
 

Chapter 5  

   Deep Shell Equations 

 

The term deep is used to distinguish the set of equations used in this chapter from 

the 

shallow shell equations discussed later. The equations are based on the assumptions  

that the shells are thin with respect to their radii of curvature and that deflections are  

reasonably small.  On these two basic assumptions, secondary assumptions rest.  

They discussed as the development warrants it. 

The basic theoretical approach is due to Love, who published the equations in their  

essential form toward the end of the nineteenth century.    Essentially, he extended  



work on shell vibrations by Rayleigh, who divided shells into two classes: one 

where  

the middle surface does not stretch and bending effects are the only important ones,  

and one where only the stretching of the middle is important and the bending 

stiffness can be neglected. Love allowed the coexistence of these two classes.  

He used the principle of virtual work to derive his equations, following Kirchhoff,  

who had used it where deriving the plate equation. The derivation given here uses  

Hamilton’s principles, following Reissner’s derivation. 

 

5.1 Shell Coordinates and Infinitesimal Distances in Shell Layers 

 We assume that thin, isotropic, and homogeneous shell of constant thickness have  

neutral surfaces, just as beams in transverse deflection have neutral fibers. That is  

true will become evident later. Stresses in such a neutral surface can be of the  



membrane type but cannot be bending stresses. Locations on the neutral surface,  

placed into a three-dimensional Cartesian coordinate system, can also defined by  

two-dimensional curvilinear surface coordinate 
1  and 

2 .  

The location of a point P  on the neutral surface (Fig.) in Cartesian coordinates is  

related to the location of the point in the surface coordinates by 
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The location of P  on the neutral surface can also be expressed by a vector : 
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Now let us define the infinitesimal distance between point P  and P  on the neutral  

surface. The differential change dr  of the vector r  as we move from P  to P is 
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The magnitude ds  of dr  is obtained by 
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Practice  :  Index notations ! 

 

 

In the following, we limit ourselves to orthogonal curvilinear  

coordinates which coincide with the lines of principal curvature of         

the neutral surface 

The third term of in Eq.(5.1.5) this becomes 
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When we define  
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 Eq.(5.1.5) becomes 

                   
2 2 22 2

1 21 2ds d dA A                     (5.1.8) 

 

This equation is called the fundamental form and 1A  and 2A are the fundamental  

form parameters or Lame parameters. 

 

As an example, let us look at the circular cylindrical shell shown in Fig.  

The lines of principal curvature ( for each shell surface point there exists a 



maximum  

and a minimum radius of curvature, whose directions are at the angle / 2 ) are in  

this case parallel to the axis of revolution, where the radius of curvature 
xR    or 

the curvature 01/ xR  , and along circles, where the radius of curvature aR
  or the 

curvature 1/1/ aR
 . 

We then proceed to obtain the fundamental form parameters from definition (5.1.7) 

 

 The curvature coordinates are 

                                 
1 2,x                (5.1.9) 

 

And Eq.(5.1.3) becomes 
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Fig 5.1.12— 

 

 

Thus 
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        The fundamental form is therefore 

                             

2 2 2 2ds dx a d 
 

 Recognizing that the fundamental form can be interpreted as defining the  

hypotenuse ds of a right triangle whose sides are infinitesimal distances along the  

surface coordinates of the shell, we may obtain A1 and A2 in a simpler fashion by  

expressing ds directly using inspection: 

                              

2 2 2 2ds dx a d 
 



 

By comparison with Eq.(5.1.8), we obtain A1=1 and A2=a 

For the general case, let us now define the infinitesimal distance between a point P1  

that is normal to P and a point P1
’
  which is normal to P’  (see Fig.5.1.3) P1  is 

located at a distance 
3
 from the neutral surface (

3
 is defined to be along a  

normal straight line to the neutral surface). 

P1
’  is located at a distance 

3 3d 

 from the  neutral surface.   

 

We may therefore express the location of P1
’ as 
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where 



                   n : unit vector normal to the neutral surface.   

