
Chapter 4. Statics of Plate 

 

o Classical Linear Theory of Plate 

o Plane stress and Plane strain 

o Equations of Equilibrium and Boundary Conditions 

- Equilibrium Approach 

- Minimum Potential Energy Approach-Thin plate 

 o Solution methods 

   etc 



Basic Assumptions 

~In the initial state, the surfaces of a flat plate are parallel planes, 

 called the faces of the plate  

~The distance between the faces is called the thickness of the plate.  

~A plate is distinguished from a block by the fact that the thickness is small 

compared to the dimensions paralled to the faces.  

~The plane midway between the faces is called the middle plane of the plates 

~The bending properties of plate depend greatly on its thickness as compared 

with its other dimensions.  

 

:We will discuss the linear static theory of thin elastic plate in this chapter. 

   ~ shell ? membrane ? plate ? 



4.1 Classical linear theory of plate 

   Definition of small deformation : :1
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Decoupled set of Bending and stretching ~  Isotropic material 

    ~ Homogeneous materials 

    ~ Isotropic or Anisotropic(Composite) 

    ~ Thick plate : 1 1
/ ~
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/
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    ~ Loading :  

o Bending action ~ deflection 

o Membrane action~stretching 

Configuration of curved surface ~ 



 

  Displacements : 

   ~ ( 1 , 2 ) ,( , ) , ( , ) , ( , )u wu x y v x y w x y    

   : In-plane displacements ,u v  ~ deflection w  

      

3-Dimensional linear elasticity 

  ,i j j jq 
 

For plate bending problem, let
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with boundary conditions ! 

 

4-1-1 Kinematics of Deformation  

 

The fundamental assumptions of the small deflection theory of bending or so 

called classical theory of isotropic homogeneous elastic thin plate 

; Kirchhoff – Love hypothesis material property change 

 

Kinematic Assumptions 



1. Deflection of mid-surface is small compared with the thickness of the plate. 

: Slope of the deflected surface is very small and the square of the slope is a 

negligible quantity in comparison with unity 

2.The mid-plane remains unstrained subsequent to bending  

# Large deflection case ? 

3. Plane sections initially normal to surface remains plane and normal to that 

surface after the bending : 0( 1,2)~ ~
z

G

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 Before bending ~> After bending ? 

 

? Higher-order theory 

? Thick plate theory ~ Mindlin plate theory 

 



4. No stretching or contraction of normal : 0
zz
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5.The stress normal to the mid-plane, :
zz

small  compared with the other stress 

components and may be neglected  

 

: This assumption becomes unreliable in the vicinity of highly concentracted 

transverse loads. 

 

  

0 1 2 2

0 1 2 2

3 3 3 3

( , ) ( , ) ( , ) ( , ) . . .

0

( , ) ( , ) ( , ) ( , ) . . .3
0

( , , ) ( , )

( , , ) ( , )

m m

m m

m m
u x y z u x y u x y z u x y z

m

m m
u x y z u x y u x y z u x y z

m

u x y z u x y z

w x y z u x y z

   
   



   



 

 
 

~ order of thickness effects ! 
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 Shear modulus : 

 Composite layered plate ? 

 

6. Developable surface  

  This type of surface can be bent back to a plane without any variation in the 

distance between any two points on the surface. 

Under these assumptions for thin plate, 
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4-1.2. Plane stress and Plane strain 

 For 3 D elasticity theory: 
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Plane stress field for kinematic assumptions of  
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 (i) Thin flat plate 

  (ii) Applied load are acting on the xy
 
surfaces and do not vary 

across the thickness. 

(iii) Upper and lower surface are stress free 0
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through thickness. 

(iv)   
do not vary across the thickness 



Plane strain 

Dimension of z >> dimension of x,y 
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4-1.3. Equation of Equilibrium & Boundary Conditions 

 

3D ~> plate theory ? 

   

     3 :x
 Elimination of explicit dependency ! 

 



Stress, Moment resultants 
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According to basic assumptions and plane stress assumption, 
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     Total number of independent displacement components ? 
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A . Equilibrium Approach  

 

3-D elasticity (without body force) 
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   Model ! 
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(c) 
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Substitute Eq.(b) into Eq.(c) 
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  Equations may be coupled set. 

