Aircraft Structures

CHAPER 7. Torsion

Prof. Sangl oon Shin

* Example of structural component which are designed to carry torsional loads
> Power of drive shaft
- Solid or thin-walled circular cross-section
> Aircraft Wing
- Needs to carry the bending and torsional moments generated by the aerodynamic forces
> 'bar' rather than 'beam'

7.1 Torsion of circular cylinders

Fig. 1

> Infinitely long, homogeneous, solid or hollow circular cylinder subjected to end torques Q_{1}

Fig. 7.1. Circular cylinder subjected to end torques.

* 2 types of symmetries
(1) Cylindrical symmetry about i_{1} (Fig. 7.2)
(2) Symmetric with regard to any plane, P, passing though axis i_{1}
- Shear stress due to Q , must be of constant magnitude along circle C, and tangent to it
\rightarrow loading is anti-symmetric with regard to P

Fig. 7.2. A plane of symmetry, \mathcal{P}, of the circular cylinder.

7.1 Torsion of circular cylinders

* Axial displacement at \mathbf{A} and \mathbf{B}, u_{1}^{A} and u_{1}^{B}
$\left.\begin{array}{l}\text { (1) } u_{1}^{A}=u_{1}^{B} \\ \text { (2) } u_{1}^{A}=-u_{1}^{B}\end{array}\right\} u_{1}^{A}=u_{1}^{B}=0$
\rightarrow axial displacement must vanish
"the cross-section does not warp out-of plane"
* Each axis "rotate about its own center like a rigid disk"

7.1 Torsion of circular cylinders

7.1.1 Kinematic Description

* Rotation angle Φ_{1}
> Rigid body rotation of each axis (Fig. 7.3)
* Sectional in-plane displacement field

$$
\left.\begin{array}{l}
u_{2}\left(x_{1}, r, \alpha\right)=-r \Phi_{1}\left(x_{1}\right) \sin \alpha \tag{7.1}\\
u_{3}\left(x_{1}, r, \alpha\right)=r \Phi_{1}\left(x_{1}\right) \cos \alpha
\end{array}\right\}
$$

* Out-of-plane displacement field

Fig. 7.3. In-plane displacements for a circular cylinder. The cross-section undergoes a rigid body rotation.
$\Rightarrow u_{1}\left(x_{1}, x_{2}, x_{3}\right)=0$ (7.2)
$>u_{2}\left(x_{1}, x_{2}, x_{3}\right)=-x_{3} \Phi_{1}\left(x_{1}\right)$
$\left.>u_{3}\left(x_{1}, x_{2}, x_{3}\right)=x_{2} \Phi_{1}\left(x_{1}\right)\right\}$
(7.3) from Eq.(7.1)

7.1 Torsion of circular cylinders

* Strain field

$$
\begin{aligned}
& \varepsilon_{1}=0, \varepsilon_{2}=0, \varepsilon_{3}=0 \\
& \gamma_{23}=0 \quad(7.5) \\
& \gamma_{12}=\frac{\partial u_{1}}{\partial x_{2}}+\frac{\partial u_{2}}{\partial x_{1}}=-x_{3} \kappa_{1}\left(x_{1}\right), \gamma_{13}=x_{2} \kappa_{1}\left(x_{1}\right) \\
& \kappa_{1}\left(x_{1}\right)=\frac{\partial \Phi_{1}}{\partial x_{1}} \quad \text { (7.7) "section twist rate" }
\end{aligned}
$$

> To visualize the strain field, describe them in the polar coordinate (r, α)
$\rightarrow \gamma_{r 1}$ and $\gamma_{\alpha 1}$, or simply γ_{r} and γ_{α}

7.1 Torsion of circular cylinders

* Transformation between the Cartesian and the Polar strain component

$$
\begin{aligned}
& \gamma_{\alpha}=\gamma_{12} \cos \alpha+\gamma_{13} \sin \alpha, \quad \gamma_{r}=-\gamma_{12} \sin \alpha+\gamma_{13} \cos \alpha \quad \text { (7.8) from Eq.(7.6) } \\
& \gamma_{r}\left(x_{1}, r, \alpha\right)=0, \quad \gamma_{\alpha}\left(x_{1}, r, \alpha\right)=r \kappa_{1}\left(x_{1}\right) \text { (7.9) } \\
& \qquad \text { circumferential shearing strain (Fig. 7.4) }
\end{aligned}
$$

Fig. 7.4. Visualization of out-of-plane
shear strain in polar coordinates.