 

The differential change dR as we move from P1 to P1
’ is 
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The magnitude ds of dR  is obtained by  

 

2ds dR dR                              (5.1.19) 
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      Why ? 

 



We have already seen that 
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The third term of this expression is zero because of orthogonality  

(see also Fig.5.1.3). 

The second term may be written  
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from Fig.2.1.3 we recognize the following relationship to the radius of curvature 2R  
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Since 
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We get 
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And therefore 
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Similarly, the first term becomes 
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And expressions (5..1.22) becomes 
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Finally, the last expression of Eq.(5.1.20) becomes 
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The last two terms are zero because of the orthogonality. The first term may be 

written 
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Similarly  
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Expression (5.1.30) therefore becomes 

 

            
2 2

2 21 2
3 3 1 2

1 2

2 2
A A

dr dn d d
R R

   
 

  
 

                       (5.1.33) 

 

Substituting expressions (5.1.33),(5.1.29), and (5.1.21) in Eq.(5.1.20) gives 
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~ What is   ? 

 

 

5.2 Stress-Strain Relations 

 Having chosen the mutually perpendicular lines of principal curvature as  

coordinates, plus the normal to the neutral surface as the third coordinate, we have  

three mutually perpendicular plane of strain and three shear strains.  

Assuming that Hook’s law applies, we have a three dimensional element 

 



                         

 

 

 

11 22 3311

22 11 3322

33 11 2233

12

12

13

13

23

23

1
( )

1
( )

1
( )

E

E

E

G

E

G

E

G

E

   

   

   













  

  

  







              (5.2.1~6) 

 

where 
( )( )

:
i i  Normal stresses,  

( ) :
ij

i j  Shear stresses as shown in Fig.2.2.1 

 

ij ji                     (5.2.7) 

 



We will later assume that transverse shear deformations can be neglected 

 

This implies that 

                           3
0
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However, we will not neglect integrated effect of the transverse stresses 3   

This is discussed later. 

 

 The normal stress 33  which is normal direction to the neutral surface  

will be neglected. 

                               33
0                   (5.2.9) 

 



This is based on the argument that on an unloaded outer shell surface it I zero, or if a  

load acts on the shell, it is equivalent in magnitude to external load on the shell,  

which is relatively small value in most cases. Only in the close vicinity of a  

concentrated load do we reach magnitudes that would make the consideration of 

33   

worthwhile.  

 

Our equation system therefore reduces to 
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
                   (5.2.13) 

 

Only the first three relationships will be importance in the following.  

Equation (5.2.13) can later be used to calculate the constriction of the shell thickness  

during vibration, which is of some interest to acousticians since it is an additional  

noise generating mechanism, along with transverse deflection. 

 

 2.3 Strain-displacement Relations 

 We have seen that the infinitesimal distance between two points 
1P  and 

1
'P  of an 

 undeformed shell is given by Eq.(5.1.34).  

Defining, for the purpose of a short notation, 
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 We may write Eq.(5.1.34) as 
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If point 1P  originally located at 1 2 3( , , )  
, is deflected in the 1 direction by 1U ,  



in the 2  direction by 2U ,and in the 3 (normal) direction by 3U , it will be located 

at 1 1 2 2 3 3( , , )       
. Deflection iU  and coordinate changes i  are related by 
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Since 1 2 3( , , )iig     varies in a continuous fashion as  1 2, , 
 and 3  change, we  



may utilize as an approximation the first few terms of a Taylor series expension of  
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For the special case of an arch that deflection only in the plane of its curvature, the  

Taylor series expansion is illustrated in Fig.5.3.2. in this example, 
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Continuing with the general case, we may write 
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In the order of approximation consistent with linear theory, 
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Therefore,( Eqn(5.3.10) becomes 
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Substituting Eqs.(5.3.12) and (5.3.7) in Eq.(5.3.6) gives 
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Expanding the expression and writing 
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The last term is negligible except for cases where initial stresses exist in the shell.  