 

For isotropic plate,  



Membrane stretching effect and Bending effect: Decoupled 

 

Mid-plane ?   

 

For rectangular plate: 

  Obtain stress field in terms of strain components 

  Obtain N,M in terms of u,v,w 

… 

 

then, ; 

 

 Bending problem; 4
th

 order eqn.( Hermite approximation:C
1 
continuity) 
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 B. Minimum Potential Energy Approach  

 

~ Strain energy of entire plate with linear elastic behavior  
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Potential energy for the external load  
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Total potential energy  
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Integrating by part with respect to z:  

 

(~ Extensional energy + Bending Energy ! ) 
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 : Decoupling ! ? 

Obtain the expression & govering eqn for  (Report !) 



We shall be concerned with the stresses and moments in plates as a result of 

transverse loadings of bending part 
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To extremize this functional, we get  
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Using Green’s formula(Report!) 

 

4( ) ..... 0D w q w dA D      

 

Introducing the moment intensity, then the above equation becomes(Report) 
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We may rewrite the last two integrals in terms of shear force intensities. 

 

We then have ( Report ) 
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To simplify this functional further, let introduce the coordinate n, s which are 

the normal and tangential directions to contour, respectively. 

Then ( Report )… 

 

4( ) . 0nn ns n

w w
D w q w dxdy M ds M ds Q wds

n s

 
 

 
     

    
 

 

 

The 3
rd

 integral becomes, by integration by parts 
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We then get for the variation of the total potential  

 

4( ) ( ) 0ns
nn n

Mw
D w q w dA M ds Q wds

n s


 


     

     

 

Euler-Lagrange equation for this problem is 

                                         
4D w q   

 Report :Derive the governing equation with with variable bending rigidity 



 

which have been derived in previous section.  Now we get as a result of the 

variational process two sets of boudary conditions, namely, the natural and the 

kinematic bound conditions. 

 

Then on the boundary we require that 
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There are only 2 conditions, in spite of the fact the there 3 variables  
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The 1
st
 condition is acceptable by physical consideration and needs no 

further comment.  

We shall now examine the 2
nd

 condition with the view reaching some 

physical explanation. :  

We have shown part of the edge of the plate when two panels of length S  

have been identified. 

                        _ Figure_ 

 

The twisting moments have been expressed in the first and second panel. A 

third panel of length S  may be imagined the center of two panels, which is 

shown in Fig AB. The shear force for thin panel is shown as nQ S . 



 Now we make use of the Saint-Venant principle by replacing the twisting 

moment distribution of the original two panels by two couples having forces 

value nsM  and 
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M
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  respectively with a distance of S  between the 

forces as shown in the figure. 

Clearly,  any conclusion arising from the new arrangement valid away from 

the edege. Now we focus on attention on the central panel AB. The effective 

shear force intensity, effQ  for this panel is then seen to be 
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We may now say that the 2
nd

 of our natural boundary conditions renders the 

effective shear force intensity equation to zero. From the above equations we 

can see that the difference 
nsM

s




 does work in the same manner as nQ  and 

these two effect cannot distinguished. 

The force per unit length, 
nsM

s




 is called Kirchhoff supplementary force. 

This explanation is by Thomson and Tait.  

Because we employed a constitutive equation, Hook law, in the formulation it 

might seem that the natural boundary conditions are restricted to Hookean 

material.  

In the next section, no constitutive law is used and we will derive the general 

moment intensity and shear force intensity equations present in Sec.3.1.3.a 



 

4.1.3.c.(Thin Plate) Virtual work Approach (Rectangular plate) 

 

In using the principle of virtual work, we shall consider a rectangular plate.  

In particular we shall examine closely the corner condition for such a problem. 

We now apply the principle of virtual work, under the assumption of plane 

stress, to a rectangular plane having dimensions a b h   and loaded normal to 

the middle-plane of the plate by a loading intensity ( , )q x y .  

If body forces are absent, 
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Green’ theorem and integration by parts. 
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Now, integrate the last two integrate by part, then we obtain 
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Inserting these results and noting ~ .. ..Q derivative of M  , we get 
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We then get for the variation of the total potential  
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Euler-Lagrange equation for this problem is 

                                         
4D w q   

 Report :Derive the governing equation with variable bending rigidity 

 

which have been derived in previous section.  Now we get as a result of the 

variational process two sets of boudary conditions, namely, the natural and the 

kinematic bound conditions. 
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There are only 2 conditions, in spite of the fact the there 3 variables  
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The 1
st
 condition is acceptable by physical consideration and needs no 

further comment.  

