Mathematical Background in Aircraft Structural Mechanics

CHAPTER 1. Linear Elasticity

SangJoon Shin
School of Mechanical and Aerospace Engineering
Seoul National University

Basic equation of Linear Elasticity

* Structural analysis ... evaluation of deformations and stresses arising within a solid object under the action of applied loads
- if time is mot explicitly considered as an independent variable
\rightarrow the analysis is said to be static
\rightarrow otherwise, structural dynamic analysis or structural dynamics
* Under the assumption of $\left\{\begin{array}{l}\text { Small deformation } \\ \text { Linearly elastic material behavior }\end{array}\right.$
- Three dimensional formulation \rightarrow a set of 15 linear $1^{\text {st }}$ order PDE involving

$$
\left\{\begin{array}{lr}
\text { displacement field } & (3 \text { components) } \\
\text { stress field } & (6 \text { components) } \\
\text { strain field } & (6 \text { components })
\end{array}\right.
$$

\rightarrow simpler, 2-D formulations $\left\{\begin{array}{l}\text { plane stress problem } \\ \text { plane strain problem }\end{array}\right.$

* For most situations, not possible to develop analytical solutions
\rightarrow analysis of structural components ... bars, beams, plates, shells

1.1 The concept of Stress

1.1.1 The state of stress at a point

* State of stress in a solid body... measure of intensity of forces acting within the solid
- distribution of forces and moments appearing on the surface of the cut ... equipollent force \underline{F}, and couple \underline{M}
- Newton's $3^{\text {rd }}$ law \rightarrow a force and couple of equal magnitudes and opposite directions acting on the two forces created by the cut

Fig. 1.1 A solid body cut by a plane to isolate a free body

1.1 The concept of Stress

> A small surface of area A_{n} located at point P on the surface generated by the cut \rightarrow equipollent force \underline{F}_{n}, couple \underline{M}_{n}

- limiting process of area \rightarrow concept of "stress vector"

$$
\begin{equation*}
\underline{\tau}_{n}=\lim _{d A_{n} \rightarrow 0}\left(\frac{\underline{F}_{n}}{d A_{n}}\right) \tag{1.1}
\end{equation*}
$$

existence of limit : "fundamental assumption of continuum mechanics"

- Couple $\underline{M}_{n} \rightarrow 0$ as $d A_{n} \rightarrow 0$
... couple is the product of a differential element of force by a differential element of moment arm
\rightarrow negligible, second order differential quantity
- Total force acting on a differential element of area, $d A_{n}$

$$
\begin{equation*}
\underline{F}_{n}=d A_{n} \tau_{n} \tag{1.2}
\end{equation*}
$$

Unit : force per unit area, N / m^{2} or Pa

1.1 The concept of Stress

> Surface orientation, as defined by the normal to the surface, is kept constant during the limiting process

- Fig. 1.2 ... Three different cut and the resulting stress vector first... solid is cut at point P by a plane normal to axis \bar{i}_{1} : differential element of surface with an area $d A_{1}$, stress vector $\underline{\tau}_{1}$
\rightarrow No reason that those three stress vectors should be identical.

Fig. 1.2 A rigid body cut at point P by three planes orthogonal to the Cartesian axes.

1.1 The concept of Stress

$>$ Component of each stress vectors acting on the three forces

\rightarrow "engineering stress components"
unit : force/area, $P a$
"positive" force ... the outward normal to the face, i.e., the normal pointing away from the body, is in the same direction as the axis
\rightarrow sign convention (Fig.1.3)
> 9 components of stress components
\rightarrow fully characterize the state of stress at P
Force ... vector quantity,
\rightarrow both act on the force normal to axis \bar{i}_{1} in the direction of \bar{i}_{2} and \bar{i}_{3}

Fig. 1.3 sign conventions
3 components of the force vector ($1^{\text {st }}$ order tensor)

Stress ... 9 quantities ($2^{\text {nd }}$ order tensor)

1.1 The concept of Stress

1.1.2 Volume equilibrium eqn.

* Stress varies throughout a solid body

- Fig. 1.4 axial stress component at the negative face : σ_{2} axial stress component at the positive face at coordinate $x_{2}+d x_{2}: \sigma_{2}\left(x_{2}+d x_{2}\right)$ if $\sigma_{2}\left(x_{2}\right)$ is an analytic function, using a Taylor series expansion

$$
\sigma_{2}\left(x_{2}+d x_{2}\right)=\sigma_{2}\left(x_{2}\right)+\left.\frac{\partial \sigma_{2}}{\partial x_{2}}\right|_{x_{2}} d x_{2}+\ldots \text {..h.o.terms in } d x_{2}
$$

$$
\sigma_{2}\left(x_{2}+d x_{2}\right)=\sigma_{2}+\frac{\partial \sigma_{2}}{\partial x_{2}} d x_{2}
$$

- body forces \underline{b}... gravity, inertial, electric, magnetic origin

Fig. 1.4 Stress components acting on a differential element of volume.

1.1 The concept of Stress

i) Force equilibrium direction of axis \bar{i}_{1}

$$
\left\{\begin{array}{c}
\frac{\partial \sigma_{1}}{\partial x_{1}}+\frac{\partial \tau_{21}}{\partial x_{2}}+\frac{\partial \tau_{31}}{\partial x_{3}}+b_{1}=0 \tag{1.4a}\\
\cdots \\
\cdots
\end{array}\right.
$$

must be satisfied at all points inside the body

- equilibrium should be enforced on the DEFORMED configuration (strictly)

Unknown, unfortunately
"linear theory of elasticity"... assumption that the displacements of the body under the applied loads are very small, and hence the difference between deformed and undeformed is very small.
ii) Moment equilibrium

$$
\text { about axis } \bar{i}_{1} \rightarrow \tau_{23}-\tau_{32}=0
$$

\rightarrow "principle of reciprocity of shear stress" (Fig. 1.5)

- only 6 independent components in 9 stress components \rightarrow symmetry of the stress tensor

Fig. 1.5 Reciprocity of the shearing stresses acting on two orthogonal faces

1.1 The concept of Stress

1.1.3 Surface equilibrium eqn.

* At the outer face of the body.

$$
\underline{t}=t_{1} \bar{i}_{1}+t_{2} \bar{i}+t_{3} \bar{i}_{3}
$$

> Fig. 1.6 ... free body in the form of a differential tetrahedron bounded by $\left\{3\right.$ negative faces cut through the body in directions normal to axes $\bar{i}_{1}, \bar{i}_{2}, \bar{i}_{3}$ (A fourth face, ABC, of area $d A_{n}$

Fig. 1.6 A tetrahedron with one face along the outer surface of the body.

1.1 The concept of Stress

> Force equilibrium along \bar{i}_{1}, and dividing by $d A_{n}$

$$
\begin{equation*}
t_{1}=\sigma_{1} n_{1}+\tau_{21} n_{2}+\tau_{31} n_{3} \tag{1.9a}
\end{equation*}
$$

body force term vanishes since it is a h.o. differential term.
A body is said to be in equilibrium if eqn (1.4) is satisfied at all points inside the body and eqn (1.9) is satisfied at all points of its external surface.

