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 Example of structural component which are designed to carry
torsional loads

 Power of drive shaft
• Solid or thin-walled circular cross-section

 Aircraft Wing
• Needs to carry the bending and torsional moments generated

by the aerodynamic forces

 ‘bar’ rather than ‘beam’
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7.1 Torsion of circular cylinders

 Fig.1
 Infinitely long, homogeneous,

solid or hollow circular cylinder 
subjected to end torques 

 2 types of symmetries
① Cylindrical symmetry about    (Fig. 7.2)
② Symmetric with regard to any plane, P,

passing though axis 
• Shear stress due to Q, must be of

constant magnitude along circle C,
and tangent to it

⟶ loading is anti-symmetric with regard to P

1i

1i

1Q
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7.1 Torsion of circular cylinders

 Axial displacement at A and B,      and 

①
②
⟶		axial displacement must vanish

“the cross-section does not warp out-of plane”

 Each axis “rotate about its own center like a rigid disk”

1 1
A Bu u

1 1
A Bu u   1 1 0A Bu u 

1
Au 1

Bu
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7.1 Torsion of circular cylinders

 Rotation angle

 Rigid body rotation of each axis (Fig. 7.3)

 Sectional in-plane displacement field

 Out-of-plane displacement field







7.1.1 Kinematic Description

1

2 1 2 3 3 1 1( , , ) ( )u x x x x x  

3 1 2 3 2 1 1( , , ) ( )u x x x x x 

1 1 2 3( , , ) 0u x x x  (7.2)

2 1 1 1( , , ) ( )sinu x r r x   

3 1 1 1( , , ) ( ) cosu x r r x  

(7.3)   from Eq.(7.1)




(7.1)



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7.1 Torsion of circular cylinders

 Strain field

(7.4)

(7.5)

“section twist rate”

 To visualize the strain field, describe them in the polar coordinate 
⟶								and      , or simply     and

1 2 30, 0, 0    

23 0 

(7.6)

(7.7)

( , )r 
1r 1 r

1 2
12 3 1 1 13 2 1 1

2 1

( ), ( )u u x x x x
x x

    
    
 

1
1 1

1

( )x
x

 


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7.1 Torsion of circular cylinders

 Transformation between the Cartesian and the Polar strain 
component

,                                           (7.8)   from Eq.(7.6)

,                                  (7.9)
⤷	circumferential shearing strain (Fig. 7.4)

12 13sin cosr      

1( , , ) 0r x r  
12 13cos sin     
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7.1 Torsion of circular cylinders

 The only non-vanishing stress components

,                           (7.10)

using polar coordinate,
,                                      (7.11)

⤷	radial              ⤷circumferential stress component

 Distribution of the circumferential shear stress (Fig. 7.5)
① Circumferential direction exists only, radial direction vanishes
② Varies linearly along the radial direction

7.1.2 The Strain Field

1( , , ) 0r x r  

12 3 1 1( )Gx x   13 2 1 1( )Gx x 

1 1 1( , , ) ( )x r Gr x  
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7.1 Torsion of circular cylinders

 Torque acting on the axis at a given span-wise location

(7.12)

(7.13)   from Eq. (7.11)

⤷	torsional stiffness
(7.14) for circular axis only

 Constitutive for the torsional behavior of the beam

 If homogeneous material

,  where                    : “area polar moment” for circular axis only

7.1.3 Sectional Constitutive Law

1 1( )
A

M x rdA 

2
11 A

H Gr dA 

11H GJ 2

A
J r dA 

2 2
1 1 1 1 1 1 11 1 1( ) ( ) ( ) ( )

A A
M x Gr x dA Gr dA x H x       
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7.1 Torsion of circular cylinders

 Infinitesimal slice of the cylinder of length dx1

 (Fig. 7.6)

 Torsional equilibrium equation

(7.15)

7.1.4 Equilibrium Equations

1
1

1

dM q
dx

 
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7.1 Torsion of circular cylinders

 Eq. (7.13) ⟶ (7.15) and recalling Eq. (7.7)

(7.16)

 Boundary Condition

① Fixed(clamped):

② Free(unloaded):

③ subjected to a concentrated torque     :

7.1.5 Governing Equations

1
11 1

1 1

dd H q
dx dx

 
  

 

1 0 

1
1 1

1

0 0dM
dx

 
   

1
1 1 11 1

1

dM Q H Q
dx


  1Q
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7.1 Torsion of circular cylinders

 If Homogeneous material

(7.17)

 For a circular tube

(7.18)

 For a thin-walled circular tube, mean radius 

(7.19)

7.1.6 Torsional Stiffness

12

4

2
GR


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7.1 Torsion of circular cylinders