We have ,therefore, replacing  j by k in the first term, 
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Utilizing the Kronecker delta notation  
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we may write the first term of Eq.(2.3.16) as 
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The last two terms of Eq.(5.3.16) , we may write in symmetric fashion by noting 

that 
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Denoting 
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k k j i

g
G g g g


 

  

 
   

  
             (5.3.21) 

Gives 

                                                             



3 3
2

1 1

( ) ij i j

i i

ds G d d 
 

                             (5.3.22) 

Note that 

                                                                     

ij jiG G
                       (5.3.23) 

 

Eqn(5.3.22) defines the distance between two points P and P’ after deflection, where  

point P was originally located at 1 2 3( , , )  
 and point P’ at 1 1 2 2 3 3( , , )d d d       

.  

For example, if P’ was originally located at 1 1 2 3( , , ),d   
that is, 2 0d 

                                   

2 2 2

11 1 11( ) ( ) ( )ds g d ds 
                     (5.3.24) 

                         
2 2 2

1 1 1 1 1( ) ( ) ( )d s G d d s  
              (5.3.25) 

 



If point P’  was originally located at 1 2 2 3( , , )d   
,that is, 1 0d 

 and 3 0,d 
 

 

2 2 2

22 2 22( ) ( ) ( )ds g d ds 
              (5.3.26) 

                                                      

2 2 2

22 2 22( ) ( ) ( )ds G d ds  
            (5.3.27) 

 Now let us investigate the case shown in Fig.5.3.3, where P was originally located  

at 1 1 2 3( , , )d   
 and P’ was originally located at 1 2 2 3( , , )d   

. This is equivalent  

to saying that P  was originally located at 1 2 3( , , )  
  and P’ at 1 1 2 2 3( , , )d d     

  

We then get 

                     
2 2 2 2

11 1 22 2 12( ) ( ) ( ) ( )ds g d g d ds   
             (5.3.28) 



             
2 2 2 2

11 1 22 2 12 1 2 12( ) ( ) ( ) 2 ( )ds G d G d G d d ds       
           (5.3.29) 

 

In general, 

2 2( ) ( )ii ii ids g d
           (5.3.30) 

 

                                  
2 2( ) ( )ii ids G d               (5.3.31) 

                                         

And  

2 2 2( ) ( ) ( )ij ii i jj jds g d g d  
                (5.3.32) 

                 
2 2 2( ) ( ) ( ) 2ij ii i jj j ij i jds G d G d G d d      

         (5.3.33) 

 



We are really now to formulate strains. The normal strains are 

 

             

( ) ( )
1 1 1

( )

ii ii ii ii ii
ij

ii ii ii

ds ds G G g

ds g g


  
     

             (5.3.34) 

 

Noting that since 

                             
1ii ii

ii

G g

g



                (5.3.35) 

 

We have the expansion  

 

 



1
1 1 ...

2

ii ii ii ii

ii ii

G g G g

g g

 
   

          (5.3.36) 

Thus 

                               
1

2

ii ii
ii

ii

G g

g





             (5.3.37) 

 

Shear strains  ( )ij i j   are defined as the angular change of an infinitesimal element: 

 

                          2
ij ii


  

                    (5.3.38) 

 

ii
  for 

1i 
 and  

2i 
 is shown in Fig.2.3.3.  

 



Utilizing the cosine law, we may compute this angle 

 

           
2 2 2( ) ( ) ( ) 2( ) ( ) cosij ii jj ii jj ijds ds ds ds ds       

                     (5.3.39) 

 

Substtuting Eqs.(5.3.31) and (5.3.33) and solving for cos ij  gives 

                        
cos

ij

ij

ii jj

G

G G
                       (5.3.40) 

Substtuting Eqs.(5.3.38) results in 

                        

cos( ) sin
2

ij

ij ij

ii jj

G

G G


   

               (5.3.41) 

 

And since for reasonable shear strain magnitudes 



 

                         sin ij ij                      (5.3.42) 

and 

                          

ij ij

ii jj ii jj

G G

G G g g


              (5.343) 

 