1.2 Analysis of the state of stress at a point

> It is fully defined once the stress components acting on three mutually orthogonal faces at a point are known.

1.2.1 Stress components acting on an arbitrary face

> Fig 1.7... "Cauchy's tetrahedron" with a fourth face normal to unit vector $\overline{\boldsymbol{n}}$ of arbitrary orientation

Fig. 1.6 Differential tetrahedron element with one face, $A B C$, normal to unit vector \bar{n} and the other three faces normal to axes $\overline{i_{1}}, \overline{i_{2}}$ and $\overline{i_{3}}$, respectively.

1.2 Analysis of the state of stress at a point

- force equilibrium

$$
\tau_{1} d A_{1}+\tau_{2} d A_{2}+\tau_{3} d A_{3}=\tau_{n} d A_{n}+\underline{b} d V
$$

dividing by $d A_{n}$ and neglecting the body force term (since it is multiplied by a h.o. term)

$$
\underline{\tau}_{n}=\underline{\tau}_{1} n_{1}+\underline{\tau}_{2} n_{2}+\underline{\tau}_{3} n_{3}
$$

- Expanding the 3 stress vectors,

$$
\begin{equation*}
\underline{\tau}_{n}=\left(\sigma_{1} \bar{i}_{1}+\tau_{12} \bar{i}_{2}+\tau_{13} \bar{i}_{3}\right) n_{1}+\left(\tau_{21} \bar{i}_{1}+\sigma_{2} \bar{i}_{2}+\tau_{23} \bar{i}_{3}\right) n_{2}+\left(\tau_{31} \bar{i}_{1}+\tau_{32} \bar{i}_{2}+\sigma_{3} \bar{i}_{3}\right) n_{3} \tag{1.10}
\end{equation*}
$$

- To determine the direct stress σ_{n}, project this vector eqn in the direction of \bar{n}

$$
\begin{align*}
& \bar{n} \cdot \underline{\tau}_{n}=\left(\sigma_{1} n_{1}+\tau_{12} n_{2}+\tau_{13} n_{3}\right) n_{1}+\left(\tau_{21} n_{1}+\sigma_{2} n_{2}+\tau_{23} n_{3}\right) n_{2}+\left(\tau_{31} n_{1}+\tau_{32} n_{2}+\sigma_{3} n_{3}\right) n_{3} \\
& \sigma_{n}=\sigma_{1} n_{1}^{2}+\sigma_{2} n_{2}^{2}+\sigma_{3} n_{3}^{2}+2 \tau_{23} n_{2} n_{3}+2 \tau_{13} n_{1} n_{3}+2 \tau_{12} n_{1} n_{2} \tag{1.11}
\end{align*}
$$

- stress component acting in the plane of face $A B C: \tau_{n s}$
... by projecting Eq. (1.10) along vector \bar{s}

$$
\begin{equation*}
\tau_{n s}=\sigma_{1} n_{1} s_{1}+\sigma_{2} n_{2} s_{2}+\sigma_{3} n_{3} s_{3}+\tau_{12}\left(n_{2} s_{1}+n_{1} s_{2}\right)+\tau_{13}\left(n_{1} s_{3}+n_{3} s_{1}\right)+\tau_{23}\left(n_{2} s_{3}+n_{3} s_{2}\right) \tag{1.12}
\end{equation*}
$$

1.2 Analysis of the state of stress at a point

Eqns (1.11), (1.12)... Once the stress components acting on 3 mutually orthogonal faces are known, the stress components on a face of arbitrary orientation can be readily computed.
$>$ How much information is required to fully determine the state of stress at a point P of a solid?
Compute definition of the state of stress at a point only requires knowledge of the stress vectors, or equivalently of the stress tensor components, acting on three mutually orthogonal faces.

1.2.2 Principal stresses

> Is there a face orientation for which the stress vector is exactly normal to the face ? Does a particular orientation, \bar{n} exist for which the stress vector acting on this face consists solely of $\underline{\tau}_{n}=\sigma_{p} \bar{n}$, where σ_{p} is the yet unknown?
... projecting Eq.(1.10) along axes $\bar{i}_{1}, \bar{i}_{2}, \bar{i}_{3} \rightarrow 3$ scalar eqns

$$
\left[\begin{array}{ccc}
\sigma_{1}-\sigma_{p} & \tau_{12} & \tau_{13} \tag{1.13}\\
\tau_{21} & \sigma_{2}-\sigma_{p} & \tau_{23} \\
\tau_{31} & \tau_{32} & \sigma_{3}-\sigma_{p}
\end{array}\right]\left\{\begin{array}{l}
n_{1} \\
n_{2} \\
n_{3}
\end{array}\right\}=0
$$

1.2 Analysis of the state of stress at a point

- Determinant of the system $=0$, non-trivial sol. exists.

$$
\begin{gather*}
\longrightarrow \sigma_{p}^{3}-I_{1} \sigma_{p}^{2}+\underset{\uparrow}{\uparrow}{\underset{\sim}{2}}^{I_{2}} \sigma_{p}-I_{3}=0 \tag{1.14}\\
\text { "stress invariants" } \tag{1.15}
\end{gather*}
$$

- Solution of Eq (1.14) ... "principal stress"

3 solutions $\sigma_{p_{1}}, \sigma_{p_{2}}, \sigma_{p_{3}} \rightarrow$ non-trivial sol. for the direction cosines
"principal stress direction"
Homogeneous eqns \rightarrow arbitrary constant \rightarrow enforcing the normality condition

$$
\bar{n}_{1}^{2}+\bar{n}_{2}^{2}+\bar{n}_{3}^{2}=I
$$

1.2.3 Rotation of stresses

- orientation of basis $\underline{J^{*}}$ relative to \underline{J}
\rightarrow matrix of direction cosine, or rotation matrix $\underline{\underline{R}}$ (A.36)

$$
\underset{=}{\boldsymbol{R}}=\left[\begin{array}{lll}
\cos \left(\bar{i}_{1}^{*}, \bar{i}_{1}\right) & \cos \left({\overline{i_{2}}}^{*}, \bar{i}_{1}\right) & \cos \left(\bar{i}_{3}^{*}, \bar{i}_{1}\right) \tag{A.36}\\
\cos \left(\bar{i}_{1}^{*}, \bar{i}_{2}\right) & \cos \left({\overline{i_{2}}}^{*}, \bar{i}_{2}\right) & \cos \left(\bar{i}_{3}^{*}, \bar{i}_{2}\right) \\
\cos \left(\bar{i}_{1}^{*}, \bar{i}_{3}\right) & \cos \left({\overline{i_{2}},}_{*}^{i_{3}}\right) & \cos \left(\bar{i}_{3}^{*}, \bar{i}_{3}\right)
\end{array}\right]=\left[\begin{array}{ccc}
l_{1} & m_{1} & n_{1} \\
l_{2} & n_{2} & m_{2} \\
l_{3} & m_{3} & n_{3}
\end{array}\right]
$$