We shall now examine the 2
nd

 condition with the view reaching some 



physical explanation. :  

We have shown part of the edge of the plate when two panels of length S  

have been identified. 

                        _ Figure_ 

 

The twisting moments have been expressed in the first and second panel. A 

third panel of length S  may be imagined the center of two panels, which is 

shown in Fig AB. The shear force for thin panel is shown as nQ S . 

 Use of the Saint-Venant principle : by replacing the twisting moment 

distribution of the original two panels by two couples having forces value nsM  

and 
ns

ns

M
M s

s


 

  respectively with a distance of S  between the forces as 



shown in the figure. 

Clearly,  any conclusion arising from the new arrangement valid away from 

the edege. Now we focus on attention on the central panel AB. The effective 

shear force intensity, effQ  for this panel is then seen to be 

                     

1
[ ( ) ]ns ns

eff n ns ns n

M M
Q Q S M S M Q

S s s

 
       
    

 

We may now say that the 2
nd

 of our natural boundary conditions renders the 

effective shear force intensity equation to zero. From the above equations we 

can see that the difference 
nsM

s




 does work in the same manner as nQ  and 



these two effect cannot distinguished. 

The force per unit length, 
nsM

s




 is called Kirchhoff supplementary force. 

This explanation is by Thomson and Tait.  

Because we employed a constitutive equation, Hook law, in the formulation it 

might seem that the natural boundary conditions are restricted to Hookean 

material.  

In the next section, no constitutive law is used and we will derive the general 

moment intensity and shear force intensity equations present in Sec.3.1.3.a 

 

4.1.3.c.(Thin Plate) Virtual work Approach (Rectangular plate) 

 

In using the principle of virtual work, we shall consider a rectangular plate.  



In particular we shall examine closely the corner condition for such a problem. 

We now apply the principle of virtual work, under the assumption of plane 

stress, to a rectangular plane having dimensions a b h   and loaded normal to 

the middle-plane of the plate by a loading intensity ( , )q x y .  

If body forces are absent, 

                         

2

0 0 0 0

2

h

a b a b

h

q wdxdy dxdy   



      

Considering only bending contribution, then by , ,

ou zw      ( thin plate 

assumption) 

we got  



     

2

0 0

2

,

h

a b

h

z w dxdydz  



  
0 0

0

a b

q wdxdy    

Integrate the 1
st
 integral w,r,t, z and use  ~M z  , then we get 

0 0

,

a b

M w dxdy   
0 0

0

a b

q wdxdy    

As in previous section, we decompose , , ,2( ) ( ) ( )xy xy yxw w w     and apply 

Green’ theorem and integration by parts. 

 



  

, , 0 , 0

0 0 0 0

, , 0 , , 0

0 0

, 0 , 0

0 0

( ) ( ) ] ( ) ]

( ) ] ( ) ]

( ( ) ] ( ( ) ] 0
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xx x yy y

b a
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xx x xy y yy y xy x

a b
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xy x xy y

M q wdxdy M w dy M w dx

M M w dy M M w dx

M w dx M w dy
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  

   

  

   

 

 
 

Now, integrate the last two integrate by part, then we obtain 

, 0 0 0 , 0

0 0

, 0

0

( ( ) ] [( ] ] ]

( ( ) ] ?

a a

b y b x a b

xy x xy y x xy x

b

a

xy y

M w dx M w M w dx
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  



 
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Inserting these results and noting ~ .. ..Q derivative of M  , we get 



, , 0 , 0

0 0 0 0

, 0 , 0

0 0

, 0, ,0 0,0

( ) ( ) ] ( ) ]

( ) ] ( ) ]

2( ) 2( ) 2( ) 2( )
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a b b a

a b

xx x yy y
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x xy y y xy x
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M q wdxdy M w dy M w dx

Q M w dy Q M w dx

M w M w M w M w
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   

  

   

   



   

 
 

 