We may express the shear strain as  

                       
ij

ij

ii jj

G

g g
 

                   (5.3.44) 

 

Substtuting Eqs.(5.3.21),(5.3.5), and (5.3.1) to (5.3.3) in Eq.(5.3.37) gives,  

for instance for 1,i   
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(5.3.45) 

Next, utilize the equalities 

                            

1 3 1 3 1

2 2 2

2 3 2 3 2

1 1 1
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A R A
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 

 

  
 

 

  
 

 

 (5.3.46), (5.3.47) 

 



These relations are named after Codazzi 

Substituting them in Eq.(5.3.45), we get 

 

                                          

1 2 1 1
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Similarly,  
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3
33

3

U






                          (5.3.50) 

 

Substituting Eqs.(5.3.21),(5.3.5), and (5.3.1) to (5.3.3) in Eq.(5.3.44) gives, for  



instance for 1, 2,i j   

        

1 3 1 1
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Similarly, 
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  
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2.4 Love Simplifications 

 

 If the shell is thin, we we may assume that the displacement in the 1  and 2   

directions vary linearly through the shell thickness, whereas displacements in the 3   

direction are independent of 3  : 

      1 1 2 3 1 1 2 3 1 1 2( , , ) ( , ) ( , )U u                               (5.4.1) 

      2 1 2 3 2 1 2 3 2 1 2( , , ) ( , ) ( , )U u         
                      (5.4.2) 

      3 1 2 3 3 1 2( , , ) ( , )U u    
                             (5.4.3) 

                                      

where 1  and 2  represent angles. If we assume that we may neglect shear  



deflection, which implies that the normal shear strains are zero, 

                          13 0                    (5.4.4) 

                          23 0                   (5.4.5) 

 

We obtain,for example, a definition of 1  from Eq.(2.3.52), 

1 3 1 3 31
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      (5.4.6) 

 or  

 

31
1

1 1 1

1 uu

R A





 

                                                                                
(2.4.7) 

 



Similarly, we get  
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2 2 2

1 uu

R A





 

            (5.4.8) 

Substituting Eqs.(2.4.1) to (2.4.3) into Eqs.(2.3.48) to (2.3.51), recognizing that 

                                                                      
3 3

1 2

, 1
R R

 

                   (5.4.9) 

 

we get 
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33 0 

                         (5.4.12) 

                      
13 0 

                         (5.4.13) 

                      
23 0 

                          (5.4.14) 
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1 1 2 2 2

( ) ( )
uA A

u
A A A

 
  

 
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                  (5.4.15) 

It is convenient to express Eqs.(5.4.10) to (5.4.15) in a form where membrane 

strains (independent of 
3

) and bending strains (proportional to 
3

) 

are separated: 



                  11 11 3 11

o    
                 (5.4.16) 

22 22 3 22

o    
                  (5.4.17) 

12 12 3 12

o    
                   (5.4.18) 

where the membrane strains are 
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and where the change-in-curvature terms( bending strains) are 
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The displacement relations of Eqs.(5.4.1) and (5.4.7) are illustrated in Fig. 5.4.1. 

 

2.5 Membrane forces and Bending Moments 

In the following, we integrate all stresses acting on a shell element whose 

dimensions  

are infinitesimal in the 
1

and 
2

 directions and equal to the shell thickness in the 

normal direction. Solving Eqs.(5.2.10) to (5.2.12) for stresses yields 



 

( ) : . . !
1 1

E
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   



     
 

        

            (5.5.1) ~ (5.5.3) 

 

Substituting Eqs.(5.4.16) to (5.4.18) gives 
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               (5.5.4) ~ (5.5.6) 

For instance, referring to Fig.2.5.1, the force in the 1 direction acting on a  

strip of the element face of height 3d and the width  

3
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(1 )d
R

A



 is  

3
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Thus the total force acting on the element in the 1  direction is 
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And the force per unit length of neutral surface 22
dA   is 
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311
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             (5.5.7) 

Neglecting the second term in parentheses, we obtain ~ 
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 Substituting Eq.(5.5.4)~(5.5.6) results in: !! 