1.2 Analysis of the state of stress at a point

$\Rightarrow \mathrm{Eq}(1.11) \rightarrow \sigma_{1}^{*}$ in terms of those resolved in axis \underline{J}

$$
\begin{gather*}
\bar{n} \cdot \tau_{n}=\left(\sigma_{1} n_{1}+\tau_{12} n_{2}+\tau_{13} n_{3}\right) n_{1}+\left(\tau_{21} n_{1}+\sigma_{2} n_{2}+\tau_{23} n_{3}\right) n_{2}+\left(\tau_{31} n_{1}+\tau_{32} n_{2}+\sigma_{3} n_{3}\right) n_{3} \\
\sigma_{n}=\sigma_{1} n_{1}^{2}+\sigma_{2} n_{2}^{2}+\sigma_{3} n_{3}^{2}+2 \tau_{23} n_{2} n_{3}+2 \tau_{13} n_{1} n_{3}+2 \tau_{12} n_{1} n_{2} \tag{1.11}\\
\sigma_{1}^{*}=\sigma_{1} l_{1}^{2}+\sigma_{2} l_{2}^{2}+\sigma_{3} l_{3}^{2}+2 \tau_{23} l_{2} l_{3}+2 \tau_{13} l_{1} l_{3}+2 \tau_{12} l_{1} l_{2} \tag{1.18}
\end{gather*}
$$

l_{1}, l_{2}, l_{3} : direction cosines of unit vector \bar{i}_{1}^{*}
Similar eqns for $\quad \sigma_{2}^{*} \cdots m_{1}, m_{2}, m_{3}$

$$
\sigma_{3}^{*} \cdots n_{1}, n_{2}, n_{3}
$$

Shear component : Eq. (1.12) \rightarrow

$$
\begin{equation*}
\tau_{12}^{*}=\sigma_{1} l_{1} m_{1}+\sigma_{2} l_{2} m_{2}+\sigma_{3} l_{3} m_{3}+\tau_{12}\left(l_{2} m_{1}+l_{1} m_{2}\right)+\tau_{13}\left(l_{3} m_{1}+l_{1} m_{3}\right)+\tau_{23}\left(l_{2} m_{3}+l_{3} m_{2}\right) \tag{1.19}
\end{equation*}
$$

Compact matrix eqn.

$$
\left[\begin{array}{ccc}
\sigma_{1}^{*} & \tau_{12}^{*} & \tau_{13}^{*} \tag{1.20}\\
\tau_{21}^{*} & \sigma_{2}^{*} & \tau_{23}^{*} \\
\tau_{31}^{*} & \tau_{32}^{*} & \sigma_{3}^{*}
\end{array}\right]=\underline{R}^{T}\left[\begin{array}{ccc}
\sigma_{1} & \tau_{12} & \tau_{13} \\
\tau_{21} & \sigma_{2} & \tau_{23} \\
\tau_{31} & \tau_{32} & \sigma_{3}
\end{array}\right] \underline{\underline{R}}
$$

1.2 Analysis of the state of stress at a point

> "Stress invariant". ... invariant w.r.t. a change of coordinate system. (1.21)

$$
\begin{align*}
& I_{1}=\sigma_{1}^{*}+\sigma_{2}^{*}+\sigma_{3}^{*}=\sigma_{1}+\sigma_{2}+\sigma_{3} \tag{1.21a}\\
& I_{2}=\sigma_{1}^{*} \sigma_{2}^{*}+\sigma_{2}^{*} \sigma_{3}^{*}+\sigma_{3}^{*} \sigma_{1}^{*}-\tau_{12}^{* 2}-\tau_{13}^{* 2}-\tau_{23}^{* 2} \\
& =\sigma_{1} \sigma_{2}+\sigma_{2} \sigma_{3}+\sigma_{3} \sigma_{1}-\tau_{12}^{2}-\tau_{13}^{2}-\tau_{23}^{2}, \tag{1.21b}\\
& I_{3}=\sigma_{1}^{*} \sigma_{2}^{*} \sigma_{3}^{*}-\sigma_{1}^{*} \tau_{23}^{* 2}-\sigma_{2}^{*} \tau_{13}^{* 2}-\sigma_{3}^{*} \tau_{12}^{* 2}+2 \tau_{12}^{* 2} \tau_{13}^{* 2} \tau_{23}^{* 2} \\
& =\sigma_{1} \sigma_{2} \sigma_{3}-\sigma_{1} \tau_{23}^{2}-\sigma_{2} \tau_{13}^{2}-\sigma_{3} \tau_{12}^{2}+2 \tau_{12} \tau_{13} \tau_{23} \tag{1.21c}
\end{align*}
$$

1.3 The state of plane stress

> All stress components acting along the direction of axis $\overline{i_{3}}$ are assumed to vanish or to be negligible. Only non-vanishing components : $\sigma_{1}, \sigma_{2}, \tau_{12}$
\uparrow Independent of x_{3}
Vary thin plate or sheet subject to loads applied in its own plane (Fig. 1.11)

1.3 The state of plane stress

1.3.1 Equilibrium eqns

$>$ Considerably simplified from the general, 3-D case $\rightarrow 2$ remaining eqns

$$
\begin{equation*}
\frac{\partial \sigma_{1}}{\partial x_{1}}+\frac{\partial \tau_{21}}{\partial x_{2}}+b_{1}=0, \quad \frac{\partial \tau_{12}}{\partial x_{1}}+\frac{\partial \sigma_{2}}{\partial x_{2}}+b_{2}=0 \tag{1.26}
\end{equation*}
$$

$>$ Surface tractions

$$
\begin{equation*}
t_{1}=n_{1} \sigma_{1}+n_{2} \tau_{21}, \quad t_{2}=n_{1} \tau_{121}+n_{2} \sigma_{2} \tag{1.27}
\end{equation*}
$$

Very thin plate or sheet subject to loads applied in its own plane Fig. 1.11

Fig. 1.11 Plane stress problem in thin sheet with in-plane tractions

1.3 The state of plane stress

$>$ Fig. $1.11 \ldots$ outer normal unit vector $\bar{n}=n_{1} \bar{i}_{1}+n_{2} \bar{i}_{2}$,

$$
\begin{array}{ll}
& n_{1}=\cos \theta, n_{2}=\sin \theta, n_{3}=0 \\
\text { tangent unit vector } & \bar{s}=s_{1} \overline{i_{1}}+s_{2} \overline{i_{2}} \\
& s_{1}=-\sin \theta, s_{2}=\cos \theta, s_{3}=0 \tag{1.28}
\end{array}
$$

Eq. $(1.11) \rightarrow \quad t_{n}=\cos ^{2} \theta \sigma_{1}+\sin ^{2} \theta \sigma_{2}+2 \sin \theta \cos \theta \tau_{12}$
Eq. (1.12) $\rightarrow \quad t_{s}=\sin \theta \cos \theta\left(\sigma_{2}-\sigma_{1}\right)+\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \tau_{12}$