 Thin-walled circular tube consisting of N concentric layer

(7.20)

 “weighted average” of the shear moduli of the various layer

   4 4[ ] [ 1] [ ]
11

12

N
i i i

i
H G R R 



    
3[ 1] [ ]

[ ] [ ]

1
2

2

i iN
i i

i

R RG t




 
  

 

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7.1 Torsion of circular cylinders

 Deformation of the test section

 Measured by the chevron strain gauge

(Fig. 7.8)

(@ r=R)

 Slope of    vs.    Curve ⟶ torsional stiffness

 Valid as long as the cylindrical symmetry is maintained

7.1.7 Measuring the Torsional Stiffness

12 45 45e e   

1 45 45( ) /e e R   

3i 1i
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7.1 Torsion of circular cylinders

 Local circumferential stress

 Eq. (7.11) ⟶ (7.13)

(7.21)

 increases linearly from zero at the center to a max. value at the outer radius

7.1.8 The Shear Stress Distribution

1 1

11

( )M xG r
H 
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7.1 Torsion of circular cylinders

 Concentric layers of district material

 which each layer, still linear distribution,
but discontinuities at the interface

 Maximum shear stress for homogeneous material

(7.22)

 Strength criterion

(7.26)
max
1

11
allow

GR M
H



( ) [ ] 1

11

i i MG r
H 
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7.1 Torsion of circular cylinders

 Material near the center of the cylinder is not used efficiently since 
the shear stress becomes small

 Thin-walled tube is a far more efficient design

 2 thin-walled tube of the same material, mass per unit span, but 
different mean radii     and

① torsional stiffness:                                                (7.28)

② shear stress under the same torque

(7.29)

 inversely proportional to the mean radius

7.1.9 Rational Design of Cylinders under Torsion 

1 11 11

1 11 11

/ /
/ /

m m m

m m m

GM R H R H R
GM R H R H R








 
  

   

mR mR
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7.1 Torsion of circular cylinders

 Large mean radius

 High       , lower 
 but in practice, limits “torsional buckling”

11H max
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7.2 Torsion combined with axial 
forces and bending moments

 What is the proper strength criterion to be used when both axial 
and shear stresses are acting simultaneously?

1) Propeller shaft under torsion and thrust

 Torque      and thrust

,                     (7.30)

 Tresca’s criterion, Eq. (2.31)
most stringent condition among 3

ellipse in Fig. 7.10

 von Mises’ criterion, Eq.(2.36)

ellipse in Fig. 7.10

1M 1N
1
3

2M
R




 1
2

N
R






Fig. 7.10
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2) Shaft under torsion and bending

 Bending moment      and torque

,                     (7.31)

 Tresca’s criterion

Fig. 7.11

 von Mises’ criterion

Fig. 7.11

3M 1M
3
4

4M r
R






Fig. 7.11

7.2 Torsion combined with axial 
forces and bending moments
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 Circular symmetry of the problem is not maintained any more

 At any point along the edge of the bar`s section,
the shear stress must be tangent to the edge ⟶
but, non-zero       is required from the circular symmetry

 Fewer symmetries than the circular cross section has.

7.3 Torsion of Bar 
with Arbitrary Cross-Sections

7.3.1 Introduction

13 0 
13
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7.3 Torsion of Bar 
with Arbitrary Cross-Sections

 Symmetry built planes (  ,   ) and (  ,   )
but, no circular symmetry

 Torsional loading and the resulting solution : anti-symmetry

with regard to (  ,   )   ⟶ , 

with regard to (  ,   )   ⟶ ,

1i


2i


1i


3i


1i


2i


1i


3i
 1 1

A Bu u  1 1
C Du u 

1 1
A Du u  1 1

B Cu u 
Cross section will
warp out-of-plane




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7.3 Torsion of Bar 
with Arbitrary Cross-Sections

1) Kinematic description

 Each cross section rotates like a rigid body, and warp out-of-plane
⟶	assumed displacement field

:unknown warping function, will be determined by enforcing
equilibrium equations for the resulting stress field

2 1 2 3 3 1 1( , , ) ( )u x x x x x  

3 1 2 3 2 1 1( , , ) ( )u x x x x x 

2 3( , )x x

(7.32)




7.3.2 Saint-Venant’s solution

1 1 2 3 2 3 1 1( , , ) ( , ) ( )u x x x x x x 
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7.3 Torsion of Bar 
with Arbitrary Cross-Sections

2) The Strain field

 Eq.(7.32) ⟶ Eq. (1.63) and (7.71)

,          ,

, 

3) The Stress field

,           ,           ,

,

2 0  3 0  23 0 

due to “uniform torsion”

(7.33)




1 0  2 0  3 0  23 0 
(7.34)