7.1 Torsion of circular cylinders

7.1.2 The Strain Field

The only non-vanishing stress components

$$
\tau_{12}=-G x_{3} \kappa_{1}\left(x_{1}\right), \tau_{13}=G x_{2} \kappa_{1}\left(x_{1}\right)
$$

using polar coordinate,

$$
\begin{array}{ll}
\tau_{r}\left(x_{1}, r, \alpha\right)=0, & \tau_{\alpha}\left(x_{1}, r, \alpha\right)=G r \kappa_{1}\left(x_{1}\right) \tag{7.11}\\
\text { ५ radial } & \text { ५circumferential stress component }
\end{array}
$$

* Distribution of the circumferential shear stress (Fig. 7.5)
(1) Circumferential direction exists only, radial direction vanishes
(2) Varies linearly along the radial direction

Fig. 7.5. Distribution of circumferential shearing stress over the cross-section.

7.1 Torsion of circular cylinders

7.1.3 Sectional Constitutive Law

* Torque acting on the axis at a given span-wise location

$$
\begin{aligned}
& M_{1}\left(x_{1}\right)=\int_{A} \tau_{\alpha} r d A \quad \text { (7.12) } \\
& M_{1}\left(x_{1}\right)=\int_{A} G r^{2} \kappa_{1}\left(x_{1}\right) d A=\left[\int_{A} G r^{2} d A\right] \kappa_{1}\left(x_{1}\right)=\begin{array}{l}
H_{11} \kappa_{1}\left(x_{1}\right)(7.13) \text { from Eq. (7.11) } \\
\begin{array}{l}
\text { torsional stiffness }
\end{array} \\
H_{11}=\int_{A} G r^{2} d A \quad \text { (7.14) for circular axis only }
\end{array}
\end{aligned}
$$

> Constitutive for the torsional behavior of the beam

* If homogeneous material

$$
H_{11}=G J, \text { where } J=\int_{A} r^{2} d A \text { : "area polar moment" for circular axis only }
$$

7.1 Torsion of circular cylinders

7.1.4 Equilibrium Equations

* Infinitesimal slice of the cylinder of length dx_{1}

Fig. 7.6. Torsional loads acting on an
infinitesimal slice of the bar.

* Torsional equilibrium equation

$$
\frac{d M_{1}}{d x_{1}}=-q_{1}(7.15)
$$

7.1 Torsion of circular cylinders

7.1.5 Governing Equations

* Eq. (7.13) \rightarrow (7.15) and recalling Eq. (7.7)

$$
\begin{equation*}
\frac{d}{d x_{1}}\left[H_{11} \frac{d \Phi_{1}}{d x_{1}}\right]=-q_{1} \tag{7.16}
\end{equation*}
$$

* Boundary Condition

(1) Fixed(clamped): $\Phi_{1}=0$
(2) Free(unloaded): $M_{1}=0 \rightarrow \kappa_{1}=\frac{d \Phi_{1}}{d x_{1}}=0$
(3) subjected to a concentrated torque $Q_{1}: M_{1}=Q_{1} \rightarrow H_{11} \frac{d \Phi_{1}}{d x_{1}}=Q_{1}$

7.1 Torsion of circular cylinders

7.1.6 Torsional Stiffness

* If Homogeneous material

$$
\begin{equation*}
H_{11}=G \int_{0}^{2 \pi} \int_{R_{R}}^{R_{R}} r^{2} r d r d \alpha=\frac{\pi}{2} G R^{4} \tag{7.17}
\end{equation*}
$$

* For a circular tube

$$
\begin{equation*}
H_{11}=G \int_{0}^{2 \pi} \int_{R_{i}}^{R_{0}} r^{2} r d r d \alpha=\frac{\pi}{2} G\left(R_{0}^{4}-R_{i}^{4}\right) \tag{7.18}
\end{equation*}
$$

* For a thin-walled circular tube, mean radius

$$
H_{11}=\frac{\pi}{2} G\left(R_{0}^{2}+R_{i}^{2}\right)\left(R_{0}+R_{i}\right)\left(R_{0}-R_{i}\right) \approx 2 \pi G R_{m}^{3} t \text { (7.19) }
$$

7.1 Torsion of circular cylinders

* Thin-walled circular tube consisting of \mathbf{N} concentric layer

$$
\begin{align*}
H_{11} & =\frac{\pi}{2} \sum_{i=1}^{N} G^{[i]}\left[\left(R^{[i+1]}\right)^{4}-\left(R^{[i]}\right)^{4}\right] \\
& =2 \pi \sum_{i=1}^{N} G^{[i]} t^{[i]}\left(\frac{R^{[i+1]}+R^{[i]}}{2}\right)^{3} \tag{7.20}
\end{align*}
$$

> "weighted average" of the shear moduli of the various layer

Fig. 7.7. Thin-walled tube made of layered materials.