1.3.2 Stress acting on an arbitrary face within the sheet

$>$ Fig.1.12 : 2-D version of Cauchy's tetrahedron (Fig. 1.7)

Fig. 1.12 Differential element with a face at angle θ

1.3 The state of plane stress

- Equilibrium of forces

$$
\underline{\tau}_{2} d x_{1}+\underline{\tau}_{1} d x_{2}=\underline{\tau}_{n} d s+\underline{b} d x_{1} d x_{2} \frac{1}{2}
$$

dividing by $d s$

$$
\underline{\tau}_{n}=\underline{\tau}_{1} n_{1}+\underline{\tau}_{2} n_{2}-\underline{b} d x_{1} d x_{2} \frac{1}{2 d s}
$$

\uparrow Neglected since multiplied by h.o. term

$$
\begin{equation*}
\underline{\tau}_{n}=\left(\sigma_{1} \bar{i}_{1}+\tau_{12} \bar{i}_{2}\right) \cos \theta+\left(\tau_{21} \bar{i}_{1}+\sigma_{2} \bar{i}_{2}\right) \sin \theta \tag{1.30}
\end{equation*}
$$

- Projecting in the dir. of unit vector $\bar{n} \rightarrow \sigma_{n}$

$$
\begin{equation*}
\sigma_{n}=\sigma_{1} \cos ^{2} \theta+\sigma_{2} \sin ^{2} \theta+2 \tau_{12} \cos \theta \sin \theta \tag{1.31}
\end{equation*}
$$

- Projecting in the dir. of normal to $\bar{n} \rightarrow \tau_{n s}$

$$
\begin{equation*}
\tau_{n s}=-\sigma_{1} \cos \theta \sin \theta+\sigma_{2} \cos \theta \sin \theta+\tau_{12}\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \tag{1.32}
\end{equation*}
$$

\rightarrow Knowledge of $\sigma_{1}, \sigma_{2}, \tau_{12}$ or 2 orthogonal faces allows computation of the stress components acting on a face with an arbitrary orientation

1.3 The state of plane stress

1.3.3 Principal stress

> Simply write Eqn. (1.13)-(1.15) with $\sigma_{3}=\tau_{13}=\tau_{23}=0$ or, using Eq. (1.31)... particular orientation, θ_{p}, that maximizes (or minimizes) σ_{n}

$$
\begin{equation*}
\rightarrow \frac{d \sigma_{n}}{d \theta}=0 \rightarrow \tan 2 \theta_{p}=\frac{2 \tau_{12}}{\sigma_{1}-\sigma_{2}}=\frac{\sin 2 \theta_{p}}{\cos 2 \theta_{p}} \tag{1.33}
\end{equation*}
$$

2 sol.s θ_{p} and $\theta_{p}+\pi / 2$ corresponding to 2 mutually orthogonal principal stress directions.

$$
\rightarrow\left\{\begin{array}{c}
\sin 2 \theta_{p}=\frac{\tau_{12}}{\Delta}, \cos 2 \theta_{p}=\frac{\left(\sigma_{1}-\sigma_{2}\right)}{2 \Delta}, \tag{1.34}\\
\text { where } \Delta \text { is determined by } \\
\sin ^{2} 2 \theta_{p}+\cos ^{2} 2 \theta_{p}=1
\end{array}\right.
$$

Unique solution for θ_{p}

- Max./Min. axial stress : "principal stress" by introducing Eq.(1.34) into (1.31)

$$
\begin{equation*}
\sigma_{p 1}=\frac{\sigma_{1}+\sigma_{2}}{2}+\Delta \quad ; \quad \sigma_{p 2}=\frac{\sigma_{1}+\sigma_{2}}{2}-\Delta \tag{1.36}
\end{equation*}
$$

Where the shear stress vanishes

1.3 The state of plane stress

> Max. shear stress $\rightarrow \theta_{s} \rightarrow \frac{d \tau_{n s}}{d \theta}=0$ using Eq.(1.32)

$$
\begin{equation*}
\rightarrow \tan 2 \theta_{s}=-\frac{\sigma_{1}-\sigma_{2}}{2 \tau_{12}}=\frac{1}{\tan 2 \theta_{p}} \tag{1.37}
\end{equation*}
$$

2 sol.s θ_{s} and $\theta_{s}+\pi / 2$ corresponding to 2 mutually orthogonal faces directions.

- Max. shear stress $\tau_{\max }=\Delta=\frac{\sigma_{p 1}-\sigma_{p 2}}{2}$

$$
\begin{equation*}
\theta_{s}=\theta_{p}-\frac{\pi}{4} \tag{1.41}
\end{equation*}
$$

Max. shear stress occurs at a face inclined at a 45° angle w.r.t. the principal stress directions

$$
\begin{equation*}
\sigma_{1 s}=\sigma_{2 s}=\frac{\sigma_{1}+\sigma_{2}}{2}=\frac{\sigma_{p 1}+\sigma_{p 2}}{2} \tag{1.42}
\end{equation*}
$$

1.3 The state of plane stress

1.3.4 Rotation of Stresses

- Eq $(1.31) \longrightarrow \sigma_{1}^{*}=\sigma_{1} \cos ^{2} \theta+\sigma_{2} \sin ^{2} \theta+2 \tau_{12} \sin \theta \cos \theta$

$$
\begin{equation*}
(1.32) \longrightarrow \tau_{12}^{*}=-\sigma_{1} \sin \theta \cos \theta+\sigma_{2} \sin \theta \cos \theta+\tau_{12}\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \tag{1.45}
\end{equation*}
$$

- Compact matrix form

$$
\left[\begin{array}{l}
\sigma_{1}^{*} \tag{1.47}\\
\sigma_{2}^{*} \\
\tau_{12}^{*}
\end{array}\right]=\left[\begin{array}{ccc}
\cos ^{2} \theta & \sin ^{2} \theta & 2 \cos \theta \sin \theta \\
\sin ^{2} \theta & \cos ^{2} \theta & -2 \cos \theta \sin \theta \\
-\sin \theta \cos \theta & \sin \theta \cos \theta & \cos ^{2} \theta-\sin ^{2} \theta
\end{array}\right]\left[\begin{array}{l}
\sigma_{1} \\
\sigma_{2} \\
\tau_{12}
\end{array}\right]
$$

can be easily inverted by simply replacing θ by $-\theta$

- Knowledge of the stress components $\sigma_{1}, \sigma_{2}, \tau_{12}$ on 2 orthogonal faces allows computation of those acting on a face with an arbitrary orientation

1.3 The state of plane stress

1.3.5 Special state of stresses

i) Hydrostatic stress state

$$
\begin{aligned}
& \sigma_{p_{1}}=\sigma_{p_{2}}=P \quad \text { "hydrostatic pressure" } \\
& \tau_{12}=0 \quad \text { With any arbitrary orientation }
\end{aligned}
$$

ii) Pure shear state

$$
\begin{equation*}
\sigma_{p_{2}}=-\sigma_{p_{1}} \tag{Fig.1.13}
\end{equation*}
$$

At the face inclined at a 45° angle w.r.t. the principal stress direction

$$
\begin{equation*}
\tau_{12}^{*}=-\sigma_{p_{1}} \quad \sigma_{1}^{*}=\sigma_{2}^{*}=0 \tag{1.51}
\end{equation*}
$$

Fig. 1.13. A differential plane stress element in pure shear.
iii) Stress state in thin-walled pressure vessels

Fig. 14 ... cylindrical pressure vessel subjected to internal pressure P_{i}

Fig. 1.14. Long, thin-walled cylindrical pressure vessel (left) and free body diagram (right) used to calculate in-plane stresses σ_{h} and σ_{a}.