12 1 3

2

G x
x

 
 

   

12 3 1
2

d x
dx

 
 

  
 

13 2 1
3

d x
dx

 
 

  
 
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7.3 Torsion of Bar 
with Arbitrary Cross-Sections

4) Equilibrium equations

 Stress field must satisfy the general equilibrium equations.
Eq.(1.4) at all point of the section. 
Neglecting body forces, the remaining equation is

(7.35)

 Eq.(7.34c) ⟶ (7.35)

(7.36)

the warping function must satisfy the PDE at all points of the cross section

1312

2 3

0
x x

 
 

 

2 2

2 2
2 3

0
x x

   
 

 
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7.3 Torsion of Bar 
with Arbitrary Cross-Sections

 Boundary condition: satisfaction of the equilibrium equations along the
outer contour of the section (Fig. 7.16)

 Along the C, according to Fig. 7.14,              (7.37)

does not necessarily vanish
in terms of Cartesian components, 

(7.38)

 Eq.(7.34c) ⟶ (7.38):                                                        (7.39)

Eq.(7.36): Laplace’s equations

Eq.(7.39): rather complicated boundary condition

0n 

s

3 2
12 13 12 13sin cos 0n

dx dx
ds ds

                
  

3 2
3 2

2 3

0dx dxx x
x ds x ds

   
         
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7.3 Torsion of Bar 
with Arbitrary Cross-Sections

5) Prandtl’s stress function

 Alternative formulation leading to simple boundary condition
: stress function, 

(7.41)

automatically satisfies the load equilibrium equation, Eq.(7.35)

 By comparing Eq.(7.34c) and (7.41)

(7.42)

 
3x



 
2x



↑ ↑



( )

(7.43)
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7.3 Torsion of Bar 
with Arbitrary Cross-Sections

 Boundary condition

 from Eq.(7.38), (7.41)

(7.44)
⤷	constant value may be chosen to vanish

: constant     along C

 Eq.(7.43): Poisson’s equation

 Eq.(7.44): much simpler boundary condition

28
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7.3 Torsion of Bar 
with Arbitrary Cross-Sections

5) Sectional equilibrium

 Global equilibrium of the section
• Resultant Shear force

: no shear forces are applied
• Total torque acting on the section

(7.46)

Integrating by parts

(7.47)

(7.48)

applied torque = 2 x “volume” under the stress function,
only valid for solid cross section bounded by a single curve
otherwise, use Eq.(7.46)

3 0V 
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Example 7.1

 Torsion of an elliptical bar

30

 Curve                              , A stress function of the following form is assumed 

 Boundary condition, Eq.(7.45b) is clearly satisfied since            along C.
 Substituting into the governing eqn., Eq.( 7.45)  

Unknown const.

0 

(7.49)

30

22
32: 1xxC

a b
       

    22
32

0 1xxC
a b


         
     

0, :C

0 12 2

2 2
1

0 2 2

222 2
32

12 2

2 2 2

1

C G
a b

a b GkC
a b

xxa b G
a b a b



 

    
 




                
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Example 7.1

 Torsion of an elliptical bar

31

 Torque: Eq.(7.48)

 Torsional stiffness of the elliptical section

 Stress fn. In terms of the applied torque

 Stress distribution: Eq.(7.41)

 Shear stress vector ∙∙∙ Fig.7.18b, tangent to curve C.

(7.50)

31

Fig. 7.18 (a) Shear stress 
distributions along the axes

Fig. 7.18 (b) Shear stress 
vectors and contours
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Example 7.1

 Torsion of an elliptical bar

 Shear stress vector ∙∙∙ Fig. 7.18b, tangent to curve C.
 Warping function ∙∙∙ by integrating Eq.(7.42)

32

Integrating 
w.r.t.

Equal only if

Eq.(7.32a)

32

Fig. 7.18 (b) Shear stress 
vectors and contours
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Example 7.1

 Torsion of an elliptical bar

∙∙∙ 2 planes of symmetry, warping displacement antisymmetric w.r.t Z planes 
(Fig. 7.19) 

 Circular section ∙∙∙ a=b=R, warping fn.=0

3333

Fig. 7.19. Warping distribution for an elliptic cross-section
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7.3 Torsion of Bar 
with Arbitrary Cross-Sections

 Summary

 Bar of arbitrary cross section subjected to uniform torsion

 Stress distribution: Warping function Eq.(7.40)

 Stress field: Eq.(7.34c) or Eq.(7.41)

⟶ exact solution although the displacement field is assumed as in Eq.(7.32)

Stress function Eq.(7.45)
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7.3 Torsion of Bar 
with Arbitrary Cross-Sections

 2 Solution – approximation solution based on the co-location approach 

1) Approximate solution

 Rectangular cross section of width a, height b (Fig. 7.21)
• Assumed stress function

,            ,

⟶ along the curve C

⟶ PDE, Eq(7.43): 

assumed solution does not satisfy PDE.

