩)
 - Nonhomogeneous / segmented chips
 - Zones of low and high shear strain
 - Ti : sharp decrease of strength and thermal conductivity with increased temperature
- Discontinuous chips (불연속 칩)
 - Brittle materials (ductile materials with high friction coefficient) : Cast iron, bronze
 - Chatter, vibration

Chip morphology (칩형상) (3)

• Depending on :

cutting speed, temperature, tool angle, friction, vibration

FIGURE 8.5 Shiny (burnished) surface on the tool side of a continuous chip produced in turning.



S. Kalpakjian, "Manufacturing Processes for Engineering Materials", $3^{\rm rd}\!/4^{\rm th}$ ed. Addison Wesley

Oblique cutting (경사절삭)

■ Inclination angle (기움각), i

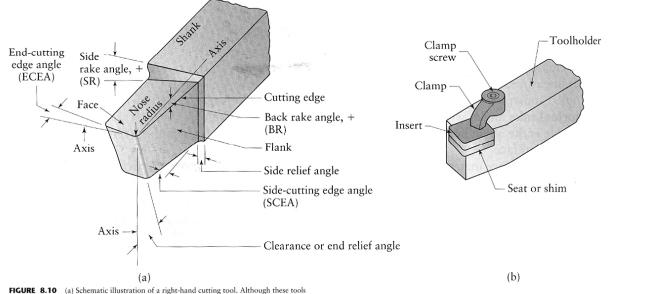
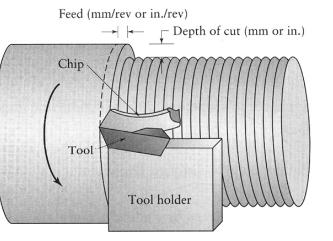


FIGURE 8.9 (a) Schematic illustration of cutting with an oblique tool. (b) Top view, showing the inclination angle, *i*. (c) Types of chips produced with different inclination angles.

Turning tool



have traditionally been produced from solid tool-steel bars, they have been largely replaced by carbide or other inserts of various shapes and sizes, as shown in (b).

FIGURE 8.19

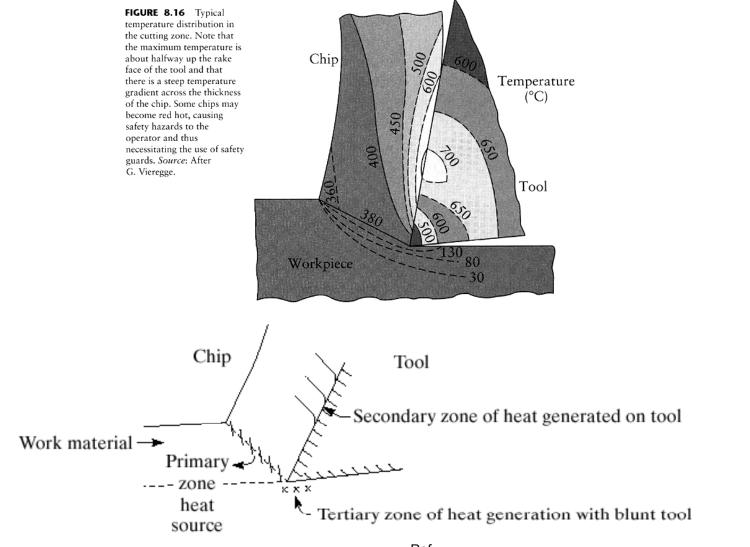
Terminology used in a turning operation on a lathe, where *f* is the feed (in in./rev or mm/rev) and *d* is the depth of cut. Note that feed in turning is equivalent to the depth of cut in orthogonal cutting (Fig. 8.2), and the depth of cut in turning is equivalent to the width of cut in orthogonal cutting. See also Fig. 8.42.

Rate of removal = V f w

Where

V : cutting speed (m/min)

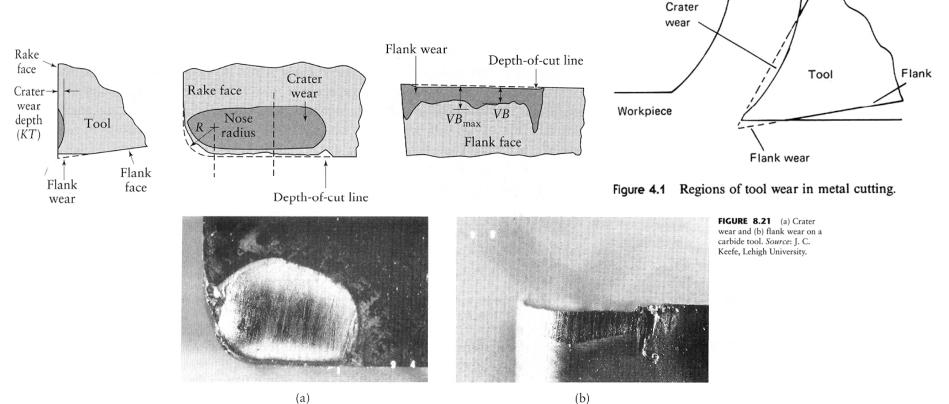
f: feed (mm/rev)


w:depth of cut (mm)

Ref.

