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s Example of structural component which are designed to carry
torsional loads

> Power of drive shaft
* Solid or thin-walled circular cross-section

» Aircraft Wing
* Needs to carry the bending and torsional moments generated

by the aerodynamic forces

» ‘bar’ rather than ‘beam’
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7.1 Torsion of circular cylinders

J/

+ Fig.1 s o
» Infinitely long, homogeneous, - /r i
solid or hollow circular cylinder ”

subjected to end torques Q, Circular

Circular
cylinder R,

annulus

J/

Fig. 7.1. Circular cylinder subjected to end torques.
0’0

2 types of symmetries
@ Cylindrical symmetry about I, (Fig. 7.2)
@ Symmetric with regard to any plane, P,
passing though axis I,

Shear stress due to Q, must be of

constant magnitude along circle C,
and tangent to it

— loading is anti-symmetric with regard to P

Fig. 7.2. A plane of symmetry, P,
of the circular cylinder.
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7.1 Torsion of circular cylinders

% Axial displacement at A and B, U and u;

@ ulA — ulB
@ u=-u’
— axial displacement must vanish

“the cross-section does not warp out-of plane”

but =u’ =0

s Each axis “rotate about its own center like a rigid disk”
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7.1 Torsion of circular cylinders

‘ 7.1.1 Kinematic Description

J

< Rotation angle @,

> Rigid body rotation of each axis (Fig. 7.3)

J

s Sectional in-plane displacement field

u,(x,ra)=-rd,(x)sina
u,(x,r o) =rd, (x)cosa } -1

Fig. 7.3. In-plane displacements for a circular
7

oo Out—of—plane displacement field cylinder. The cross-section undergoes a rigid
body rotation.

> U (X, X%,%)=0 (7.2)
> Uy (X, X5, X5) ==X,D, (X))

-+ (7.3) from Eq.(7.1)
> U3(X1,X2,X3):X2(I)1(X1) }
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7.1 Torsion of circular cylinders

% Strain field

&=0¢&=0¢&=0 (7.4)

V=0 (7.5)
ou, ou
Y12 = (9_)(;+5_Xj ==Xk, (X)), 715 = X, (X) (7.6)
o,
K (%) = 5 (7.7)  “section twist rate”

» To visualize the strain field, describe them in the polar coordinate (I, )
— Y and Y, , or simply 7, and 7,
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7.1 Torsion of circular cylinders

% Transformation between the Cartesian and the Polar strain
component

Y, =7,C08a+y,.SIine, ¥, =—y,SINa+y,C08a (7.8) from Eq.(7.6)
7, (%, ra)=0, 7,(x.r.a)=rr(x) (7.9)
L circumferential shearing strain (Fig. 7.4)

i;t r d(l)I
_ ¥
/ %\

—\d

Iig. 7.4. Visualization of out-of-plane
shear strain in polar coordinates.
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7.1 Torsion of circular cylinders

‘ 7.1.2 The Strain Field

s The only non-vanishing stress components

7y, = =Gk (X), 75 = GXoi(X)  (7.10)

using polar coordinate,
7, (%, ra)=0, 7,(x,ra)=Crx(x) (7.11)

L radial Leircumferential stress component

s Distribution of the circumferential shear stress (Fig. 7.5)
@ Circumferential direction exists only, radial direction vanishes
@ Varies linearly along the radial direction
A; Aj,
% * Circular / Circular
cylinder : annulus

Fig. 7.5. Distribution of circumferential shearing stress over the cross-section.
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7.1 Torsion of circular cylinders

‘ 7.1.3 Sectional Constitutive Law

s Torque acting on the axis at a given span-wise location

M, (%)= 7,rdA (7.12)
M, (%) :IAGrle(xl)dA:UAGerA}Kl(xl) = H,.x,(x) (7.13) from Eq. (7.11)

L torsional stiffness
H,, = IAGrsz (7.14) for circular axis only

» Constitutive for the torsional behavior of the beam

s If homogeneous material

H,=GJ, where J= IArsz : “area polar moment” for circular axis only
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7.1 Torsion of circular cylinders

‘ 7.1.4 Equilibrium Equations

% Infinitesimal slice of the cylinder of length dx;

Fig. 7.6. Torsional loads acting on an
infinitesimal slice of the bar.