Now we get from the above eqn, 

, 0M q   
 

~ Identical to the eqn by equilibrium approach ! valid for all mterials 

 

On the boundary, 



1)  0 x a   

          
0 . . . . , rx x xM o r w p e s c r i b e d 

 

          

, 0 . . . . rx x y yQ M o r w p e s c r i b e d  
 

2)  0 y b   

   ~~~~ 

 

Results: Same boundary conditions are appears as in Minimum total 

potential energy.  

 

Corner conditions ? 



 

A Note on the Validity of the Classical Plate Theory 

 

Now we have discussed fully for the classical theory of plate. 

It seems to be the time to note the validity of the theory which we  

have used the assumption of plane stress in the plate. By establishing  

the order of magnitude of the stresses we can make comparisons as  

follows. The transverse shears z  are smaller by an order of h/L  

( L: characteristic length of the middle plane) than the middle plane  

shear ( )   . Also the transverse normal stress zz  is smaller by  

an order (h/L)
2
 than the middle plane normal stresses ( )( )   Thus  



for a very thin plate h/L<<1/10, we have inner consistency and the  

classical plate theory may be expected to give good results. 

 

For a moderately thin plate, especially in the vicinity of concentrated  

loads it might be well to account for the effects of transverse shear  

deformation. 

 

It is obvious from the equilibrium considerations that such stresses  

will seldom be zero. Accordingly, we used assurance that the classical  

plate theory, under proper conditions, yield meaningful results. 

 



There are two approaches: 

1. Compare with the results from a more exact theory  

~ Theory of elasticity 

2. Determine the bounds on the magnitude of stresses 3i  that have 

been deleted from the theory to show that these stresses, although 

not zero, are nevertheless small compared to the stressesw. 

 

In view of the scarcity of the exact solutions for plate bending 

problem from 3-dimensional theory of elasticity, we shall follow the 

latter procedure. 

 

For this purpose,  
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 Remember : , , ,

1 1
~ ~ ( , ) ~ ( , )

2 2

o ou u u u zw            

 

             ..xx xxM zdz etc   
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xx yy xy

M z

h
    
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 
 

 

Now we use the stresses in the 3-D equilibrium equations 

 

   , 3ij j q   

 

, , ,0 ~ 0
xyxx xz

xx x xy y xz z
x y z

 
  

 
     

    

 



                 

, , ,
3 3
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12 12

xz z xx x xy y x

z z
M M Q

h h
     

   
   
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Integrating w.r.t z 
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3

2
( , ) ~ : : 0

2
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3
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~ ... ~ ...

xz x xz
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h
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     Inserting ,xz yz   into the third equation 

, , ,

2 2

, ,2 2

~

3 4 3 4
(1 )( ) (1 )

2 2

yzxzzz
zz z xz x yz y

x x y y

z x y

z q z
Q Q

h h h h
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  
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     

  

        
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h h
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Finally, 
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We have iz  which are computed from equilibrium consideration 



using results from a theory that neglected these very stresses. 

 

If it turns out that the above computed stresses are small, we have inner  

consistency in the theory. 

 

To do so, we shall next make an order of magnitude study 

 

Consider a portion of plate ! 

 

               Figure ~ 

 



 

       2( ) ( ) ( ) ( ) ( )O F O q O L O Q O L
         

 

    Definition of shear force intensity ? 

 

                         ( ) ( ) ( ) ( )O Q O q O L O qL
     

 

    Equate moments about an axis C-C’ going through the line of the  

action of the resultant of the force distribution: 

 

     ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0sO Q O L O L O M O L O M O L  
                  



Replacing ( )O Q  by using 
( ) ( )O Q O qL 

. 

 

Assuming next that shear effects are as significant as either the  

bending or the twisting effects. 

If the resulting shear stresses turn out still to be small in our order 

of magnitude studies. 

We then equate the order of magnitude of bending and twisting with 

That of the shear effect: 

             
2 2( ) ( ), ( ) ( )sO M O qL O M O qL  

 

We thus have order of magnitude formulations for the stress 

resultant intensity functions, 
, sQ M M   which may now be used in 



conjunction with stresses for comparison purposes. 

                
( ) ( )O z O h

 
2 2( ) ( / ), ( ) ..., ( ) ...xx xy yyO O qL h O O    

 

2

2

3 1
( ) ( (1 4 )) ( ) ( ) ( )

2

( ) ...

( ) ( )

xz x

yz

zz

z L
O O Q O O qL O q

h h h h

O

O O q







   



  

 

 We can now make comparisons : 

    

Methods of Solution 



 

Governing equations(A) ?  + Boundary conditions(B) ? 

 

Exact solution = A + B : Very special sets of Problems 

Approximate solutions based on : Shape function: 

 ~ Complete sets 

