Midterm review I

Genetic molecules: DNA & RNA

	DNA (deoxyribonucleic acid)	RNA (ribonucleic acid)
Sugar	deoxyribose	ribose
Strand	double-stranded	single-stranded
Base	adenine (A), thymine (T), guanine (G), cytosine (C)	adenine (A), uracil (U), guanine (G), cytosine (C)
Function	Long-term storage and transmission of genetic information	Transfer the genetic code from DNA to ribosomes to make proteins

Classification of bacteria

- Gram positive vs. negative
- Phototrophs vs. chemotrophs
- Organotrophs vs. lithotrophs
- Autotrophs vs. heterotrophs
- Aerobes vs. anaerobes
 - Obligate anaerobes
 - Aerotolerant anaerobes
 - Obligate aerobes
 - Facultative aerobes

- Enzyme reactivity: Michaelis-Menten eq.
 - Based on theoretical analysis of enzyme reactivity
 - Enzyme reaction as two steps:

$$E + S \underset{k_{-1}}{\overset{k_1}{\rightleftharpoons}} ES$$

$$ES \xrightarrow{k_2} E + P$$

Assumption: the enzyme complex (ES) does not change with time

$$k_1[S][E] = k_{-1}[ES] + k_2[ES]$$

 $[E]_{total} = [E] + [ES]$

$$v = \frac{v_m[S]}{K_M + [S]}$$

$$v_m = k_2[E]_{total}$$

$$k_{-1} + k_2$$

- Inhibitions
 - Reversible vs. irreversible
 - Reversible inhibitions
 - Competitive inhibition: *E* + *I* = *EI*
 - Noncompetitive inhibition
 - Uncompetitive inhibition: ES + I = ESI
 - Mixed noncompetitive inhibition: ES + I = ESI and E + I = EI

Q: Another type of reversible inhibition, occurring less frequently, is the product inhibition where the product (*P*) combines with the enzyme-substrate complex (*ES*) to form enzyme-substrate-product complex (*ESP*). Assuming that the ESP concentration does not change with time, analyze the enzyme reactivity under product inhibition and effect of the inhibition on Michaelis-Menten parameters.

Writing half reactions

- **Step 1** Write oxidized form on the left and reduced form on the right
- **Step 2** Add other species involved in the reaction
- **Step 3** Balance the reaction for all elements except for oxygen and hydrogen
- **Step 4** Balance oxygen using water
- Step 5 Balance hydrogen using H⁺
- Step 6 Balance charge using e
- **Step 7** Convert the equation to the e⁻-equivalent form

Writing overall reactions

Step 1 Obtain half-reactions for an electron donor (R_d) , electron acceptor (R_e) , and cell formation (R_c)

Step 2 Obtain f_s and f_e

Step 3 Calculate overall reaction by $R = f_e R_a + f_s R_c - R_d$

Q: Write the overall reaction for acetogenesis using hydrogen as an electron donor. Assume $f_s = 0.10$.

Microbial kinetics

- True yield, Y
 Y = (g cells produced) / (g substrate utilized)
- Net yield, Y_n (term generally used for a batch reactor) $Y_n = (g \text{ net cell growth}) / (g \text{ substrate utilized})$
- Observed yield, Y_{obs} (term used for any reactor) Y_{obs} = (g cell growth observed in a reactor) / (g substrate utilized used in a reactor)

Microbial kinetics

• Basic concept:
$$\frac{dX_a}{dt} = Y\left(\frac{-dS}{dt}\right) - bX_a$$

- Monod equation
 - In the form of microbial growth

$$\mu_{syn} = \left(\frac{1}{X_a} \frac{dX_a}{dt}\right)_{syn} = \hat{\mu} \frac{S}{K + S}$$

In the form of substrate utilization

$$r_{ut} = \frac{dS}{dt} = -\frac{\hat{q}S}{K+S} X_a$$

Microbial kinetics in reactors

Batch reactor

$$\frac{dS}{dt} = -\frac{\hat{q}S}{K+S} \left[X_a^0 + Y \left(S^0 - S \right) \right]$$

Plug flow reactor (PFR)

- No longitudinal mixing, complete transverse mixing
- Batch reactor moving in the direction of flow

$$u\frac{dS}{dz} = -\frac{\hat{q}S}{K+S} \left[X_a^0 + Y(S^0 - S) \right]$$

Microbial kinetics in reactors

Continuous-stirred tank reactor (CSTR)

Complete mixing with constant flow

$$S = K \frac{1 + b\theta}{Y\hat{q}\theta - (1 + b\theta)}$$

$$X_a = Y \frac{S^0 - S}{1 + b\theta}$$

Microbial kinetics in reactors

Q: Calculate the effluent substrate and active biomass concentration of a bioreactor operated as a CSTR when the influent substrate concentration is 100, 1000, and 10000 mg BOD_L/L. The reactor volume is 1000 m³ and the flow rate is 250 m³/hr. Use typical values of Y=0.42 g VSS/g BOD_L , \hat{q} =20 g BOD_L /g VSS-d, K=100 mg BOD_L /L and b=0.15 d⁻¹ for aerobic degradation of typical organic matter.