/

s Torsional equilibrium equation
dM,
dx,

=—04 (7.15)
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7.1 Torsion of circular cylinders

‘ 7.1.5 Governing Equations

< Eq. (7.13) — (7.15) and recalling Eq. (7.7)

d do
—|H, —*|=— 7.16
dxl{ - dxl} % (7.16)

s Boundary Condition

@ Fixed(clamped): ®, =0

@ Free(unloaded): M1 =0— K, = ddq)l -0
X
@ subjected to a concentrated torque Q,: M, =Q, > H, ddCDl =Q
X
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7.1 Torsion of circular cylinders

‘ 7.1.6 Torsional Stiffness

< If Homogeneous material

27 Ry
e = GJ. jrzrdrda _ZTGR* (7.17)
0 R 2

< For a circular tube
27 Ry -
Hy =G| | rrdrde = EG(Rg -R") (7.18)
0 R

< For a thin-walled circular tube, mean radius

H, = %G(Rg +R)R, +R)R, —R)~27GRt (7.19)
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7.1 Torsion of circular cylinders

s Thin-walled circular tube consisting of N concentric layer

H,, = %ile:G[i] [(R[iﬂ] )4 _(R[i])“}

N (Rl pil?
zznZG“]t[‘](R 2+R ] (7.20)
i=1

> “weighted average” of the shear moduli of the various layer

Fig. 7.7. Thin-walled tube made of layered
materials.
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7.1 Torsion of circular cylinders

‘ 7.1.7 Measuring the Torsional Stiffness

<+ Deformation of the test section
Q, [ T
» Measured by the chevron strain gauge € i} o
. ; B 5
Vip = €45 —€_45 (Fig. 7.8) 4
K =(e4—€4,)/ R (@r=R) Test section

Fig. 7.8. Configuration of the test to deter-
mine the torsional stiffness.

< Slope of 8,vs. x;Curve — torsional stiffness

» Valid as long as the cylindrical symmetry is maintained
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7.1 Torsion of circular cylinders

‘ 7.1.8 The Shear Stress Distribution
%+ Local circumferential stress

> Eq. (7.11) — (7.13)

M, (X
T, = Gﬁr (7.21)
11
» increases linearly from zero at the center to a max. value at the outer radius
4;, Ai

Circular /' Circular

annulus

cylinder

ST

Fig. 7.5. Distribution of circumferential shearing stress over the cross-section.
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7.1 Torsion of circular cylinders

s Concentric layers of district material

0 i M,
11
» which each layer, still linear distribution,
but discontinuities at the interface

Fig. 7.7. Thin-walled tube made of layered

materials.
< Maximum shear stress for homogeneous material
2M(x,)
max __ 1\7"1
L= = (7.22)
T

s Strength criterion

< Tallow (7-26)
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7.1 Torsion of circular cylinders

‘ 7.1.9 Rational Design of Cylinders under Torsion

s Material near the center of the cylinder is not used efficiently since
the shear stress becomes small

» Thin-walled tube is a far more efficient design

< 2 thin-walled tube of the same material, mass per unit span, but
different mean radii R_and R’

Hy, _(u/p)GR (R,
Hy, ~ (ulp)GR; _£R' ] e
@ shear stress under the same torque

7, GMR, [H,, R, IH] B R
' GMR./H/ R./H, R

a

@ torsional stiffness:

m

(7.29)

» inversely proportional to the mean radius
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7.1 Torsion of circular cylinders

s Large mean radius

» High H,,, lower maxr

» but in practice, limits “torsional buckling”
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7.2 Torsion combined with axial

forces and bending moments

< What is the proper strength criterion to be used when both axial

and shear stresses are acting

simultaneously?

1) Propeller shaft under torsion and thrust

» Torque M, and thrust N,

2M, N,
=—1L1 o=—2L  (7.30)
7R 7R

T

» Tresca’s criterion, Eq. (2.31)
most stringent condition among 3

2 )

Azl +16 M, =1 ellipsein Fig. 7.10
TR o, JTR3O'J.