  
, ?N M    

3 ?Q 
 

33
12

N M

h h

 

  

 

 

 

 2.6  Energy expressions 

The strain energy stored in one infinitesimal element that is acted on by 

stresses ij is 

     11 11 33 33........ )
1

(
2

dVdU     
                    (5.6.1) 

The last term is neglected in line with assumption (5.4.3). We do, however, 

have to keep the transverse shear terms, even though we have previously 



assumed 13  and 23  to be negligible, to obtain expressions for 1  and 

2 .  

The infinitesimal volume is given by
 

      
3 3

1 2 3
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1 2

) )
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(1(1
2 R R

d d ddV A A
 

   
               (5.6.2) 

Integrating Eq. (2.6.1) over the volume of the shell gives 

 

     1 2 3
dVU F    

                             (5.6.3) 

where 

    11 11 23 23 33 33........ ...) :.. ..
1

(
2

termdeletF       
            (5.6.4) 

 

 



The kinetic energy of one infinitesimal element is given by 

 

     

. . .
2 2 2
1 2 3

1
( )

2
dK U U U dV                       (5.6.5) 

The dot indicates a time derivative. 

Substituting Eqs. (2.4.1) to (2.4.3) and considering all the elements of the 

shell gives 

. . . . . . . . .
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                   (5.6.6) 

 

 



Neglecting the 3 1/ R  and 3 2/ R  terms, we integrate over the thickness of 

the shell( 3 / 2h    to 3 / 2h  ). This gives  

. . . . .2
2 2 2 2 2
1 2 3 1 2 1 2 1 21 2 3
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               (5.6.7) 

The variation of energy put into the shell by possible applied boundary 

force resultants and moment resultants is, along typical 2 constant   and 

1 constant lines  , 
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(5.6.8) 

  

 



Taking, for example, the 2 constant edge  , *

22N  is the boundary force 

normal to the boundary in the tangent plane to the neutral surface. The 

units are newtons per meter. *

23Q  is a shear force acting on the boundary 

normal to the shell surface, and 
*

21N  is a shear force acting along the 

boundary in the tangent plane. *

22M  is a moment in the 2  direction, and 
*

21M  is a twisting moment in the 1  direction. (Figure 2.6.1 illustrates this.) 

 

The variation of energy introduced into the shell by distributed load 

components in the 1 , 2  and 3  directions, namely 1q , 2q and 2

3( / )q N m

is 

 

1 1 2 2 3 3 1 2 1 2
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E q u q u q u A A d d
 

                                           

(5.6.9)
 

All loads are assumed to act on the neutral surface of the shell. The 

components are shown in Fig.2.6.2 



 

2.7  Love’s Equations by way of Hamilton’s Principle 

 Hamilton’s principle is given as [note the discussion in Sec. 2.9 and that 

Eq. (2.9.13) is multiplied here by -1 for convenience] 

                            1

0
( ) 0

t

int
U K W dt                                           

(5.7.1) 

where inW  is the total input energy. In our case 

                         
      in B L

W E E 
                                                   (5.7.2)

 

 

The times 1t and 0t  are arbitrary, except that at 1t t  and 0t t , all 

variations are zero. The symbol   is the variational symbol and is treated 

mathematically like a differential symbol. Variational displacements are 

arbitrary. 

Substituting Eq. (5.7.2) for Eq. (5.7.1) and taking the variational operator 



inside the integral, we obtain 
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t

B Lt
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                  (5.7.3)
 

Let us examine these varations one by one. First, from Eq. (5.6.6) 
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Integrating by parts, for instance, the first term becomes 
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Since the virtual displacement is zero at 0t t  and 1t t , we are left with  
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Proceeding similarly with the other terms in the integral, we get 
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As in the classical Bernoulli-Euler beam theory, we neglect the influence 

of rotatory inertia, which we recognize as the terms involving 1  and 2 . 

It will be shown later that rotatory inertia has to be considered only for 

very short wavelengths of vibration, and even then shear deformation is a 

more important effect. 