S. Kalpakjian, "Manufacturing Processes for Engineering Materials", 3rd/4th ed. Addison Wesley

Temperature



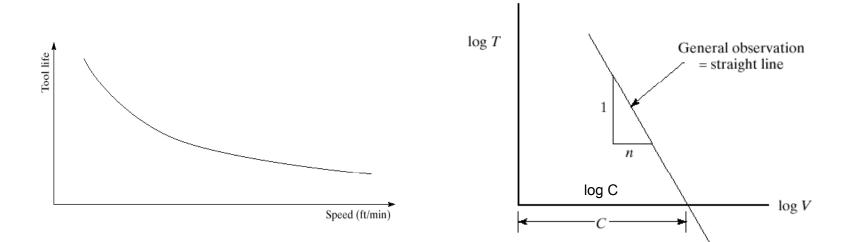
Ref. S. Kalpakjian, "Manufacturing Processes for Engineering Materials", 3rd/4th ed. Addison Wesley

Tool wear (공구마멸)

- Flank wear
- Crater wear
- Chipping

Face

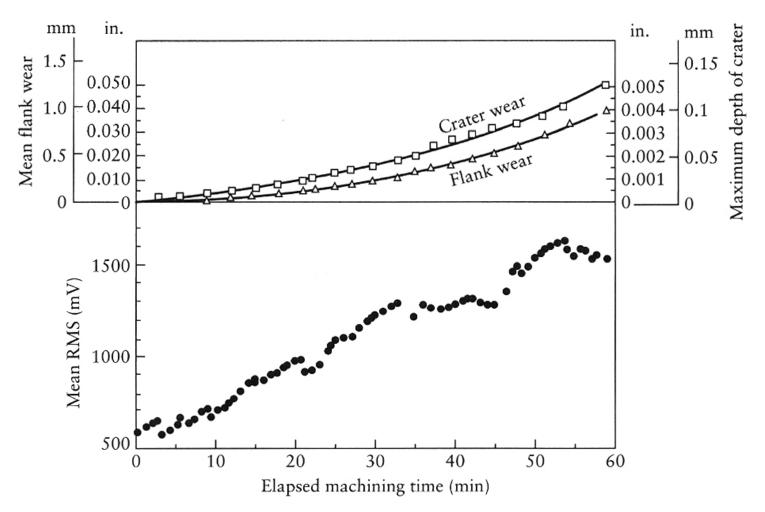
Chip


Flank wear

F. W. Taylor's tool life equation

 $VT^n = C$ $\log V = \log C - n \log T$

 $n(\text{HSS}) = 0.15, \quad V = 50 \text{m/min}$ $n(\text{Tungsten Carbide}) = 0.25, \quad V = 70 \text{m/min}$



Tool condition monitoring

FIGURE 8.26

Relationship between mean flank wear, maximum crater wear, and acoustic emission (noise generated during cutting) as a function of machining time. This technique is being developed as a means for monitoring wear rate in various cutting processes without interrupting the operation. *Source*: After M. S. Lan and D. A. Dornfeld.

Surface finish

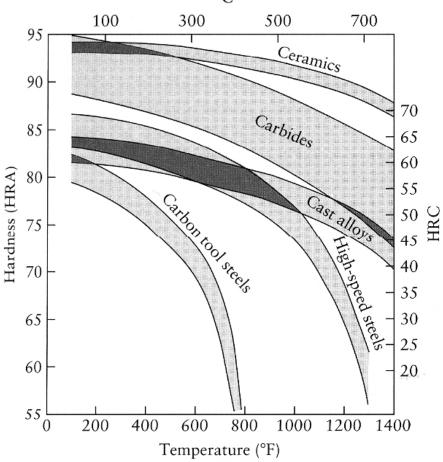
					-									
Process	μm $\mu in.$	50 2000	25 1000	12.5 500	6.3 250	3.2 125	1.6 63	0.8 32	0.40 16	0.20 8	0.10 4	0.05 2	0.025 1	0.0 0
Flame cutting										A	verage a	pplicat	ion	
Snagging (coarse grind Sawing Planing, shaping	ding)												plication	l
Drilling Chemical machining Electrical-discharge m Milling	nachinir	ng												
Broaching Reaming Electron-beam machin Laser machining Electrochemical mach														
Turning, boring Barrel finishing														
Electrochemical grind Roller burnishing Grinding Honing	ing				-									
Electropolishing Polishing Lapping Superfinishing														

Roughness (Ra)

FIGURE 8.27 Range of surface roughnesses obtained in various machining processes. Note the wide range within each group. (See also Fig. 9.27).

Ref. S. Kalpakjian, "Manufacturing Processes for Engineering Materials", 3rd/4th ed. Addison Wesley

Machinability (절삭성)

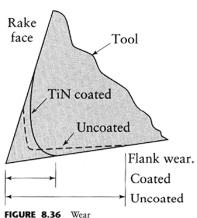


- Surface finish & integrity
- Tool life
 - Machinability rating: cutting speed per 60min, e.g. 100 → 100ft/min (0.5m/s)
- Force and power requirements
- Chip control
- Free-machining steel (쾌삭강)
 - Steel with : lead, bismuth, sulfur, calcium
- Easy to machine : aluminum, brass, magnesium
- Difficult to machine : wrought-copper, titanium, tungsten

Cutting-tool materials

°C

- Carbon steels
- High Speed Steels (HSS, 고속도강)
 - (M and T series)
- Cast cobalt alloys
- Carbides (초경합금)
 - WC (tungsten carbide)
 - TiC (titanium carbide)
- Inserts
 - Easy to replace tools


FIGURE 8.31 Hardness of various cutting-tool materials as a function of temperature (hot hardness). The wide range in each group of materials results from the variety of tool compositions and treatments available for that group.

Ref.

S. Kalpakjian, "Manufacturing Processes for Engineering Materials", $3^{\rm rd}\!/4^{\rm th}$ ed. Addison Wesley

Coated tool (피복공구)

- TiN, TiC, TiCN
- Al₂O₃(알루미나)
- Diamond
- Ion implantation
- **Multiphase**

patterns on high-speed-steel uncoated and titaniumnitride-coated tools. Note that flank wear is lower for the coated tool.

coatings on a tungstencarbide substrate. Three

alternating layers of

aluminum oxide are

of titanium nitride. Inserts

coatings have been made.

Coating thicknesses are typically in the range of

2-10 µm (80-400 µin.). Source: Courtesy of

Society of Manufacturing

Kennametal, Inc., and

Engineers.