7.1 Torsion of circular cylinders

7.1.7 Measuring the Torsional Stiffness

* Deformation of the test section
> Measured by the chevron strain gauge

$$
\begin{aligned}
& \gamma_{12}=e_{+45}-e_{-45} \text { (Fig. 7.8) } \\
& \kappa_{1}=\left(e_{+45}-e_{-45}\right) / R \quad(@ r=\mathrm{R})
\end{aligned}
$$

Fig. 7.8. Configuration of the test to determine the torsional stiffness.
$\%$ Slope of $\theta_{3 i} \mathbf{v s} . \kappa_{1 i}$ Curve \rightarrow torsional stiffness
> Valid as long as the cylindrical symmetry is maintained

7.1 Torsion of circular cylinders

7.1.8 The Shear Stress Distribution

* Local circumferential stress
$>$ Eq. (7.11) \rightarrow (7.13)

$$
\tau_{\alpha}=G \frac{M_{1}\left(x_{1}\right)}{H_{11}} r(7.21)
$$

> increases linearly from zero at the center to a max. value at the outer radius

Fig. 7.5. Distribution of circumferential shearing stress over the cross-section.

7.1 Torsion of circular cylinders

* Concentric layers of district material

$$
\tau_{\alpha}^{(i)}=G^{[i]} \frac{M_{1}}{H_{11}} r
$$

> which each layer, still linear distribution, but discontinuities at the interface

Fig. 7.7. Thin-walled tube made of layered materials.

* Maximum shear stress for homogeneous material

$$
\begin{equation*}
\tau_{\alpha}^{\max }=\frac{2 M_{1}\left(x_{1}\right)}{\pi R^{3}} \tag{7.22}
\end{equation*}
$$

* Strength criterion

$$
\begin{equation*}
\frac{G R}{H_{11}}\left|M_{1}^{\max }\right| \leq \tau_{\text {allow }} \tag{7.26}
\end{equation*}
$$

7.1 Torsion of circular cylinders

7.1.9 Rational Design of Cylinders under Torsion

* Material near the center of the cylinder is not used efficiently since the shear stress becomes small
> Thin-walled tube is a far more efficient design
* 2 thin-walled tube of the same material, mass per unit span, but different mean radii R_{m} and R_{m}^{\prime}
(1) torsional stiffness: $\quad \frac{H_{11}}{H_{11}^{\prime}}=\frac{(\mu / \rho) G R_{m}^{2}}{(\mu / \rho) G R_{m}^{\prime 2}}=\left(\frac{R_{m}}{R_{m}^{\prime}}\right)^{2}$
(2) shear stress under the same torque

$$
\begin{equation*}
\frac{\tau_{\alpha}}{\tau_{\alpha}^{\prime}}=\frac{G M_{1} R_{m} / H_{11}}{G M_{1} R_{m}^{\prime} / H_{11}^{\prime}}=\frac{R_{m} / H_{11}^{\prime}}{R_{m}^{\prime} / H_{11}}=\frac{R_{m}^{\prime}}{R_{m}} \tag{7.29}
\end{equation*}
$$

> inversely proportional to the mean radius

7.1 Torsion of circular cylinders

* Large mean radius
$>$ High H_{11}, lower $\max \tau$
> but in practice, limits "torsional buckling"

7.2 Torsion combined with axial forces and bending moments

* What is the proper strength criterion to be used when both axial and shear stresses are acting simultaneously?

1) Propeller shaft under torsion and thrust
> Torque M_{1} and thrust N_{1}

$$
\begin{equation*}
\tau=\frac{2 M_{1}}{\pi R^{3}}, \quad \sigma=\frac{N_{1}}{\pi R^{2}} \tag{7.30}
\end{equation*}
$$

> Tresca's criterion, Eq. (2.31)
Fig. 7.10 most stringent condition among 3

$$
\left(\frac{N_{1}}{\pi R^{2} \sigma_{y}}\right)^{2}+16\left(\frac{M_{1}}{\pi R^{3} \sigma_{y}}\right)^{2}=1 \quad \text { ellipse in Fig. } 7.10
$$