Full domain :  

Ritz method : Minimization of Potential Energy  

Levy method 

Galerkin’s method : Governing equations 



Kantorovich method 

 

Sub-domain~ 

FEM ? BEM ,XFEM …  

 

4.2 Shear deformable plate theory 

 

So far, theory of thin plate have been established based on Kirchhoff-Love 

assumptions 

 

In this section we shall consider the small deflection theory of thick plates 



including the effect of transverse shear deformation which was neglected 

despite of the fact that we know from equilibrium considerations that it was 

not zero. This addition in our treatment of plates is analogous to the 

Timoshenko beam theory. 

In accordance with Reissner‟ theory we assume a linear law for distribution 

of stresses σ𝑥𝑥 , σ𝑦𝑦  and σ𝑥𝑦  through the thickness of the plate.  It may be 

seen by replacing the bracked expression of the bending part in  

, , , ,2 2
( ) [ ( )]

1 1
xx xx yy x y xx yy

E E
u v z     

 
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 
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yy yy xx y x yy xx

E E
v u z     

 
     

 
 

, , ,

1
2 2 [ ( ) ]

2
xy xy y x xyG G u v z       

by bending moment and twisting moment intensities with the aid of  

, ,( )x xx yyM D w w    



, ,( )y yy xxM D w w    

,(1 )xy yx xyM M Dw     

Where 
3

212(1 )

Eh
D

v



 : bending rigidity of plates. 

Derive 
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  ,     
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M
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h
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12 xy

xy

M
z

h
   

Substituting these expression into the first of the equilibrium equation 
, 0ij j   

and then integrating w , r , t , z  , we get by using the first of  

, 0M Q     

, ,3 3
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/12 /12
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x x xy y x

Z Z
M M Q

Z h h
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Now integrating w , r , t , z , we get 
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Using the boundary condition 0xz   at 
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We get 3
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f x y Q  

Finally, 
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Next using the second equation of equilibrium  
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Finally, we consider the last of equilibrium equation, 
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                 ,Q q     

It becomes 
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3
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2
zz z

g z

h h
    

Integrating and then using the boundary conditions 

,zz z q    at   
2

h
z    

, 0zz z     at  
2

h
z   

We get 
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q z z
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We thus have a set of stresses xz , yz , zz  

 

which are computed from nigorous// equilibrium considerations  

Next we introduce some average value *

  q the transverse displacement, 

taken over the thickness q the plate, as well as some average values x , y  q 



the rotation q the sections x const and y const , respectively. We define these 

quantities ???? by equating the work q the resultant moments on the average 

rotation and the work q the corresponding stresses, actual displacement for 

bending u , v  and w  in the same section, i,e., we put 
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Substituting previously obtained stresses in the above equation, we obtain the 

following relations between the average ?? and the actual displacements,  
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We have the strain-displacement and Hook‟s law 
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Substituting these into  
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Now eight unknowns, , , , , , ,x y xy x y xM M M Q Q w   and y  are connected by 2 equations 

of (*), 3 equations of (?), and three equations , 0M Q     
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Eliminating x , 
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To obtain the more complete deflection equation for plate we only have to 

substitute the above equations into , 0Q q    , we then get 
2

4 22
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h
D w q q
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Reissner's theory 



Mindlin's theory 

Shear deformation 고려(thickness direction) 

classical theory   

 

3 shear deformation   

 

33 stretching effect in the thickness direction   
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u u         : ,3 3, ,u u w       

 

 

,3 3,u u                 ;          ,3 3,u u         



(constant shear ~) 

                                         
, ( , )w x y        

1st order theory -> higher order theory 

, , , ,
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xyM  

z zQ dz kh                 ; ,( )Q khG w     

Shear correction factor steming?? from the fact that z  is constant through 

the thickness. 



Straight line remains straight but conseration?? Of normal discarded. 

Meaning of k : surface condition 

, 0M Q     

, 0Q q                       
,Q q    
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Eliminate   : 4 2D