1.3 The state of plane stress

2 in-plane stress components $-\sigma_{a}$ (axial direction)
Possibly a shear stress, $\tau_{a h}$

- Axial force equilibrium $\sigma_{a} \pi R t=p_{i} \pi R^{2}$ Area 2 Left/right

Area of cylinder cross-section in the direction of axial

$$
\sigma_{a}=p_{i} R^{2} / 2 t
$$

- tangential (hoop) direction

$$
\begin{array}{ll}
2 \sigma_{h} b t=p_{i} 2 R b \\
\sigma_{h}=p_{i} R / t \\
\tau_{a h}=0 &
\end{array}
$$

1.3.6 Mohr's circle for plane stress

- $\sigma_{p_{1},} \sigma_{p_{2}}$... Principal stresses at a point
- Eq.(1.49) -> stresses acting on a face oriented at an angle θ w.r.t. the principal stress direction

$$
\begin{equation*}
\sigma^{*}=\sigma_{a}+R \cos 2 \theta \quad \tau^{*}=-R \sin 2 \theta \tag{1.52}
\end{equation*}
$$

1.3 The state of plane stress

where

$$
\begin{align*}
& \sigma_{a}=\left(\sigma_{p_{1}}+\sigma_{p_{2}}\right) / 2, R=\left(\sigma_{p_{1}}-\sigma_{p_{2}}\right) / 2 \\
& \Rightarrow\left(\sigma^{*}-\sigma_{a}\right)^{2}+\left(\tau^{*}\right)^{2}=R^{2} \tag{1.53}
\end{align*}
$$

- equation of a circle "Mohr's circle"
σ^{*} :horizontal axis, τ^{*} :vertical axis ("inverted") center at a coordinate σ_{a} on the horizontal axis R :radius,
......each point on Mohr's circle represents the state of stress acting at a face at a specific orientation
- Observations

Fig. 1.15. Mohr's circle for visualizing plane sifess state.

1) At point, $P_{1}, \sigma^{*}=\sigma_{p_{1}}, \tau^{*}=0$.....principal stress direction second principal stress direction
2) At point $E_{1}, \theta=\frac{\pi}{4}, \tau_{\max }^{*}=R=\left(\sigma_{p_{1}}-\sigma_{p_{2}}\right) / 2->$ Max. shear stress orientation E_{2}
3) At point, A_{1}, A_{2} two faces oriented 90° apart, the shear stresses are equal in magnitude and of opposite sign -> principle of reciprocity

1.3 The state of plane stress

Construction procedure

1) First point A_{1} at $\left(\sigma_{1}, \tau_{12}\right)$
2) Second point $A_{2},\left(\sigma_{2},-\tau_{12}\right)$ at a 90° angle counterclockwise w.r.t. the first point
3) Straight line joining A_{1} and A_{2}

Fig. 1.16. Mohr's circle construction proce-
dure.
4) Stress component at β an angle

- Important features

1) Principal stress $\sigma_{p_{1}}, \sigma_{p_{2}}->$ points P_{1} and P_{2}, direct stress Max/Min. shear stress $=0$
2) Max. shear stress........ Vertical line $E_{1}=$ radius, $\tau_{\max }=\left(\sigma_{P_{1}}-\sigma_{P_{2}}\right) / 2$

3) Stress components acting on 2 mutually orthogonal faces 2 diametrically opposite points on Mohr's circle
4) All the point on Mohr's circle represent the same state of stress at one point of the solid

1.3 The state of plane stress

1.3.7 Lame's ellipse

Eq. (1.30) \rightarrow When selecting the principal stress direction

$$
\longrightarrow \underline{\tau}_{n}=\sigma_{1 p} \cos \theta \bar{i}_{1}^{*}+\sigma_{2 p} \sin \theta \bar{i}_{2}^{*}
$$

$\left(x_{1}, x_{2}\right)$: Tip of the stress vector, $\underline{\tau}_{n}=x_{1} \bar{i}_{1}^{*}+x_{2} \bar{i}_{2}^{*}$

$$
x_{1}=\sigma_{1 p} \cos \theta \quad x_{2}=\sigma_{2 p} \sin \theta
$$

Eliminating θ

$$
\begin{equation*}
\left(\frac{x_{1}}{\sigma_{1 p}}\right)^{2}+\left(\frac{x_{2}}{\sigma_{2 p}}\right)^{2}=1 \tag{1.54}
\end{equation*}
$$

Fig. 1.17. Lamé's ellipse. Stress vector $\underline{\tau}_{n}$ corresponds to positive principal stresses whereas stress vector $\underline{\tau}_{n}^{\prime}$ corresponds to $\sigma_{p 1}>0$ and $\sigma_{p 2}<0$.
\longrightarrow Equation of ellipse with semi-axis equal to $\left|\sigma_{p_{1}}\right|$ and $\left|\sigma_{p_{2}}\right|$ (Fig 1.17)

- Pure shear....ellipse \longrightarrow circle (Fig.1.18)

Fig. 1.18. Lamé's ellipse for the case of pure shear; the three figures illustrate the stress vectors acting on faces at 0,45 , and 90 degrees with respect to axis $\vec{\imath}_{1}^{*}$.

1.4 The concept of strain

State of strain \qquad characterization of the deformation in the neighborhood of a material point in a solid
at a given point P , located by a position vector $\underline{r}=x_{1} \bar{i}_{1}+x_{2} \bar{i}_{2}+x_{3} \bar{i}_{3}$ (Fig.1.22)
small rectangular parallelepiped PQRST of differential size
" reference configuration," undeformed state
\longrightarrow "deformed configuration" PQRST

Fig. 1.22. The neighborhood of point \mathbf{P} in the reference and deformed configurations.