> von Mises' criterion, Eq.(2.36)

$$
\left(\frac{N_{1}}{\pi R^{2} \sigma_{y}}\right)^{2}+12\left(\frac{M_{1}}{\pi R^{3} \sigma_{y}}\right)^{2} \leq 1 \text { llipse in Fig. } 7.10
$$

7.2 Torsion combined with axial forces and bending moments

2) Shaft under torsion and bending

> Bending moment M_{3} and torque M_{1}

$$
\sigma=\frac{4 M_{3} r}{\pi R^{4}}, \quad \tau=\frac{2 M_{1} r}{\pi R^{4}}
$$

> Tresca's criterion

$$
\begin{equation*}
16\left(\frac{M_{3}}{\pi R^{3} \sigma_{y}}\right)^{2}+16\left(\frac{M_{1}}{\pi R^{3} \sigma_{y}}\right)^{2}=1 \tag{Fig. 7.11}
\end{equation*}
$$

Fig. 7.11
> von Mises' criterion

$$
\begin{equation*}
16\left(\frac{M_{3}}{\pi R^{3} \sigma_{y}}\right)^{2}+12\left(\frac{M_{1}}{\pi R^{3} \sigma_{y}}\right)^{2} \leq 1 \tag{Fig. 7.11}
\end{equation*}
$$

7.3 Torsion of Bar with Arbitrary Cross-Sections

7.3.1 Introduction

> Circular symmetry of the problem is not maintained any more
> At any point along the edge of the bar`s section, the shear stress must be tangent to the edge $\rightarrow \tau_{13}=0$ but, non-zero τ_{13} is required from the circular symmetry
> Fewer symmetries than the circular cross section has.

Fig. 7.14. Shearing stresses along the edge of a rectangular section.

7.3 Torsion of Bar with Arbitrary Cross-Sections

$>$ Symmetry built planes $\left(\vec{i}_{1}, \vec{i}_{2}\right)$ and $\left(\vec{i}_{1}, \vec{i}_{3}\right)$ but, no circular symmetry
> Torsional loading and the resulting solution : anti-symmetry with regard to $\left.\left(\vec{i}_{1}, \vec{i}_{2}\right) \rightarrow u_{1}^{A}=-u_{1}^{B}, u_{1}^{C}=-u_{1}^{D}\right\}$ Cross section will with regard to $\left.\left(\vec{i}_{1}, \vec{i}_{3}\right) \rightarrow u_{1}^{A}=-u_{1}^{D}, u_{1}^{B}=-u_{1}^{C}\right\}$ warp out-of-plane

Fig. 7.15. Four points on a rectangular crosssection.

7.3 Torsion of Bar with Arbitrary Cross-Sections

7.3.2 Saint-Venant's solution

1) Kinematic description

> Each cross section rotates like a rigid body, and warp out-of-plane
\rightarrow assumed displacement field

$$
\begin{aligned}
& u_{1}\left(x_{1}, x_{2}, x_{3}\right)=\Psi\left(x_{2}, x_{3}\right) \kappa_{1}\left(x_{1}\right) \\
& u_{2}\left(x_{1}, x_{2}, x_{3}\right)=-x_{3} \Phi_{1}\left(x_{1}\right) \\
& u_{3}\left(x_{1}, x_{2}, x_{3}\right)=x_{2} \Phi_{1}\left(x_{1}\right)
\end{aligned}
$$

$\Psi\left(x_{2}, x_{3}\right)$: unknown warping function, will be determined by enforcing equilibrium equations for the resulting stress field

7.3 Torsion of Bar with Arbitrary Cross-Sections

2) The Strain field
$>$ Eq.(7.32) \rightarrow Eq. (1.63) and (7.71)

$$
\begin{align*}
& \varepsilon_{1}=\Psi\left(x_{2}, x_{3}\right) \frac{d \kappa_{1}}{d x_{1}}=0 \text { due to "uniform torsion" } \\
& \varepsilon_{2}=0, \varepsilon_{3}=0, \gamma_{23}=0 \tag{7.33}\\
& \gamma_{12}=\left(\frac{d \Psi}{d x_{2}}-x_{3}\right) \kappa_{1,}, \gamma_{13}=\left(\frac{d \Psi}{d x_{3}}+x_{2}\right) \kappa_{1}
\end{align*}
$$

3) The Stress field

$$
\left.\begin{array}{l}
\sigma_{1}=0, \sigma_{2}=0, \sigma_{3}=0, \tau_{23}=0 \\
\tau_{12}=G \kappa_{1}\left(\frac{\partial \Psi}{\partial x_{2}}-x_{3}\right), \tau_{13}=G \kappa_{1}\left(\frac{\partial \Psi}{\partial x_{3}}+x_{2}\right) \tag{7.34}
\end{array}\right\}
$$