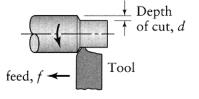
FIGURE 8.37 Multiphase TIN TIC,N Al₂O₃ separated by very thin layers TIN with as many as 13 layers of A120. Manufacturing Engineering,

Ref. S. Kalpakjian, "Manufacturing Processes for Engineering Materials", 3rd/4th ed. Addison Wesley

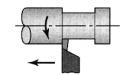
Cutting Processes

TABLE 8.7

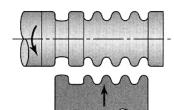
Process	Characteristics	Commercial tolerances (±mm)		
Turning	Turning and facing operations are performed on all types of	Fine: 0.05–0.13		
	materials; requires skilled labor; low production rate,	Rough: 0.13		
	but medium to high rates can be achieved with turret lathes and automatic machines, requiring less skilled labor.	Skiving: 0.025-0.05		
Boring	Internal surfaces or profiles, with characteristics	0.025		
	similar to those produced by turning; stiffness of boring bar is important to avoid chatter.			
Drilling	Round holes of various sizes and depths; requires	0.075		
	boring and reaming for improved accuracy; high			
	production rate, labor skill required depends on hole			
	location and accuracy specified.			
Milling	Variety of shapes involving contours, flat surfaces,	0.13-0.25		
	and slots; wide variety of tooling; versatile; low to			
	medium production rate; requires skilled labor.			
Planing	Flat surfaces and straight contour profiles on large	0.08-0.13		
	surfaces; suitable for low-quantity production; labor			
c1 ·	skill required depends on part shape.			
Shaping	Flat surfaces and straight contour profiles on relatively	0.05-0.13		
	small workpieces; suitable for low-quantity production;			
Broaching	labor skill required depends on part shape. External and internal flat surfaces, slots, and contours	0.025-0.15		
Broaching	with good surface finish; costly tooling; high	0.023-0.13		
	production rate; labor skill required depends on part shape.			
Sawing	Straight and contour cuts on flats or structural shapes;	0.8		
Jawing	not suitable for hard materials unless the saw has carbide	0.8		
	teeth or is coated with diamond; low production rate;			
	requires only low labor skill.			

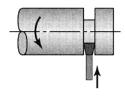


Ref.


S. Kalpakjian, "Manufacturing Processes for Engineering Materials", $3^{rd}/4^{th}$ ed. Addison Wesley

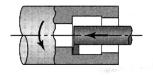
Lathe-round shape

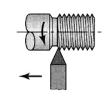


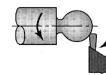

(a) Straight turning

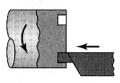
(d) Turning and external grooving

(g) Cutting with a form tool

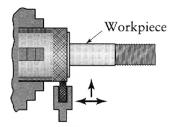

(j) Cutting off

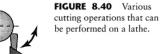

(b) Taper turning


(e) Facing

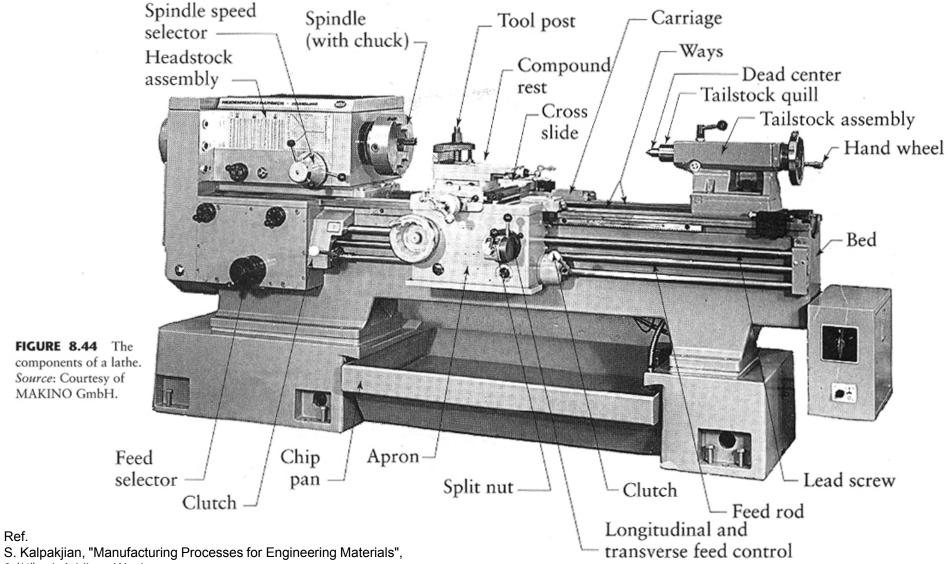

(h) Boring and internal grooving


(k) Threading


(c) Profiling

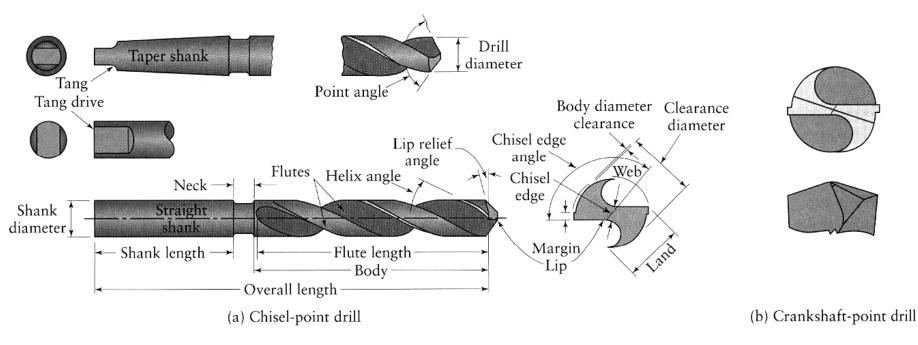

(f) Face grooving

(i) Drilling



(1) Knurling
Ref.
S. Kalpakjian, "Manufacturing Processes for Engineering Materials", 3rd/4th ed. Addison Wesley

Lathe components



3rd/4th ed. Addison Wesley

Ref.