D w q q

kGh
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xyM,x yM MConstant bending moments        and constant twisting moment    . It is 

only for convenience that we examine stress states rather than strain states : 

typically a computer program outputs stresses rather than strains. Computed 

n nodal d.o.f can also be examined; if they are incorrect strains and stresses 

will also be incorrect. If displacements are correct but stresses are incorrect, 

one suspects that the stress calculation subroutine must be incorrect. Support 

conditions must not prevent the constant state from occurring. 

............................................................................................................................

................................................................................ 

 

 ~ Effect of locking 

 

 
1 2

1 2



1 2a a x  

1 2b b x  

, 1 2 2( )xz x a a x b      

2 :xz

1 2 20; 0, 0xz a b a    

1 1 1 1,a b a x    

2

~ 0bU Locking
x
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 

1 2 1 20, 0xz a b a a x      

 

 

 

 

                   2 point rule to integrate exactly 

 

 

 

 

                reduced integration : 1 point rule 
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Classical(~Thin) plate theory 
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First-order shear deformation theory 
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  Shear correction factor : 3 3~ 0     ? 

 

 

2nd-order(Higher-order)shear deformation theory 
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    Shear correction ? 

 

 Generally, n-th order 
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 what is the merit ? 
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4.3 von Karman Plate theory 

The theory of small deflection of thin plate was derived in the previous sections 

under the assumption of infinitesimal displacement. For small deflection ( max 0.2w h )  

the theory gives sufficiently accurate results. By increasing the magnitude of  

deflection beyond a certain level ( max 0.3w h ) however, the lateral deflections are  

accompanied by stretching of the middle surface, provided that the edges, or at least  

the corners, of the plate are restrained again in-plane motion. Membrane forces  

produced by such stretching can help appreciably in carrying the lateral load.  

If the plate, for instance, is permitted to deform beyond its thickness,  

its load-carrying capacity is already significantly increased.  

When maxw h , the membrane action becomes comparable to that of bending.  

This is in sharp contrast with the theory of beams, for which the linear theory is valid 



as long as the slope of the deflection curve is everywhere small in comparison to  

unity. 

 

 Figure : Deflection of simply-supported square plate under constant lateral load 

 

A well known theory of large deflection of thin pates is due to von Karman.  

In this theory, the following assumptions are made. 

        ~ ( )w O h  and w L  ; L  : typical plate dimension 

    ~The typical displacements ,u v  are small, and in the strain-displacement  

 relations only the quadratic terms in ,xw  and , yw  are retained.  

 (or strains are much smaller than rotations) 

~Kirchhoff‟s assumption that lines normal to the un-deformed middle surface  



 remain normal to this surface in the deformed state and are un-extended after 

deformation holds. 

  ~The slope is everywhere small, , 1xw   and , 1yw  . 

    ~All strains are small and Hooke‟s law holds. 

 

Thus von Karman theory differs from the linear theory only in retaining certain  

powers of derivatives ,xw  and , yw  in the strain-displacement relationship. Because of  

the Kirchhoff assumption we may write 
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 % Strain-displacement relation from the theory of elasticity : 



 

        

          , , , ,

1 1
( )

2 2
ij i j j i k i k je u u u u    

3.3.1  Strain – Displacement relationship 

                   ,i j ij iju      = Stretching + rotation : 

           Note : 3 12             

  

  Model  !:  
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 % In the matrix form : 

        Report : ,[ ] ?i ju   
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         Symmetric or skew-symmetric part ! 
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    Take  

             
3 3

1

2
e        

    and assuming  

 

      
3 0 : .( 1 2 : .. )( 3: .. )ie for i or shear deformation i normal deformation   

 

    Then 

                            

0 1
, , , :

2
e zw w w        

  

   Ex)   
0 2 0 2
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1 1
, , , ,

2 2
xx xx xx x x xx xe zw w u zw w     

... 

       Q : Non-linear first-order shear deformation theory ? Higher-order shear deformation theory ?
 



 

  Report : Due Dec.2 

   Newton-Raphson method, Arch-length method 

   - Numerical study for nonlinear system - example results 

       

 4.2 Equation of equilibrium & Boundary conditions 

For a constitutive law, we will employ Hooke‟s laws between the stresses and the  

strains for plane stress over the thickness of the plate.  

Thus we shall consider here only with ( , 1,2)e    .  