> von Mises’ criterion, Eq.(2.36)

2 )

Azl +12 M, <1illipse in Fig. 7.10
7rR‘O'J. JTR3O'J.

Fig. 7.10

---Tresca
—Von Mises

0.1 F\,

NONDIMENSIONAL TORQUE

0.2

1 05 0 05 1
NONDIMENSIONAL AXIAL FORCE
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7.2 Torsion combined with axial

forces and bending moments

2) Shaft under torsion and bending

> Bending moment M, and torque I\/I1

AM,r z__2M1;V
7Z'R4 T 71'R4

o= (7.31)

» Tresca’s criterion

2 2
M M .
16 = +16 ! ~1 Fig. 7.11 Fig. 7.11
nRo, TR0, | | '
» wvon Mises’ criterion | LT
~2 2
16 AJ; +12 A{I Sl Flg 7 --=-Tresca
ER O-y ER O-J' —\/on Mi;es

NONDIMENSIONAL TORQUE

........

02 -04 0. .01 02
NONDIMENSIONAL BENDING MOMENT
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7.3 Torsion of Bar
with Arbitrary Cross-Sections

‘ 7.3.1 Introduction

» Circular symmetry of the problem is not maintained any more
> At any point along the edge of the bar’ s section,
the shear stress must be tangent to the edge — 7, = 0

but, non-zero 73 is required from the circular symmetry

» Fewer symmetries than the circular cross section has.

Fig. 7.14. Shearing stresses along the edge of
a rectangular section.
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7.3 Torsion of Bar

with Arbitrary Cross-Sections

> Symmetry built planes (i, I,) and (i, I,)
but, no circular symmetry

» Torsional loading and the resulting solution : anti-symmetry

with regard to (i, i,) — U, =-uU;, U =-U } Cross section will
with regard to (i, i) — u/=-u? uf=-u’ J warp out-of-plane

C D

Fig. 7.15. Four points on a rectangular cross-
section.
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7.3 Torsion of Bar

with Arbitrary Cross-Sections

‘ 7.3.2 Saint-Venant’s solution

1) Kinematic description

» Each cross section rotates like a rigid body, and warp out-of-plane
— assumed displacement field

Uy (X0, X5, %) = (X, X3) (%)
U, (X, X5, %3) = =X, P, (%) o (7.32)
US(Xl’ Xy Xs) = qu)l(xl)

T(XZ, X3) :unknown warping function, will be determined by enforcing
equilibrium equations for the resulting stress field
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7.3 Torsion of Bar

with Arbitrary Cross-Sections

2) The Strain field

> Eq.(7.32) — Eq. (1.63) and (7.71)
dr

& =Wix,,x,)—L

1 (1 5)&

1

= due to “uniform torsion” )

&, =0,&=0, 7,,=0 - (7.33)
d¥ d¥
V2 = d_X2 X3 |Ky V13 = dx, X K
3) The Stress field
0,=0 0,=0, 0,=0 7,5=0 }
oY B oV ¢ (7.34)
712 :GKl(a_XZ_ng, T3 = GKI(@_)%+XZ)
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7.3 Torsion of Bar

with Arbitrary Cross-Sections

4) Equilibrium equations

» Stress field must satisfy the general equilibrium equations.
Eq.(1.4) at all point of the section.

Neglecting body forces, the remaining equation is

ot,, OT
12 + 13

OX,  OX,

=0 (7.35)

> Eq.(7.34c) — (7.35)

2 2
0 ‘f+8 \f =0 (7.36)
OX,  OX,

the warping function must satisfy the PDE at all points of the cross section
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7.3 Torsion of Bar

with Arbitrary Cross-Sections

» Boundary condition: satisfaction of the equilibrium equations along the
outer contour of the section (Fig. 7.16)
> Along the C, according to Fig. 7.14, 7 = 0 (7.37)
7. does not necessarily vanish
in terms of Cartesian components,