Drill

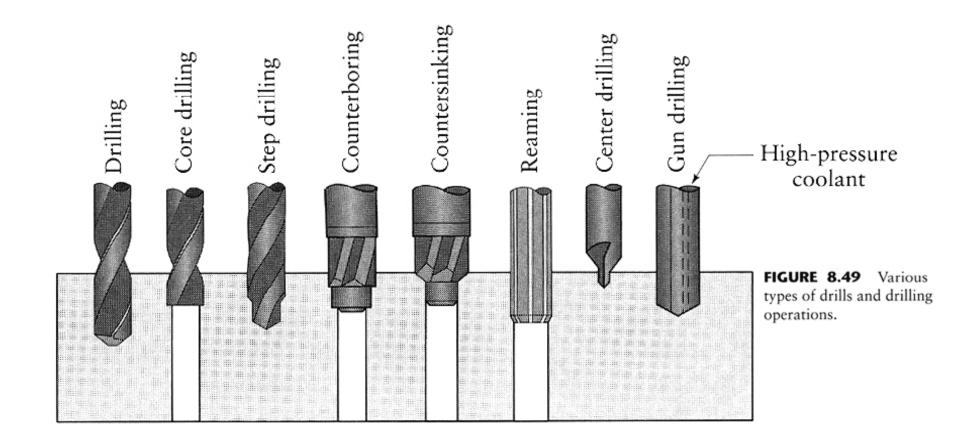
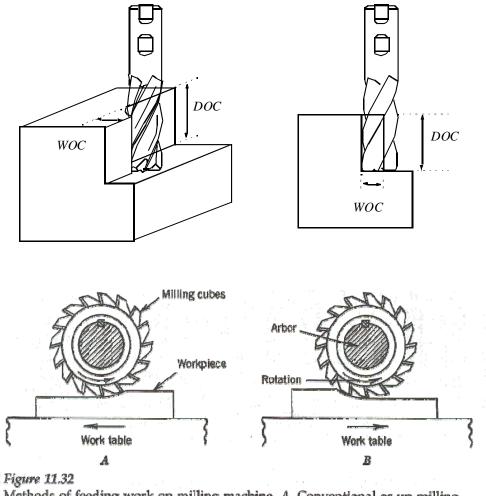
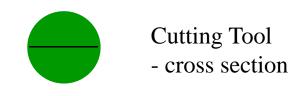


FIGURE 8.48 (a) Standard chisel-point drill, with various features indicated. (b) Crankshaft-point drill.


Drilling operations

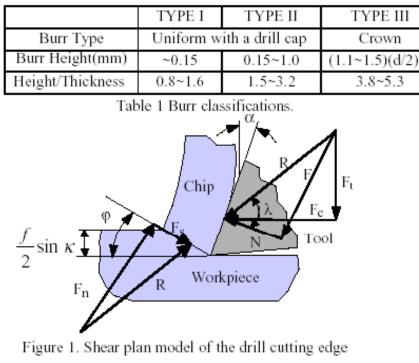
Milling

- Depth of Cut (DOC)
- Width of Cut (WOC)
- Slab milling (평밀링)
- Conventional Milling (up milling, 상향절삭)
 - Recommended, clean surface before machine
- Climb Milling (down milling, 하 향절삭)
 - Efficient cut (larger chip)
 - Less chatter
 - Production work



Methods of feeding work on milling machine. *A*, Conventional or up milling. *B*, Climb or down milling.

Material removal by milling


- Cutting speed (m/min)
 - V = πDN
 - (D : diameter of cutter(m), N : rotational speed of the cutter(rpm))
- Material Removal Rate (MRR)
 - MRR = WOC * DOC * f
 - f = feed rate (mm/min) = n * N * t

- Example
 - V = 50 m/min, t = 0.1 mm/tooth, number of tooth (n)= 2,
 - D = 4 mm, DOC = 0.2, WOC = 3, Cutter RPM (N) = $50000/(\pi x^4) = 3979$
 - f = 2 *3979 * 0.1 = 796 mm/min, MRR = 3* 0.2 * 796 = 4776 mm³/min

Burr Formation

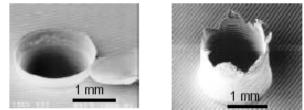
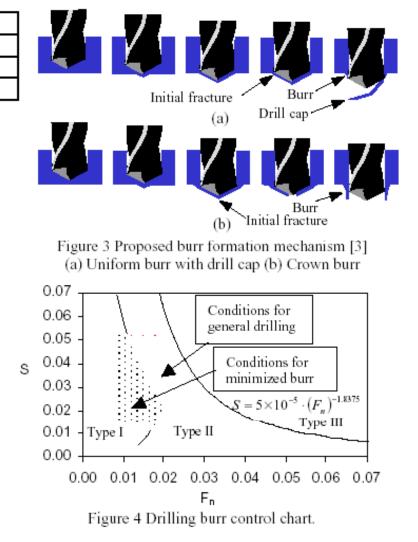
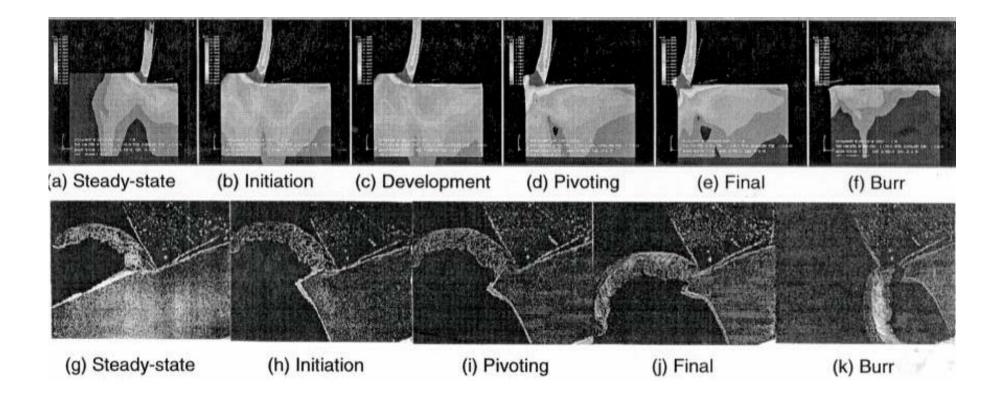