Accordingly the total potential energy is written by simple form.  

At first, the strain energy is written 
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So, we get  
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Now we use the notation, 
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h
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M zdz 



   to get  

   ( What is the difference between linear plate theory ? )  

      : Couple terms, non-linear terms 
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    ~ , , , ,{ ( ) ..........}xx x x x xx xxN u w w M w dA       

where  

        
2

2

h

h

N dz 



   

For the applied forces 

                   e s sU q wdxdy N u ds N u ds             

where N ; normal force distribution per unit length of the edge which is taken as 

          positive in compression 

           

sN  ; tangential force distribution per unit length of the edge 

      , su u ; in-plane displacements of the boundary in the directions of normal and       



           tangential respectively to the boundary. ( , )q x y : ; load distribution (lateral) 

 

By using the above results for iU

 

and eU  we may form U .  

Since we used un-deformed states for stresses and external load, we are limited to  

small(~moderate) deformation as far as using this approximate functional for the  

total potential energy.  

Thus we have for the total potential energy principle  

 

                  0 i eU U U       

By using Green‟s Theorem and coordinate transformation from ,x y  

to , s  and also ,Q M    

Then we get 
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 Report : Complete „? Portion‟ ( Next week)  

 

The last term accounts for corners in the boundary as was discussed. 

From this equation we can conclude that in the interior of the plate  

 

???!!! 

 



The first 2 equations are identical to the equations expressing the equilibrium for  

plane stresses. Using these equations to simplify the 3rd equation. 

 

We get 

               , , 0M N w q       

Now comparing this equation with the classical case  

                 , 0M q     

We see that it is introduced nonlinear term  

                  (~ , , 2 , , )xx xx xy xy yy yyN w N w N w N w      

Involving the in-plane force intensities as additional "transverse loading" terms” 

We also obtain the following boundary conditions as the text : 

 ~ or ~ is specified. etc. 



The last three conditions are familiar from earlier work on plates. except that the 

effective shear force is now argumented by projections of the inplane forces at the 

edges. 

If we use Hook‟s law to replace the resultant intensity functions by appropriate 

derivatives of the displacement field, and carrying out the finite integral w.r.t  z, we obtain,             

              *  

2 2
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xx xx yy
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                 where 

                  C : Extensional rigidity 

 



The first two equations will be satisfied if we use a function F defined by  

                 $        , .. , .. ,xx yy xx xx xy xyN F N F N F     

Replacing M  in terms of  ,w   and N  in terms of derivatives of F above, then the  

last equation becomes 

 Then  

           
4 , , 2 , , , ,yy xx xy xy xx yyD w F w F w F w q      

We now have a single partial differential equation with two dependent variables w 

and F. 

 

Since we are studying in-plane effects using a stress approach, we must assure the  

compatibility of the in-plane displacements. This will give us a second companion  

equation to go with the above equation. To do this we have to eliminate ,u v  from the  



expression on F.  It can be done by eliminating ,u v  from * and $.  

Then the compatibility is given by  

       
4 2( , , , )xx xx yyD F Eh w w w    

  % Gaussian Curvature 

If the surface is developable, the Gaussian curvature vanishes. Hence the right-hand  

side of 
4 2( , , , )xx xx yyD F Eh w w w    vanishes if the deflection surface is developable.  

If a flat surface is deformed into a non-developable surface its middle plane will be  

stretched in some way and the right-hand side of above equation does not vanish. 

Thus, these nonlinear terms arise from the stretching of the middle plane of a flat  

plate due to bending into a non-developable surface. 

 

When the nonlinear terms in the above equations are neglected, these equations  



reduce to the corresponding equations to the small-deflection theory. 

 

CF) Clamped 4 edges or Cantilever model ? 

 

The first two equations governing the membrane stresses ,xx xy yyN N N  are identical  

with the linear theory. 

Substitution of ~ , ,N u v w  into the equations yield the basic equations for  

stretching of plate as follows: 

   , ,) 0 :?xx x xy yex N N  .. 

  

 

 



3-3-3 Methods of Analysis 

(a) Berger‟s Method 
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If the deflection of a plate is of the order of magnitude of its thickness, the  

differential equations for the deflection and the displacement can be written in terms  

of one fourth order and two second order nonlinear equations. These three equations  

are coupled together.  

The purpose of the present investigation is to develop a simple and yet sufficiently  