T, =Ty Sinﬂ+2'13 COSﬂZZ’lZ (%]4—2’13(—%):0 (7.38)
> Eq.(7.34c) — (7.38): a—LIJ—X3 ax; — o¥ +X, %:0 (7.39)
OX, ds | 0x, ds

Eq.(7.36): Laplace’s equations
Eq.(7.39): rather complicated boundary condition

A
i,

T

L \et)
T],&)

=T
r

A

Fig. 7.14. Shearing stresses along the edge of ~ Fig. 7.16. Equilibrium condition
arectangular section. along the outer contour C.
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7.3 Torsion of Bar

with Arbitrary Cross-Sections

5) Prandtl’s stress function

> Alternative formulation leading to simple boundary condition
: stress function, @(X,,X;)

0 0
¢ T3 :_g (7.41)

2

T = —
12 2
ox

3

automatically satisfies the load equilibrium equation, Eq.(7.35)

» By comparing Eq.(7.34c) and (7.41)

Z'12 = GKl(a_LP_)%) — %:TB — GKl(G_LP'i' xz) = _% (7.42)
ox, Ox, Ox, ox,
0 ! B, T
ax L] L
)
o'p 0% _
ax,f T 8x§ =-2UH,, (7.43)
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7.3 Torsion of Bar

with Arbitrary Cross-Sections

s Boundary condition

» from Eq.(7.38), (7.41)
= Ggé dx3 T 6¢ dx2 = d¢ =0 (7.44)

no -
Ox; ds  Ox, ds ds \constant value may be chosen to vanish
: constant @ along C

» EQq.(7.43): Poisson’s equation

» EQ.(7.44): much simpler boundary condition
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7.3 Torsion of Bar

with Arbitrary Cross-Sections

5) Sectional equilibrium

> Global equilibrium of the section
e Resultant Shear force

V, =0
: no shear forces are applied
« Total torque acting on the section

0 0
M, = L(xer —X,7,)dA = L (=, % - %)CZA (7.46)
2 3

Integrating by parts

M, = 2L ¢dA — j [xzé]xz ey — j [x3¢]x3 d, (7.47)
M, =2 gdd (7.48)

A
applied torque = 2 x “volume” under the stress function,

only valid for solid cross section bounded by a single curve
otherwise, use Eq.(7.46)
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s Torsion of an elliptical bar

2 2
» Curve C (ﬁj +(—j =1, A stress function of the following form is assumed

2 2
s=c.|[22] +/ 2] -1/, C,:Unknown const.
"I a b

» Boundary condition, Eq.(7.45b) is clearly satisfied since ¢ =0 along C.
» Substituting into the governing egn., Eq.( 7.45)

C, (% + b_zzj =-2CGk;

a
—a’b°Gk
Co = a2+b21
212 2 2
4o —a‘b (xzj +£§j “1|ek, (7.49)

30
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)
0‘0

Torsion of an elliptical bar

» Torque: Eq.(7.48)

3,3 2 513
M1=—2ab uaj [1‘,] [_J 1 Gn‘ab K = H, K

a+b a +b"
» Torsional stiffness of the elliptical section
:
H. =G za'b
a -

» Stress fn. In terms of the applied torque
)

_ MY (n)
= :rab[aj-l-[b] 1_]

» Stress distribution: Eq.(7.41)

Fig. 7.18 (a) Shear stress

zxi 2_1_-1 distributions along the axes
©  mab Tab
» Shear stress vector -+ Fig.7.18b, tangent to curve C.
M,
| Tmn |= F] Fig. 7.18 (b) Shear stress
ﬂ'ﬂb vectors and contours

Sl
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L)

% Torsion of an elliptical bar

» Shear stress vector - Fig. 7.18b, tangent to curve C.
» Warping function --- by integrating Eq.(7.42)

,  a+b e, a+b
, Integrating )
o W.r.t. Y Fig. 7.18 (b) Shear stress

vectors and contours

1 | % 2

-5 -b°
¥ = x,x_,,a 2 ++ flx;) W= x.,xi: 7 -+ g(x,)