1

.. .. ..

1
1 1 2 2 3 3 1 2 1 21 20

( )
o

t t
tt

Kdt h u u u u u u A A d d dt             (5.7.8)

 

Next, let us evaluate the variation of the energy due to the load. From Eq. 

(5.6.9),  
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The integral of the variation of boundary energy is, using Eq. (5.6.8), 
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It is more complicated to evaluate the integral of the variation in strain 

energy. Starting with Eq. (5.6.3), we have 
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where 
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Examining the first term of this equation, we see that 
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Substituting Eqs. (5.5.1) and (5.5.2) gives 
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Thus we can show that 
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We neglect the 3 1/ R  and 3 2/ R  terms as small. Substituting Eqs. (5.4.10) 

to (5.4.15) allows us to express the strain variations in terms of 

displacement variations. Integration with respect to 3  allows us to 

introduce force resultants and moment resultants. Integration by parts will 

put the integral into a manageable form. Let us illustrate all this on the first 

term of Eq. (5.7.15): 
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Now we illustrate the integration by parts on the first term of Eq. (5.7.16): 
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Proceeding with all terms of Eq. (5.7.15) in this fashion we get  
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We are now ready to substitute Eqs. (5.7.18), (5.7.10), (5.7.9) and (5.7.8) 

in EQ. (5.7.3). This gives 
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                                                 (5.7.19) 

The equation can be satisfied only if each of the triple and double intergral 

parts is zero individually. Moreover, since the variational displacements 

are arbitrary, each integral equation can be satisfied only if the coefficients 

of the variational displacements are zero. Thus the coefficients of the triple 

integral set to zero give the following five equations: 

 



Thus, we can obtain   (5.7.20)~(5.7.24) 

 

5.8  Boundary Conditions 

Examining Love’s equations, the stress- strain and strain- displacement 

relations, we see that the equations are eighth- order partial differential 

equations in space. This means that we can accommodate at most four 

boundary conditions on each edge.  

However, when set to zero, the two line integrals of Eq. (5.7.19) are 

satisfied only if the five coefficients in each are zero or if the virtual 

displacements are zero. This would define as necessary five boundary 

conditions. A similar problem was encountered by Kirchhoff [2.3] in the 

nine-teenth century, when he investigated the boundary conditions of a 

plate.  

It appeared as if three conditions at each edge were needed, but the fourth-

order equation would allow only two. Kirchhoff combined the three 



conditions into two by noting that the twisting moment and shear 

boundary conditions were related. 

Following Kirchhoff’s lead, the two line integrals are rewritten utilizing 

the definitions of Eqs. (5.4.7) and (5.4.8). For instance, for the first line 

integral equation, we get 
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Before collecting coefficients of 3u , we have to perform an integration by 

parts: 
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                                                  (5.8.2) 

 

Since *

21 21M M  along the entire edge, the term in parentheses is zero. 

Thus substituting Eq. (5.8.2) in Eq. (5.8.1) and collecting coefficients of 

virtual displacements yields 
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Similarly, for the second line integral, we get
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These equations are satisfied if either the virtual displacements vanish or 

the coefficients of the virtual displacements vanish. Defining, in memory 

of Kirchhoff, the Kirchhoff effective shear stress resultants of the first kind 
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and as the kirchhoff effective shear stress resultants of the second kind 
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We may write the integrals as 
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and 
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Now we may argue that each of these integrals can be satisfied only if the 

coefficients of the virtual displacements, the virtual displacements, or one 

of the two for each term are zero. Since virtual displacements are zero only 

when the boundary displacements are prescribed, this translates into 

following possible boundary conditions for an 1 constant edge   

[Eq.(5.8.10)]: 
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This states the intuitively obvious fact that we have to prescribe at a 

boundary either forces(moments) or displacements (angular 

displacements). However, four conditions have to be identified per edge. 