accurate method for determining the deflection of plates when that deflection is of  

the order of magnitude of the thickness. The approach used in the following analysis  

is to investigate the effect of neglecting the strain energy due to the 2nd invariant of  

the strains in the middle surface of the plate when deriving the differential equation 



by the energy methods. The resulting differential equations are still nonlinear, but  

they can be decoupled in such a manner that they may be solved readily.  

These equations hereafter will be referred to as the approximate equations. To solve  

the problem of large deflections of plates completely, an estimate of the membrane  

stresses must be made. This can be done by assuming that the deflection is equal to  

that given by the solution to the approximate equations and substituting this  

deflection into the strain energy integral. The strain energy is then a function of the  

displacements only and, by the principle of virtual displacements, differential  

equations can be derived for these displacements.. 

It is the intent of this investigation to develop a simplified analysis for finding the  

deflection of plates when that deflection is large enough so that the strain of the  

middle surface cannot be neglected.  



H.M. Berger “ A New Approach to the analysis of Large Deflection of Plates” 

 (b) Banerjee‟s Method 

For thin plates undergoing large deflections, a modified energy expressions has been  

suggested and a new set of differential equations has been obtained in a decoupled  

form. Accuracy of the equations has been tested for a circular and a square plate with  

immovable as well as movable edge conditions under a uniform static load. These  

new equations are more advantageous than Berger‟s decoupled equations which fail  

to give meaningful results for movable edge conditions. 

An approximate method for solving the large deflections of plate has been proposed  

by Berger. This method is based on the neglect of 2e , the second invariant of the  

middle surface strains, in the expression corresponding to the total potential energy  

of the system. An advantage of Berger‟s method is that the coupled differential 



equations are decoupled if 2e is neglected.  

But, some authors pointed out certain inaccuracies in Berger‟s equations and  

concluded that Berger‟s line of thought leads to meaningless results for movable  

edge conditions. This is due to the fact that the neglect of 2e  for movable edges  

fails to simply freedom of rotation in the meridian planes where the membrane stress 

2

2

1
( , , )

1 2
rr r r

E u
u w

r
 


  


    exist. 

For movable edges the in-plane displacement u is never zero and thus Berger‟s  

equations lead to absurd results.   

 

 

 

 



On the other hand, for immovable clamped edge,  

0u   and 0
dw

dr
  and therefore, Berger‟s equations give sufficiently accurate results. 

For simply supported immovable edges, 0u  , but 0
dw

dr
 . Thus Berger‟s equations 

give fairly accurate result. A modified energy expression has been suggested by 

bringing directly the expression for rr  in the total potential energy of the system. A 

new set of differential equations has been obtained in a decoupled form. 

In polar coordinates, the total potential energy, V  of a thin isotropic circular plate of 

radius a, and of thickness h is given by 
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Where, D  is the flexural rigidity of the plate given by 
3

212(1 )

Eh
D

v



, W  is deflection, v  

is poisson‟s ratio, 1e  and 2e  the first and second invariant of the middle surface 

strains respectively given by 
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Here, u  is the in-plane displacement and q is the uniform static load. Equation (1) 

may be rewritten in the following form  
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If the term 
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2
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u
v

r
  in (2) is replaced by 
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dw

dr
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 being a factor depending on the 

Poisson‟s ratio for the plate material, decoupling of (2) is possible. Introducing the 

term 
4

4

dw

dr
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 
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 in place of 
2
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2
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u
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  

and applying Euler‟s variational method to (2), the following decoupled differential 

equation is obtained. 
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Where A is a constant of integration to be determined from 2 1

, ,

1
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In the rectangular Cartesion coordinate system (3) is  
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When the constant of integration  A is to be determined from  
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To these equations must be added a suitable set of boundary conditions. 

Refer to the paper 

B.Banerjee& S. Datta “A New Approach to an analysis of Large Deflections of Thin Elastic Plates” 

 

 