Equal only if f(x;)=g(x,)=0

a —-b’
W= —xx
a+bh
Eq.(7.32a) a-b
qg. d) = u(x,,x)=-X XaX
1( 2 3) Ia +b2 2"3

CJ
IND)
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s Torsion of an elliptical bar

.-+ 2 planes of symmetry, warping displacement antisymmetric w.r.t Z planes
(Fig. 7.19)

» Circular section -+ a=b=R, warping fn.=0

i, axis

Fig. 7.19. Warping distribution for an elliptic cross-section
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7.3 Torsion of Bar

with Arbitrary Cross-Sections

O/

S Summary

» Bar of arbitrary cross section subjected to uniform torsion

» Stress distribution: Warping function Eq.(7.40)
Stress function Eq.(7.45)

» Stress field: Eq.(7.34c) or Eq.(7.41)

— exact solution although the displacement field is assumed as in Eq.(7.32)
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7.3 Torsion of Bar
with Arbitrary Cross-Sections

7.3.2 Saint-Venant’s solution for a Rectangular X-S

» 2 Solution - approximation solution based on the co-location approach
— exact solution based on the co-location approach

1) Approximate solution

» Rectangular cross section of width a, height b (Fig. 7.21) C B _
« Assumed stress function | ok

] 1 X x, D —>
= C 2 _—— 2 _—— /4 = —2/ = —3 .2
#(n,8)=C(n 4)(4' 4) n 3 - b B . i
d(n=%1/2,)=0,¢(n. =£1/2)=0 ) }C '
+1/2 O
— ¢=0 along the curve C B‘
Al n
— PDE, Eq(7.43): 10 o
, 1)1 , 1)1 172 +12

assumed solution does not satisfy PDE.
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7.3 Torsion of Bar

with Arbitrary Cross-Sections

» Approximate solution: “co-location method”, satisfy PDE only at
a specific part of points of the cross section

- PDE will be satisfied at the center, (77,{)=(0,0)

C0 C 4Grx.a’b?
— =-2G C = 1" -
23’ 2b? 1 a’ +b?
4a bZGK 1 i
« Then, —NEE =
¢ = - ————L (7’ 4)(§ 4)

M, = 2L pdA , torsional stiffness H,,

shear stress field 7,,, 73
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7.3 Torsion of Bar

with Arbitrary Cross-Sections

2) Open form exact solution using a Fourier series

> Fourier series expansion of the stress function

o0

o(n,¢) = z i C; cosinncos jag

i=odd j=odd

> Satisfaction of B.C. Eq.(7.45b): when i, j=o0dd, ¢ =0
thus only odd values of 1, ] are included

> Governing PDE, Eq.(7.43)

0

. 2 . 2
= I V4 : i
> > G (—j +Ej—j cosizn cos jzn = 2Gk,
i—odd j—odd a b
> By using the orthogonality properties of cosine function

i i Ci{(%] +(%) }Décosmzncosiﬂndn}{jécosnzgcosjngdg}

i=odd j=odd

=-2Gk; U_Zi cosmznd 77} [J‘jz/ cosnzgd 4}
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7.3 Torsion of Bar

with Arbitrary Cross-Sections

The bracket integrals vanish when m=1i on n# J. The remaining terms

2 2 m-— n—
Co (") ) (D7 (-1 o

a 4 mnrx

312G B _1)i2
Kl Z Z = cosizncos jxg (7.53)

s oddz][(m/a) +(jm/b)” ]

Externally applied torque

Then, #(n,0) =

Torsional stiffness
Shear stress field: Although it is a doubly infinite series, it converges rapidly

(1, 2 term) — Fig 7.22, 7.23

Fig. 7.23. Distribution of shear stress over
cross-section. The arrows represent the shear
stresses; the contours represent constant val-
Fig. 7.22. Stress function, ¢. ues of the stress function ¢.
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7.3 Torsion of Bar

with Arbitrary Cross-Sections

3) Comparison of solution

> H,: Fig. 7.24
» Non-dimensional shear stress: Fig. 7.25, 7.26
» Large discrepancies, approximate solution is not good enough

w

=

w

Ll
]