Figure 2 Two types of drilling burr of stainless steel (a) Uniform burr with drill cap (b) Crown burr


http://lma.berkeley.edu/tools

FEM Simulation

- Demo: EMSIM
- http://mtamri.me.uiuc.edu/testbeds/emsim/html/index2.shtml

Cost Estimation

The cost to produce each component in a batch is given by

$$C_{\text{PER PART}} = WT_L + WT_M + WT_R \left[\frac{T_M}{T}\right] + y \left[\frac{T_M}{T}\right]$$
(7.16)

In this equation, the symbols include

- W = the machine operator's wage plus the overhead cost of the machine.
- WT_L = "nonproductive" costs, which vary depending on loading and fixturing.
- WT_M = actual costs of cutting metal.
- WT_R = the tool replacement cost shared by all the components machined. This cost is divided among all the components because each one uses up T_M minutes of total tool life, T, and is allocated of $\frac{T_M}{T}$ of WT_R .
- Using the same logic, all components use their share $\frac{T_M}{T}$ of the tool cost, y.

Ref. S. Kalpakjian, "Manufacturing Processes for Engineering Materials", 3rd/4th ed. Addison Wesley

Turning conditions

TABLE 8.8

Approximate Ranges of Recommended Cutting Speeds for Turning Operations

	CUTTING SPEED						
WORKPIECE MATERIAL	m/min	ft/min					
Aluminum alloys	200-1000	650-3300					
Cast iron, gray	60–900	200-3000					
Copper alloys	50-700	160-2300					
High-temperature alloys	20-400	65-1300					
Steels	50-500	160-1600					
Stainless steels	50-300	160-1000					
Thermoplastics and thermosets	90-240	300-800					
Titanium alloys	10-100	30-330					
Tungsten alloys	60-150	200-500					

Note: (a) The speeds given in this table are for carbides and ceramic cutting tools. Speeds for high-speed-steel tools are lower than indicated. The higher ranges are for coated carbides and cermets. Speeds for diamond tools are significantly higher than any of the values indicated in the table. (b) Depths of cut, d, are generally in the range of 0.5-12 mm (0.02-0.5 in.).

(c) Feeds, f, are generally in the range of 0.15-1 mm/rev (0.006-0.040 in./rev).

Ref. S. Kalpakjian, "Manufacturing Processes for Engineering Materials", 3rd/4th ed. Addison Wesley

Drilling conditions

TABLE 8.10

		RFACE PEED	FEED, mm/ DRILL DI	rev (in./rev) AMETER	RPM		
WORKPIECE MATERIAL	m/min	ft/min	1.5 mm (0.060 in.)	12.5 mm (0.5 in.)	1.5 mm (0.060 in.)	12.5 mm (0.5 in.)	
Aluminum alloys	30-120	100-400	0.025 (0.001)	0.30 (0.012)	6400-25,000	800-3000	
Magnesium alloys	45-120	150-400	0.025 (0.001)	0.30 (0.012)	9600-25,000	1100-3000	
Copper alloys	15-60	50-200	0.025 (0.001)	0.25 (0.010)	3200-12,000	400-1500	
Steels	20-30	60-100	0.025 (0.001)	0.30 (0.012)	4300-6400	500-800	
Stainless steels	10-20	40-60	0.025 (0.001)	0.18 (0.007)	2100-4300	250-500	
Titanium alloys	6-20	20-60	0.010 (0.0004)	0.15 (0.006)	1300-4300	150-500	
Cast irons	20-60	60-200	0.025 (0.001)	0.30 (0.012)	4300-12,000	500-1500	
Thermoplastics	30-60	100-200	0.025 (0.001)	0.13 (0.005)	6400-12,000	800-1500	
Thermosets	20-60	60-200	0.025 (0.001)	0.10 (0.004)	4300-12,000	500-1500	

Note: As hole depth increases, speeds and feeds should be reduced. Selection of speeds and feeds also depends on the specific surface finish required.

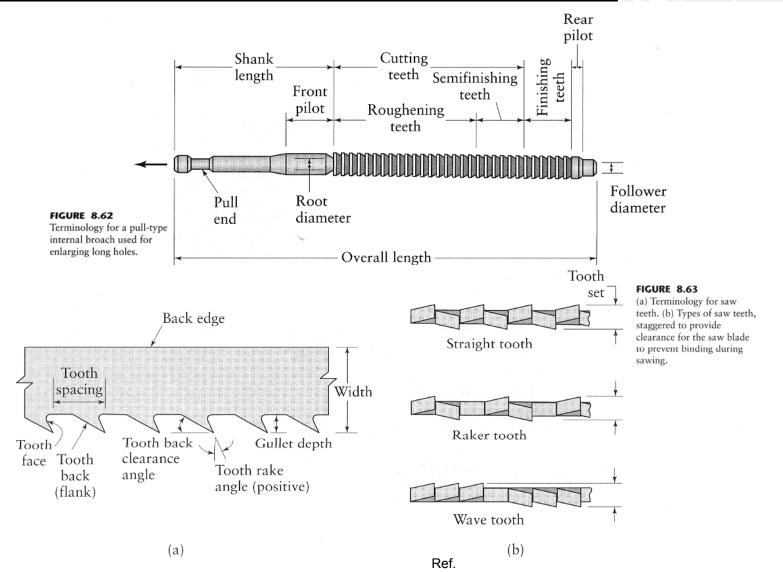
Ref. S. Kalpakjian, "Manufacturing Processes for Engineering Materials", 3rd/4th ed. Addison Wesley