- displacement vector \underline{u}..... measure of how much a material point moves.
two
parts
Rigid body motion.....translation, rotation -> does not produce strain
Deformation or straining -> strain-displacement relation

1.4 The concept of strain

1.4.1 The state of strain at a point

- Material line PR in the ref. conf. \longrightarrow Material line PR in the ref. conf. in the deformed configure
- 2 factors in the measure of state of strain

Stretching of a material line \qquad $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}$
assumed to be still straight, but a parallelogram

i) Relative elongations or extensional strain

$$
\begin{align*}
& \varepsilon_{1}=\frac{\|P R\|_{\text {def }}-\|P R\|_{\text {ref }}}{\|P R\|_{\text {def }}} \quad \begin{array}{l}
\|. . .\|: \text { magnitude }
\end{array} \tag{1.57}\\
& \|P R\|_{\text {ref }}=\left\|d x_{1} \overline{i_{1}}\right\|=d x_{1} \\
& \|P R\|_{\text {def }}=\left\|d x_{1} \overline{i_{1}}+\underline{u}\left(x_{1}+d x_{1}\right)-\underline{u}\left(x_{1}\right)\right\| \\
& \|P R\|_{\text {def }}=\left\|d x_{1} \bar{i}_{1}++\underline{u}\left(x_{1}\right)+\frac{\partial \underline{u}}{\partial x_{1}} d x_{1}-\underline{u}\left(x_{1}\right)\right\|=\left\|d x_{1} \overline{i_{1}}+\frac{\partial \underline{u}}{\partial x_{1}} d x_{1}\right\| \\
& \quad=\left\|\bar{i}_{1} d x_{1}+\left(\frac{\partial u_{1}}{\partial x_{1}} \overline{i_{1}}+\frac{\partial u_{2}}{\partial x_{1}} \overline{i_{2}}+\frac{\partial u_{3}}{\partial x_{1}} \overline{i_{3}}\right) d x_{1}\right\|
\end{align*}
$$

1.4 The concept of strain

$$
=\sqrt{1+2 \frac{\partial u_{1}}{\partial x_{1}}+\left(\frac{\partial u_{1}}{\partial x_{1}}\right)^{2}+\left(\frac{\partial u_{2}}{\partial x_{1}}\right)^{2}+\left(\frac{\partial u_{3}}{\partial x_{1}}\right)^{2}} d x_{1}
$$

Then

$$
\begin{equation*}
\varepsilon_{1}=\sqrt{1+2 \frac{\partial u_{1}}{\partial x_{1}}+\left(\frac{\partial u_{1}}{\partial x_{1}}\right)^{2}+\left(\frac{\partial u_{2}}{\partial x_{1}}\right)^{2}+\left(\frac{\partial u_{3}}{\partial x_{1}}\right)^{2}} d x_{1}-1 \tag{1.60}
\end{equation*}
$$

- fundamental assumption of linear elasticity.... all displacement components remain very small so that all $2^{\text {nd }}$ order terms can be neglected.
And, using the binomial expansion

$$
\left.\begin{array}{rl}
\varepsilon_{1} & \cong 1+\frac{\partial u_{1}}{\partial x_{1}}-1=\frac{\partial u_{1}}{\partial x_{1}} \tag{1.62}\\
\varepsilon_{2}=\frac{\partial u_{2}}{\partial x_{2}}, \varepsilon_{3}=\frac{\partial u_{3}}{\partial x_{3}}
\end{array}\right] \text { "direct strains" or "axial strains" }
$$

1.4 The concept of strain

ii) Angular distortions or shear strains
$\gamma_{23} \ldots$ between two material lines PT and PS, defined as the change of the initially right angle

$$
\begin{align*}
\gamma_{23}=\langle T P S\rangle_{\text {ref }}- & \langle T P S\rangle_{\text {def }}=\frac{\pi}{2}-\langle T P S\rangle_{\text {def }} \tag{1.64}\\
\uparrow & \text { Non-dimensional quantities }
\end{align*}
$$

<......> : angle between segment

$$
\begin{equation*}
\sin \gamma_{23}=\sin \left(\frac{\pi}{2}-\langle T P S\rangle_{d e f}\right)=\cos \langle T P S\rangle_{d e f} \tag{1.65}
\end{equation*}
$$

by law of cosine

$$
\begin{gathered}
\|T S\|_{d e f}=\|P T\|_{d e f}^{2}+\|P S\|_{d e f}^{2}-2 \cos \langle T P S\rangle_{d e f}\|P T\|_{d e f}\|P S\|_{d e f} \\
\gamma_{23}=\arcsin \frac{\|P T\|_{d e f}^{2}+\|P S\|_{d e f}^{2}-\|T S\|_{d e f}^{2}}{2\|P T\|_{d e f}\|P S\|_{d e f}} 2 \sin \gamma_{23} \\
P T_{d e f}=\left(\overline{i_{3}}+\frac{\partial \underline{u}}{\partial x_{3}}\right) d x_{3}=A, P S_{d e f}=\left(\overline{i_{2}}+\frac{\partial \underline{u}}{\partial x_{2}}\right) d x_{2}=B \\
P S_{d e f}=P S_{d e f}-P T_{d e f}=B-A
\end{gathered}
$$

1.4 The concept of strain

Numerator

$$
N=2\left(\frac{\partial u_{2}}{\partial x_{3}}+\frac{\partial u_{3}}{\partial x_{2}}+\frac{\partial u_{1}}{\partial x_{2}} \frac{\partial u_{1}}{\partial x_{3}}+\frac{\partial u_{2}}{\partial x_{2}} \frac{\partial u_{2}}{\partial x_{3}}+\frac{\partial u_{3}}{\partial x_{2}} \frac{\partial u_{2}}{\partial x_{3}}\right) d x_{2} d x_{3}
$$

Denominator

$$
D=2 \sqrt{A \cdot A} \sqrt{B \cdot B}
$$

-with the help of small displacement assumption

\[

\]

-Strain-displacement relationship, Eqs. (1.63), (1,71) Under the small displacement assumption

Large displacement \rightarrow Eqns. (1.60),(1.67) should be used

1.4 The concept of strain

iii) Rigid body rotation

$$
\begin{equation*}
\omega_{1}=\frac{1}{2}\left(\frac{\partial u_{3}}{\partial x_{2}}-\frac{\partial u_{2}}{\partial x_{3}}\right) \tag{1.73a}
\end{equation*}
$$

Rotation vector $\underline{\omega}^{T}=\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\} \ldots .$. .the rotation of the solid about axes $\bar{i}_{1}, \bar{i}_{2}, \bar{i}_{3}$ respectively

1.4.2 The volumetric strain

- After deformation

$$
\begin{equation*}
v \approx\left(1+\varepsilon_{1}\right)\left(1+\varepsilon_{2}\right)\left(1+\varepsilon_{3}\right) d x_{1} d x_{2} d x_{3} \approx\left(1+\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}\right) d x_{1} d x_{2} d x_{3} \tag{1.74}
\end{equation*}
$$

where high order strain quantities are neglected

- relative change in volume

$$
\begin{equation*}
e=\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3} \quad \text { "volumetric strain" } \tag{1.75}
\end{equation*}
$$

1.5 Analysis of the state of strain at a point

- Arbitrary reference frame $\underline{J}^{*}=\left(\bar{i}_{1}^{*}, \bar{i}_{2}^{*}, \overline{\dot{b}}_{3}^{*}\right)$
-> Strain-displacement relationship in $\underline{J}^{*}(1.76),(1.77)$