=y
[

o! e

NONDIMENSIONAL TORSIONAL STIFFNESS
NONDIMENSIONAL SHEAR STRESS ATE
NONDIMENSIONAL SHEAR STRESS AT A

2 /i 6 8 0 12 ® 2 4 6 8 10 12 2 4 8 8 10 12
alb alb alb

Fig. 7.24. Non-dimensional torsional stiffness, Fig. 7.25. Non-dimensional shear stress at  Fig. 7.26. Non-dimensional shear stress at

Hya, versus aspect ratio, a/b. Exact solution: point B versus aspect ratio a/b. Exact solu-  point A versus aspect ratio a/b. Exact solu-

solid line; approximate solution: dashed line.  tjon: solid line; approximate solution: dashed  tion: solid line; approximate solution: dashed

line. line.
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7.4 Torsion of a thin rectangular

Cross Section

> Fig. 7.28: t<<b, assume that both stress function and
associated shear stress distributions will be
nearly constant along 13

A
— % ~ Al .
Ox, b >>t

- T
1, R
» Governing Equation is from Eq.(7.43) b" """ P g L7 "ﬁﬂ

: o o

< f,‘é =-2Gk, (7.56) W o

- t
¢(x,)=—Gx,x;, +C.x, +C,

» Boundary Condition Eq.(7.45b)

Fig. 7.28. Thin rectangular strip under tor-
sion.

p(x, =%t/2)=0—>C,=0,C, =Gr.t* / 4

—

,
P(x,)=-Gr (x; 4)
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7.4 Torsion of a thin rectangular

Cross Section

» Resulting torque

~ ~ t/'2 , tg ~ l .
M, =2[ gdd= —2le_ j z(xz - b, = Gt

> Torsional stiffness

H M, _ %th?’ (7.58)

Ky

11—

> Shear stress distribution

— % =), 7= —% = 2GK,x; = %xz (7.59)
Ox, ox, bt
L R.H.S. of Fig. 7.28

z-12
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7.4 Torsion of a thin rectangular

Cross Section

» Warping function: Eq.(7.57) — (7.42)
¥ _1op,  _ o¥__ 1 02

= 3 = X35 = Xy =X,
ox, Gk, Ox, Ox, Gk, Ox,
" |
¥ =X%+ f(X) ¥ =X,%+0(x,)
Y= XX, e

Fig. 7.29. Warping function for a thin rectan-

» Axial displacement gular strip.
U (X, %) =¥ (%, X ) Ky = KX, %, (7.60)
anti-symmetric with regard to 1, and I,
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7.5 Torsion of thin-walled

open section

» Gradient of the stress function will vanish along the local tangent to the section’s
thin wall: corresponding shear stress will be linear through the wall thickness

Fig. 7.30. Semi-circular thin-walled open
section.

3
» Torsional stiffness: from Eq.(7.58) — H,, :Glt_ (7.61)
3

> Shear stress: tangential shear stress, 7, only non-vanishing component,
vary linearly from O at the middle to max.(+) and (-) at edges
" =CGtx;,  (7.62)
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7.5 Torsion of thin-walled

open section

» More general thin-walled open section
: multiple curved and straight sections (Fig. 7.31)

Fig. 7.31. Thin-walled open section com-
posed of several curved.

> Torsional stiffness: sum of those corresponding to the individual segment
a1
H, =) HY = gZGiIiti3 (7.64)
i i

» Max. shear stress

M
z-smax = Gtmax — (7.65)
H

11
» Warping: more complex, described in chap.8
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% Torsion of thin-walled section

i
» C-channel: torsional stiffness, by Eq. (7.64) 4 i
t
G 3 3 3 G 3 3
Hn:—(btf +htw+btf):—(htw+2btf) (7.66)
3 3 h —
I
> Tangential stress at the outer edge: by Eq. (7.62) e, 1,
b
M, M,
Tw = GtWK‘l = GtW ot T th K= th u Fig. 7.32. A thin-walled C-channel section
11 11

» Max. shear stress exists in the segment featuring the max. thickness
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