Milling conditions

TABLE 8.11

Approximate Range of Recommended Cutting Speeds for Milling Operations

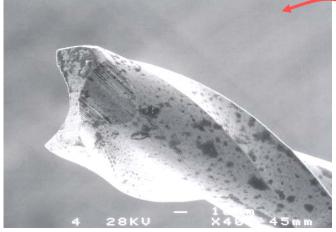
	CUTTING SPEED					
WORKPIECE MATERIAL	m/min	ft/min 1000–10,000				
Aluminum alloys	300-3000					
Cast iron, gray	90-1300	300-4200				
Copper alloys	90-1000	300-3300				
High-temperature alloys	30-550	100-1800				
Steels	60-450	200-1500				
Stainless steels	90-500	300-1600				
Thermoplastics and thermosets	90-1400	300-4500				
Titanium alloys	40-150	130-500				


Note: (a) These speeds are for carbides, ceramic, cermets, and diamond cutting tools. Speeds for high-speed-steel tools are lower than those indicated in this table.

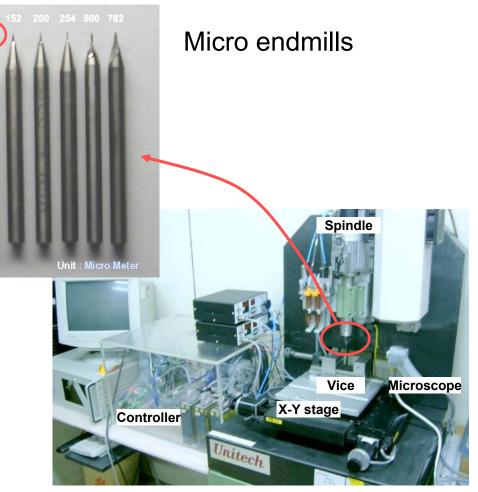
(b) Depths of cut, d, are generally in the range of 1–8 mm (0.04–0.3 in.).

(c) Feeds per tooth, f, are generally in the range of 0.08-0.46 mm/rev (0.003-0.018 in./rev).

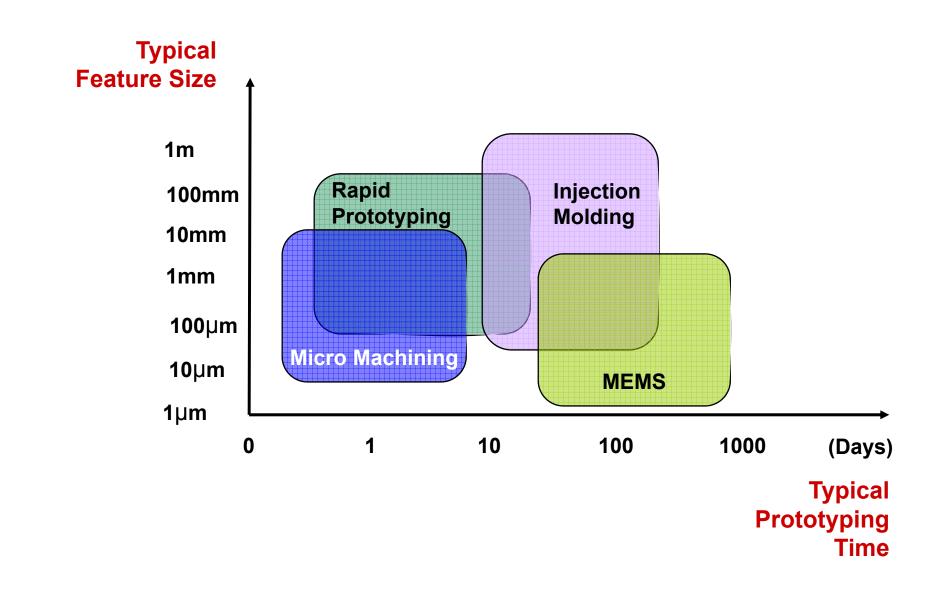
Ref. S. Kalpakjian, "Manufacturing Processes for Engineering Materials", 3rd/4th ed. Addison Wesley


Broaching(브로칭) & Sawing(톱작업)

S. Kalpakjian, "Manufacturing Processes for Engineering Materials", 3rd/4th ed. Addison Wesley

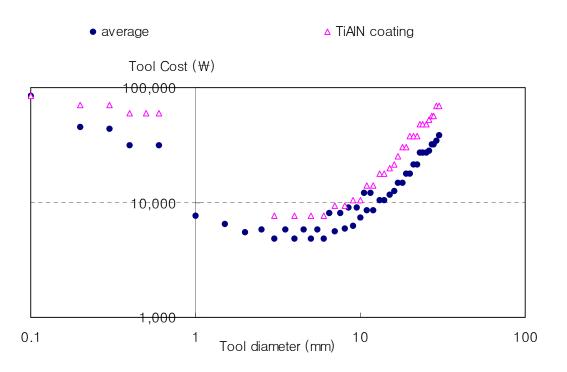

Micro Machining System

Tip of 127µm endmill


- Positional resolution : 1 µm
- Tool diameter : 50 µm~1000 µm
- High speed : 46,000 RPM
- Tool material : HSS & TiN coating
- Work piece : Metal, Polymer, etc