1.5.1 Rotation of strains

- chain rule

$$
\begin{equation*}
\varepsilon_{1}^{*}=\frac{\partial u_{1}^{*}}{\partial x_{1}^{*}}=\frac{\partial u_{1}^{*}}{\partial x_{1}} \frac{\partial x_{1}}{\partial x_{1}^{*}}+\frac{\partial u_{1}^{*}}{\partial x_{2}} \frac{\partial x_{2}}{\partial x_{1}^{*}}+\frac{\partial u_{1}^{*}}{\partial x_{3}} \frac{\partial x_{3}}{\partial x_{1}^{*}}=\frac{\partial u_{1}^{*}}{\partial x_{1}} l_{1}+\frac{\partial u_{1}^{*}}{\partial x_{2}} l_{2}+\frac{\partial u_{1}^{*}}{\partial x_{3}} l_{3} \tag{1.78}
\end{equation*}
$$

Where Eq. (A.39) is used

- Next, u_{1}^{*} in terms of the components in \underline{J}

$$
\begin{equation*}
\varepsilon_{1}^{*}=l_{1} \frac{\partial}{\partial x_{1}}\left(l_{1} u_{1}+l_{2} u_{2}+l_{3} u_{3}\right)+l_{2} \frac{\partial}{\partial x_{2}}\left(l_{1} u_{1}+l_{2} u_{2}+l_{3} u_{3}\right)+l_{3} \frac{\partial}{\partial x_{3}}\left(l_{1} u_{1}+l_{2} u_{2}+l_{3} u_{3}\right) \tag{1.79}
\end{equation*}
$$

Using Eq. (1.63) and (1.71)

$$
\varepsilon_{1}^{*}=\varepsilon_{1} l_{1}^{2}+\varepsilon_{2} l_{2}^{2}+\varepsilon_{3} l_{3}^{2}+\gamma_{12} l_{1} l_{2}+\gamma_{13} l_{1} l_{3}+\gamma_{23} l_{2} l_{3}
$$

1.5 Analysis of the state of strain at a point

Similar eqns. (1.80), (1.81)

$\stackrel{\uparrow}{\text { Tensor shear strain component }} \uparrow$

$$
\left\{\begin{array}{l}
p_{1} \tag{A.39}\\
p_{2} \\
p_{3}
\end{array}\right\}=\underline{=}\left\{\begin{array}{l}
p_{1}^{*} \\
p_{2}^{*} \\
p_{3}^{*}
\end{array}\right\} \square\left\{\begin{array}{l}
p_{1}^{*} \\
p_{2}^{*} \\
p_{3}^{*}
\end{array}\right\}=\underline{R}^{T}\left\{\begin{array}{l}
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right\}
$$

- Compact matrix form

$$
\left[\begin{array}{ccc}
\varepsilon_{1}^{*} & \varepsilon_{12}^{*} & \varepsilon_{13}^{*} \tag{1.83}\\
\varepsilon_{12}^{*} & \varepsilon_{2}^{*} & \varepsilon_{23}^{*} \\
\varepsilon_{13}^{*} & \varepsilon_{23}^{*} & \varepsilon_{3}^{*}
\end{array}\right]=\underline{R}^{T}\left[\begin{array}{ccc}
\varepsilon_{1} & \varepsilon_{12} & \varepsilon_{13} \\
\varepsilon_{13} & \varepsilon_{2} & \varepsilon_{23} \\
\varepsilon_{13} & \varepsilon_{23} & \varepsilon_{3}
\end{array}\right] \underline{R}
$$

1.5.2 Principal strains

- Is there a coordinate system \underline{J}^{*} for which the shear strains vanish?

$$
\left[\begin{array}{ccc}
\varepsilon_{1}^{*} & 0 & 0 \\
0 & \varepsilon_{2}^{*} & 0 \\
0 & 0 & \varepsilon_{3}^{*}
\end{array}\right]=\underline{R}^{T}\left[\begin{array}{ccc}
\varepsilon_{1} & \varepsilon_{12} & \varepsilon_{13} \\
\varepsilon_{13} & \varepsilon_{2} & \varepsilon_{23} \\
\varepsilon_{13} & \varepsilon_{23} & \varepsilon_{3}
\end{array}\right] \underline{\underline{R}}
$$

1.5 Analysis of the state of strain at a point

- Pre-multiplying $\underset{\underline{R}}{ }$ and reversing the equality

$$
\left[\begin{array}{lll}
\varepsilon_{1} & \varepsilon_{12} & \varepsilon_{13} \\
\varepsilon_{13} & \varepsilon_{2} & \varepsilon_{23} \\
\varepsilon_{13} & \varepsilon_{23} & \varepsilon_{3}
\end{array}\right] \underline{=}=\underline{R}\left[\begin{array}{ccc}
\varepsilon_{p_{1}} & 0 & 0 \\
0 & \varepsilon_{p_{2}} & 0 \\
0 & 0 & \varepsilon_{p_{3}}
\end{array}\right]
$$

where the orthogonality of $\underset{\underline{R}}{ }$, Eq. (A.37), is used

$$
\underset{=}{R^{T}} R=\left[\begin{array}{ccc}
l_{1} & l_{2} & l_{3} \tag{A.37}\\
m_{1} & m_{2} & m_{3} \\
n_{1} & n_{2} & n_{3}
\end{array}\right]\left[\begin{array}{lll}
l_{1} & m_{1} & n_{1} \\
l_{2} & m_{2} & n_{2} \\
l_{3} & m_{3} & n_{3}
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\underset{=}{I}
$$

- $\varepsilon_{p_{1}}, \varepsilon_{p_{2}}, \varepsilon_{p_{3}}$: sol. of 3 system of 3 eqns

$$
\left[\begin{array}{ccc}
\varepsilon_{1} & \varepsilon_{12} & \varepsilon_{13} \\
\varepsilon_{13} & \varepsilon_{2} & \varepsilon_{23} \\
\varepsilon_{13} & \varepsilon_{23} & \varepsilon_{3}
\end{array}\right]\left\{\begin{array}{l}
n_{1} \\
n_{2} \\
n_{3}
\end{array}\right\}=\varepsilon_{p}\left\{\begin{array}{l}
n_{1} \\
n_{2} \\
n_{3}
\end{array}\right\}
$$

1.5 Analysis of the state of strain at a point

Determinant of the system vanishes-> non-trivial solution.

Cubic eqn. $\varepsilon_{p}^{3}-I_{1} \varepsilon_{p}^{2}+I_{2} \varepsilon_{p}-I_{3}=0$
$4 \begin{aligned} & \text { "Strain } \\ & \text { invariant" }\end{aligned}$
3 sol: $\varepsilon_{p_{1}}, \varepsilon_{p_{2}}, \varepsilon_{p_{3}}->$ corresponding "principal strain direction"
-> homogeneous eqn.-> arbitrary constant ->normality condition

- displacement component along $\overline{\dot{i}_{3}}$ is assumed to vanish, or to be negligible

Example: a very long buried pipe aligned with $\overline{i_{3}}$ dir.