In a later chapter we see that under certain simplifying assumptions we 

may reduce this number even further. Similarly, examining Eq. (5.8.3), 

which describes an 2 constant edge  , the four boundary conditions have to 

be 
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We can therefore state in general that if n denotes the subscript that defines 

the normal direction to the edge and if t denotes the subscript that defines 

the tangential direction to the edge, the necessary boundary conditions are 
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Let us consider a few examples. First there is the case where the edge is 

completely free. This means that no forces of moments act on this edge 

 

  
30 ,    0 ,    0 ,    0n n n n n n tN M V T             (5.8.23)~ (5.8.26)

 

 

The other extreme is the case where the edge is completely prevented from 

deflecting by being clamped 

30,   0,   0,   0n t nu u u                    (5.8.27)~(5.8.30) 

If the edge is supported on knife edges such that it is free to rotate in 

normal direction but is prevented from having any transverse deflection, 



clearly the two conditions 

3 0,    0nnu M                (5.8.31)~(5.8.32)

 
apply. If the knife edges are such that the shell is free to slide between 

them, the other two conditions are 

0,   0nn ntN T                 (5.8.33)~(5.8.34) 

If the shell is somehow prevented from sliding, the conditions 

0,    0n tu u                  (5.8.35)~(5.8.36)

 
should be used. 

 

 

 

 



5.9  Hamilton’s Principle 

Hamilton’s principle is a minimization principle that seems to apply to all 

of mechanics and most classical physics. It is the end of a development 

that started in the second century B.C with Hero of Alexandria, who stated 

that light always takes the shortest path. This indeed governs reflections, 

by the minimum principle that includes refraction was not found until 

Fermat in 1657 postulated that light travels from point to point in the 

shortest time. On theological grounds, Maupertius in 1747 asserted that 

dynamical motion takes place with minimum action, where action is 

defined as the product of distance and momentum, or energy and time. 

Lagrange formulated the mathematical foundation of this principle in 1760. 

In 1828, Gauss formulated the principle of least constraint, which was 

extended later by Hertz when formulating the principle of least curvature. 

Finally, in 1834, Hamilton announced his general principle, which 

included all the others. He postulated that while there are usually several 

possible paths along which a dynamic system may move from one point to 



another in space and time, the path actually followed is the one that 

minimizes the time integral of the difference between the kinetic and 

potential energies. In terms of the calculus of variations, developed 

primarily by Euler and Bernoulli in the eighteenth century, it is usually 

stated as 
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               (5.9.1) 

where ir  are the variations of displacements(virtual displacements,) T 

the kinetic energy, U the strain energy, ncW  any additional energy input to 

the system, and   the variation, operationally equivalent to a total 

differential. In general, Hamilton’s principle can be viewed as an axiom, 

replacing the axiom of Newton’s second law for dynamic problems. With 

other words, we either accept Newton’s second law for dynamic problems. 

With other words, we either accept Newton’s second law as an axiom and 

derive Hamilton’s principle from it for dynamic problems, or we accept 



Hamilton’s principle as an axiom and derive Newton’s second law from it. 

In the following, let us derive Hamiltion’s principle from the axiom of 

Newton’s second law, utilizing D’Alembert’s principle for the restricted 

case of interest here, namely, the motion of masses under constraints. Let 

the virtual displacements 1 1 1,, , , , ,n n nx y z x y z       be infinitesimal, arbitrary 

changes in the displacement coordinates of a system. They must be 

compatible with the constraints of the system. If each mass particle 

1, , ,i n  is acted on by forces with the resultant iF , it must be that 
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 where 
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p  is the rate of change of the linear momentum vector 
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Eq. (5.9.2) may be written as 
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where 
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and represents the virtual work due to the applied forces alone. Using the 

mathematical identify 
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gives, after multiplying it by im  and summing over all particles, 
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Recognizing that the kinetic energy is 
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 and that work done by the applied forces is equal to the input work minus 

what is stored in terms of strain energy, 
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 we obtain, utilizing Eq. (5.9.4), 
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Integrating between two points in time, 1t  and 2t , where the virtual 



displacements or variations are zero, we obtain  
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If we select ir  such that 
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The final result is 
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