7.3.2 Saint-Venant’s solution for a Rectangular X-S

– exact solution based on the co-location approach 

2x
a

  3x
b

 

(Fig. 7.21)
2 2

0 0 12 2

1 1 1 12 2 2
4 4

C C G
a b

            
   
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7.3 Torsion of Bar 
with Arbitrary Cross-Sections

 Approximate solution: “co-location method”, satisfy PDE only at
a specific part of points of the cross section

• PDE will be satisfied at the center, 

,

• Then, 

, torsional stiffness 

shear stress field     ,

   , 0,0  

0 0
12 2 2

2 2
C C G
a b

   
2 2

1
0 2 2

4G a bC
a b





11H

12 13
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7.3 Torsion of Bar 
with Arbitrary Cross-Sections

2) Open form exact solution using a Fourier series

 Fourier series expansion of the stress function

 Satisfaction of B.C. Eq.(7.45b): when               , 
thus only odd values of       are included

 Governing PDE, Eq.(7.43)

 By using the orthogonality properties of cosine function

,i j odd
,i j

2 2 1 1
2 2

, 1 1
2 2
cos cos cos cosi j

i odd j odd

i jC m i d n j d
a b
       

 

 
 

                        
   

1 1
2 2

1 1 1
2 2

2 cos cosG m d n d    
 

            

37

2 2

, 1cos cos 2i j
i odd j odd

i jC i j G
a b
    

 

 

         
     
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7.3 Torsion of Bar 
with Arbitrary Cross-Sections

 The bracket integrals vanish when          on         . The remaining terms

 Then,                                                                                              (7.53) 

 Externally applied torque 

 Torsional stiffness

 Shear stress field: Although it is a doubly infinite series, it converges rapidly

(1, 2 term) ⟶ Fig 7.22, 7.23

m i n j

   
2 2 1 1

2 2
12

1 8 1 1
4

m n

mn
m nC G
a b mn
  



            
     
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7.3 Torsion of Bar 
with Arbitrary Cross-Sections

3) Comparison of solution

 : Fig. 7.24
 Non-dimensional shear stress: Fig. 7.25, 7.26
 Large discrepancies, approximate solution is not good enough

11H
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7.4 Torsion of a thin rectangular
Cross Section

 Fig. 7.28:  t<<b, assume that both stress function and
associated shear stress distributions will be
nearly constant along

⟶

 Governing Equation is from Eq.(7.43)

(7.56)

 Boundary Condition Eq.(7.45b)

⟶

3i
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7.4 Torsion of a thin rectangular
Cross Section

 Resulting torque

 Torsional stiffness

(7.58)

 Shear stress distribution

(7.59)

⤷ R.H.S. of Fig. 7.28

31
11

1

1
3

MH Gbt


 
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7.4 Torsion of a thin rectangular
Cross Section

 Warping function: Eq.(7.57) ⟶ (7.42)

↓ ↓

 Axial displacement

(7.60)

anti-symmetric with regard to     and 

 2 3 3x x f x    2 3 2x x g x  

2 3x x 

   1 2 3 2 3 1 1 2 3, ,u x x x x x x   

2i 3i
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7.5 Torsion of thin-walled
open section

 Gradient of the stress function will vanish along the local tangent to the section’s 
thin wall: corresponding shear stress will be linear through the wall thickness

 Torsional stiffness: from Eq.(7.58) ⟶ (7.61)

 Shear stress: tangential shear stress,    , only non-vanishing component, 
vary linearly from 0 at the middle to max.(+) and (-) at edges

(7.62)

3

11 3
ltH G

s

max
1s Gt 
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7.5 Torsion of thin-walled
open section

 More general thin-walled open section
: multiple curved and straight sections (Fig. 7.31)

 Torsional stiffness: sum of those corresponding to the individual segment

(7.64)

 Max. shear stress

(7.65)

 Warping: more complex, described in chap.8

( ) 3
11 11

1
3

i
i i i

i i
H H G l t  

max 1
max

11
s

MGt
H

 
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Example 7.3

 Torsion of thin-walled section

 C-channel: torsional stiffness, by Eq. (7.64)

 Tangential stress at the outer edge: by Eq. (7.62)

 Max. shear stress exists in the segment featuring the max. thickness  

45
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G GH bt ht bt ht bt     (7.66)

1 1
1 1

11 11

,w w w f f f
M MGt Gt Gt Gt
H H
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Q & A
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