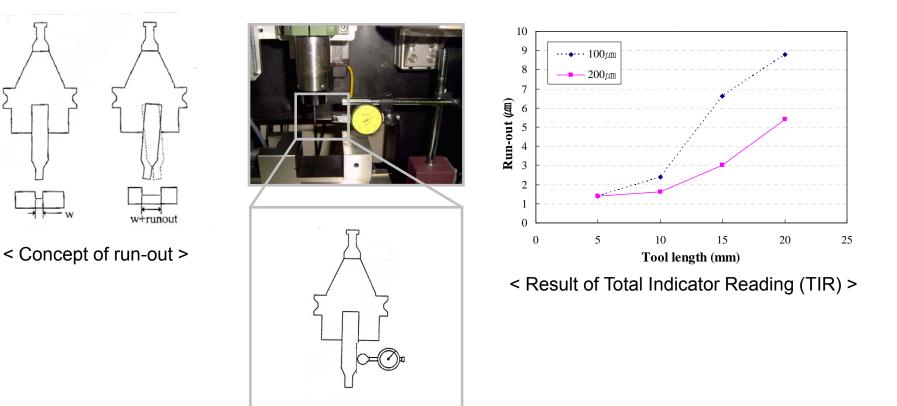
Precision stage

Prototyping Size & Time


DFM - Micro Milling

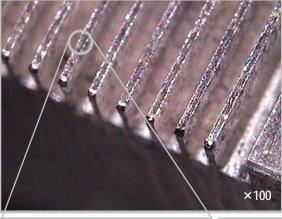
- 10mm endmill
 - 10µm stage error
 - 0.1% for slot cutting
- 100µm endmill
 - 10µm stage error
 - 10% for slot cutting

- Cost structure of micro machining is different from that of macro machining.
 - Tool cost dominates


A tip is not exact edge in micro scale

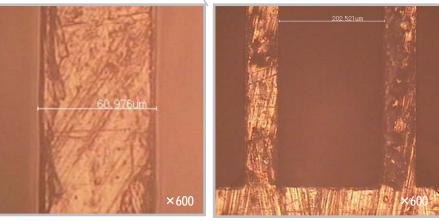
Spindle run-out

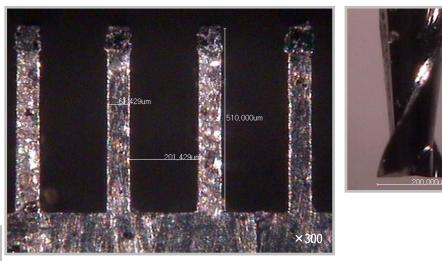
- Run-out effect on the final geometry is critical in micro machining
- Total run-out = TIR (Total Indicator Reading) + Error Terms (vibration, thermal deformation, etc)



< Total Indicator Reading (TIR) Measurement >

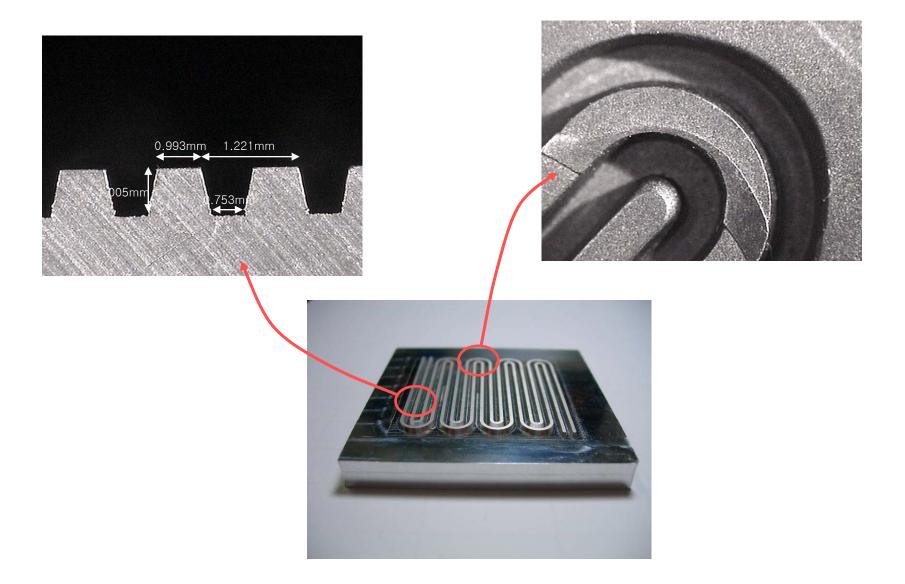
Micro walls


300

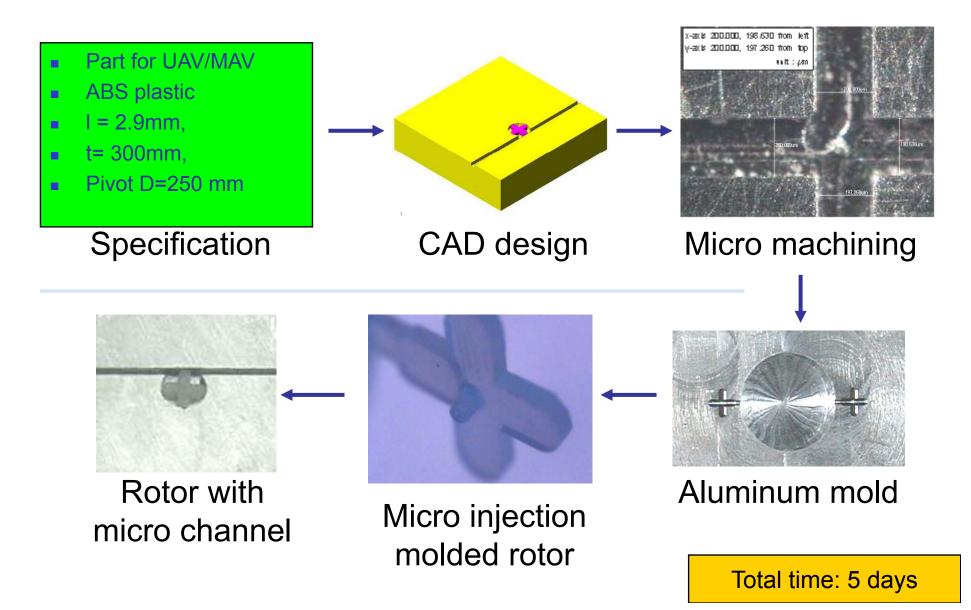

Barrier ribs

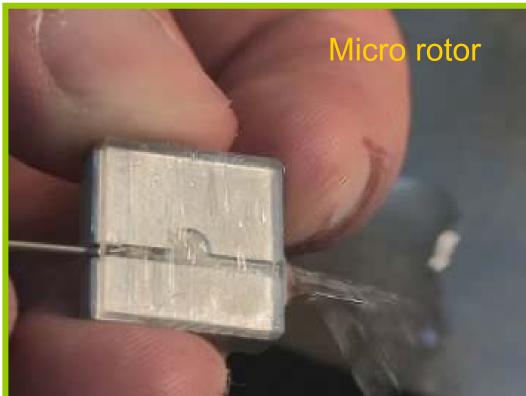
Rib width: 60,μm Height: 500,μm Tool: φ200,μm