1.6 The state of plane strain

1.6.1 Strain-displacement relations for plane strain

$$
\begin{equation*}
\varepsilon_{1}=\frac{\partial u_{1}}{\partial x_{1}} \quad \varepsilon_{2}=\frac{\partial u_{2}}{\partial x_{2}} \quad \gamma_{12}=\frac{\partial u_{1}}{\partial x_{2}}+\frac{\partial u_{2}}{\partial x_{1}} \tag{1.87}
\end{equation*}
$$

1.6.2 Rotation of strains

- chain rule

$$
\varepsilon_{1}^{*}=\frac{\partial u_{1}^{*}}{\partial x_{1}^{*}}=\frac{\partial u_{1}^{*}}{\partial x_{1}} \frac{\partial x_{1}}{\partial x_{1}^{*}}+\frac{\partial u_{1}^{*}}{\partial x_{2}} \frac{\partial x_{2}}{\partial x_{1}^{*}}=\frac{\partial u_{1}^{*}}{\partial x_{1}} \uparrow_{\mathrm{Eq}(\mathrm{~A} .43)} \cos \theta+\frac{\partial u_{1}^{*}}{\partial x_{2}} \sin \theta
$$

1.6 The state of plane strain

- u_{1}^{*} in terms of those in \underline{J}

$$
\begin{equation*}
\varepsilon_{1}^{*}=\cos \theta \frac{\partial}{\partial x_{1}}\left(u_{1} \cos \theta+u_{2} \sin \theta\right)+\sin \theta \frac{\partial}{\partial x_{2}}\left(u_{1} \cos \theta+u_{2} \sin \theta\right) \tag{1.88}
\end{equation*}
$$

-Then,

$$
\begin{equation*}
\varepsilon_{1}^{*}=\cos ^{2} \theta \varepsilon_{1}+\sin ^{2} \theta \varepsilon_{2}+\sin \theta \cos \theta \gamma_{12} \tag{1.89}
\end{equation*}
$$

-Matrix form

$$
\left\{\begin{array}{c}
\varepsilon_{1}^{*} \tag{1.91}\\
\varepsilon_{2}^{*} \\
\varepsilon_{12}^{*}
\end{array}\right\}=\left[\begin{array}{ccc}
\cos ^{2} \theta & \sin ^{2} \theta & 2 \sin \theta \cos \theta \\
\sin ^{2} \theta & \cos ^{2} \theta & -2 \sin \theta \cos \theta \\
-\sin \theta \cos \theta & \sin \theta \cos \theta & \cos ^{2} \theta-\sin ^{2} \theta
\end{array}\right]\left\{\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\varepsilon_{12}
\end{array}\right\}
$$

can be readily inverted by replacing θ by $-\theta$

1.6 The state of plane strain

1.6.3 Principal strains

- θ_{p}, in which the max (or min) elongation occurs

$$
\begin{gather*}
\longrightarrow \frac{d \varepsilon_{1}^{*}}{d \theta}=0=-\frac{\varepsilon_{1}-\varepsilon_{2}}{2} 2 \sin 2 \theta_{p}+\frac{\gamma_{12}}{2} 2 \cos 2 \theta_{p}=0 \tag{1.95}\\
\tan 2 \theta_{p}=\frac{\gamma_{12} / 2}{\left(\varepsilon_{1}-\varepsilon_{2}\right) / 2} \tag{1.96}
\end{gather*}
$$

2 sols. --- $\theta_{p_{1}} \theta_{p_{2}}=\theta_{p_{1}}+\frac{\pi}{2} \ldots . .2$ mutually orthogonal principal strain directions

$$
\begin{equation*}
\varepsilon_{p_{1}}=\frac{\varepsilon_{1}+\varepsilon_{2}}{2}+\Delta \quad \varepsilon_{p_{2}}=\frac{\varepsilon_{1}+\varepsilon_{2}}{2}-\Delta \tag{1.99}
\end{equation*}
$$

where shear strain vanishes

- The orientation of the $\left\{\begin{array}{c}\text { Principal stresses } \\ \text { Principal strains }\end{array}\right\}$ are not necessarily identical

1.6 The state of plane strain

1.6.4 Mohr's circle for plane strain

- Strains along a direction defined by angle θ w.r.t. the principal strain direction

$$
\begin{equation*}
\varepsilon^{*}=\varepsilon_{a}+R \cos 2 \theta \quad \frac{\gamma^{*}}{2}=-R \sin 2 \theta \tag{1.100}
\end{equation*}
$$

Where,

$$
\begin{gather*}
\varepsilon_{a}=\frac{\left(\varepsilon_{p_{1}}+\varepsilon_{p_{2}}\right)}{2} \quad R=\frac{\left(\varepsilon_{p_{1}}-\varepsilon_{p_{2}}\right)}{2} \\
=>\left(\varepsilon^{*}-\varepsilon_{a}\right)^{2}+\left(\frac{\gamma^{*}}{2}\right)=R^{2} \quad \text { Mohr's circle } \tag{1.101}
\end{gather*}
$$

Fig.1.23, positive angle $\theta \ldots$ counterclockwise dir. shear strainpositive downward
Vertical axisstrain tensor, $\left(\frac{\gamma_{12}}{2}\right)$

Fig. 1.23. Mohr's circle for visualizing plane strain state.

1.7 Measurement of strains

No practical experimental device for direct measurement of STRESS \qquad indirect measurement of strain first
\rightarrow constitutive laws
i) strain gauges

- measurement of extensional strains on the body's external surfaces
- Very thin electric wire, or an etched foil pattern
- extension wire's cross-section reduced by Poisson's effect. Slightly increasing its electrical resistance compression....increasing its electrical reduced resistance
- Wheatstone bridgeaccurate measurement

$$
\text { "micro-strains" ... } \mu \mathrm{m} / \mathrm{m}=10^{-6} \mathrm{~m} / \mathrm{m}
$$

ii) Chevron strain gauges

Fig 1.24..... e_{+45} and e_{-45}, experimentally measured relative elongations Using Eq (1.94a),

$$
e_{+45}=\frac{\varepsilon_{1}+\varepsilon_{2}}{2}+\frac{\gamma_{12}}{2} \quad e_{-45}=\frac{\varepsilon_{1}+\varepsilon_{2}}{2}-\frac{\gamma_{12}}{2}
$$

Not sufficient to determine the strain state at the point

Fig. 1.24. Two strain gauges at the surface of a solid.

However, can uniquely determine $\quad \gamma_{12}=e_{+45}-e_{-45}$

1.7 Measurement of strains

iii) Strain gauge rosette

Fig.1.25...... 3 independent measurements, "delta rosette"
Eq. (1.94a) $\rightarrow_{\varepsilon_{1}=e_{1}} \quad \varepsilon_{2}=\frac{2}{3}\left(e_{2}+e_{3}-\frac{e_{1}}{2}\right) \quad \gamma_{12}=\frac{2}{\sqrt{3}}\left(e_{2}-e_{3}\right)$

Fig. 1.25. Three strain gauges forming a rosette at the surface of a solid.

Fig.1.26various arrangement of strain gauges

Fig. 1.26. Various commonly used strain gauge arrangements.