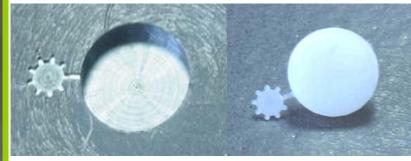
Spindle: 24,000rpm DOC: 25,µm Feed rate: 100,µm/s Time: 3hr 28min

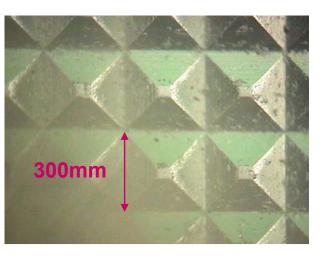


Geometric error: ~ 5 μ m (including error of microscope)


Micro machined mold

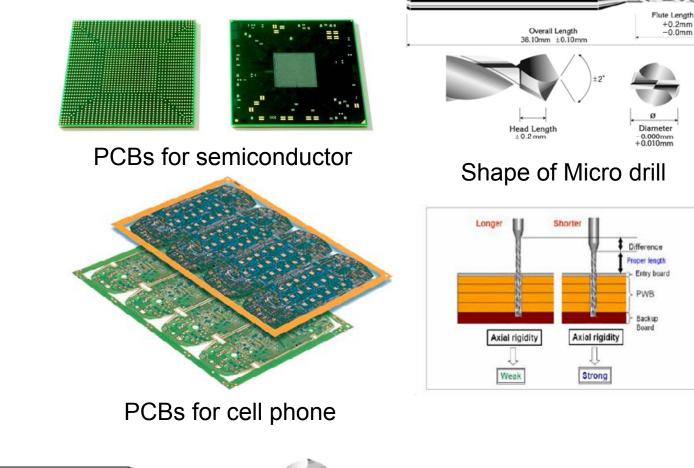

From Concept to Part


More Meso/Micro Parts



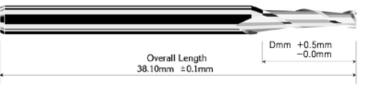
Freeform surface

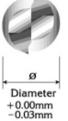
3mm


Micro molding (ABS)

Micro pyramid

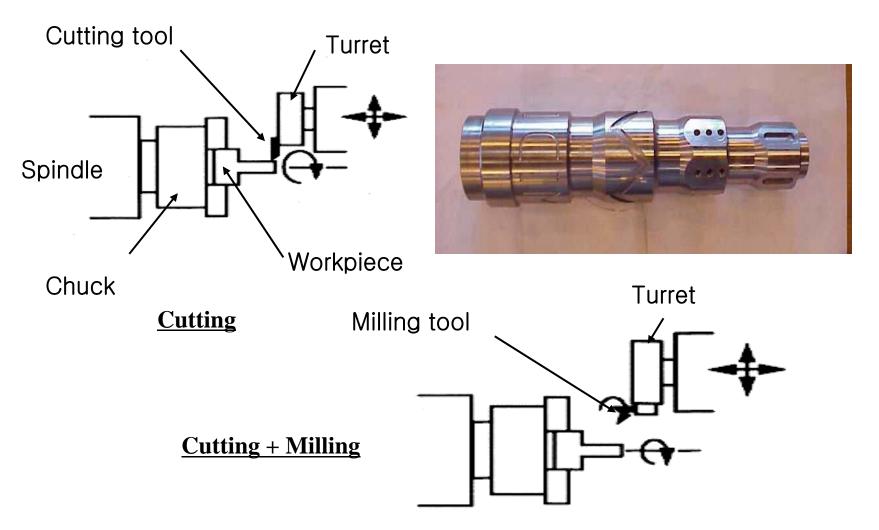
Micro Tools


Drill

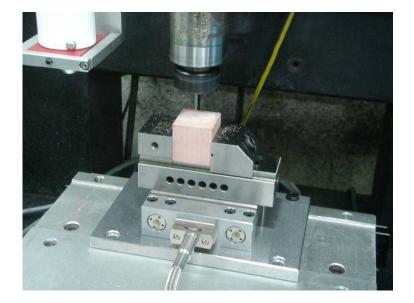


10 60

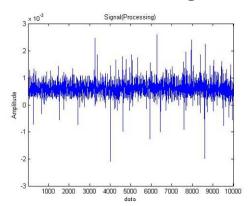
+0.2mm -0.0mm



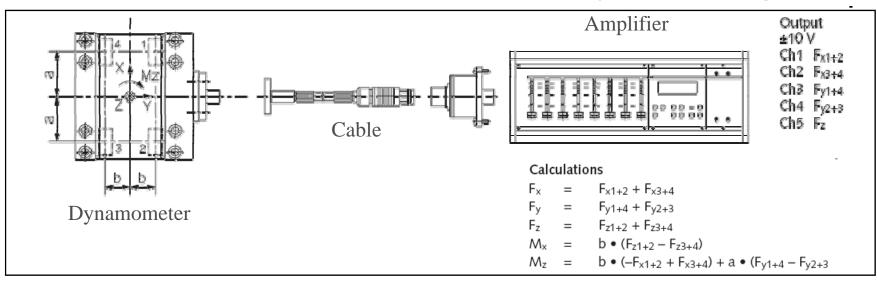
CNC Lathe



 CNC lathe can achieve multi-functional machining using attached milling turret, sub-spindle, etc.



Dynamometer (공구동력계)



Measured Signal

The whole system configuration