7.3 Torsion of Bar with Arbitrary Cross-Sections

4) Equilibrium equations

> Stress field must satisfy the general equilibrium equations.
Eq.(1.4) at all point of the section.
Neglecting body forces, the remaining equation is
$\frac{\partial \tau_{12}}{\partial x_{2}}+\frac{\partial \tau_{13}}{\partial x_{3}}=0$
$>$ Eq. 7.34 c$) \rightarrow$ (7.35)
$\frac{\partial^{2} \Psi}{\partial x_{2}^{2}}+\frac{\partial^{2} \Psi}{\partial x_{3}^{2}}=0$
the warping function must satisfy the PDE at all points of the cross section

7.3 Torsion of Bar with Arbitrary Cross-Sections

> Boundary condition: satisfaction of the equilibrium equations along the outer contour of the section (Fig. 7.16)
$>$ Along the C , according to Fig. 7.14, $\tau_{n}=0$ (7.37)

$$
\tau_{s} \text { does not necessarily vanish }
$$

in terms of Cartesian components,

$$
\begin{equation*}
\tau_{n}=\tau_{12} \sin \beta+\tau_{13} \cos \beta=\tau_{12}\left(\frac{d x_{3}}{d s}\right)+\tau_{13}\left(-\frac{d x_{2}}{d s}\right)=0 \tag{7.38}
\end{equation*}
$$

$>$ Eq.(7.34c) \rightarrow (7.38): $\left(\frac{\partial \Psi}{\partial x_{2}}-x_{3}\right) \frac{d x_{3}}{d s}-\left(\frac{\partial \Psi}{\partial x_{3}}+x_{2}\right) \frac{d x_{2}}{d s}=0$
Eq.(7.36): Laplace's equations
Eq.(7.39): rather complicated boundary condition

Fig. 7.14. Shearing stresses along the edge of a rectangular section.

Fig. 7.16. Equilibrium condition along the outer contour \mathcal{C}.

7.3 Torsion of Bar with Arbitrary Cross-Sections

5) Prandtl's stress function

> Alternative formulation leading to simple boundary condition
: stress function, $\phi\left(x_{2}, x_{3}\right)$

$$
\begin{equation*}
\tau_{12}=\frac{\partial \phi}{\partial x_{3}}, \tau_{13}=-\frac{\partial \phi}{\partial x_{2}} \tag{7.41}
\end{equation*}
$$

automatically satisfies the load equilibrium equation, Eq.(7.35)
> By comparing Eq.(7.34c) and (7.41)

$$
\begin{gathered}
\tau_{12}=G \kappa_{1}\left(\frac{\partial \Psi}{\partial x_{2}}-x_{3}\right)=\frac{\partial \phi}{\partial x_{3}}, \tau_{13}=G \kappa_{1}\left(\frac{\partial \Psi}{\partial x_{3}}+x_{2}\right)=-\frac{\partial \phi}{\partial x_{2}} \\
\frac{\partial^{\uparrow}}{\partial x_{3}} \underbrace{[]}_{(-)} \frac{\frac{\partial}{\partial x_{2}}}{[}] \\
\frac{\partial^{2} \phi}{\partial x_{2}^{2}}+\frac{\partial^{2} \phi}{\partial x_{3}^{2}}=-2 G \kappa_{1} \quad(7.43)
\end{gathered}
$$

7.3 Torsion of Bar with Arbitrary Cross-Sections

* Boundary condition
> from Eq.(7.38), (7.41)

$$
\begin{aligned}
\tau_{n} & =\frac{\partial \phi}{\partial x_{3}} \frac{d x_{3}}{d s}+\frac{\partial \phi}{\partial x_{2}} \frac{d x_{2}}{d s}=\frac{d \phi}{d s}=\underset{\succ \text { constant }}{0} \quad \text { (7.44) } \\
& : \text { constant } \phi \text { along } \mathrm{C}
\end{aligned}
$$

> Eq.(7.43): Poisson's equation
> Eq.(7.44): much simpler boundary condition

7.3 Torsion of Bar with Arbitrary Cross-Sections

5) Sectional equilibrium

> Global equilibrium of the section

- Resultant Shear force

$$
\begin{aligned}
& V_{2}=\int_{A} \tau_{12} d A=\int_{x_{2}} \int_{x_{3}} \frac{\partial \phi}{\partial x_{3}} d x_{2} d x_{3}=\int_{x_{2}}\left[\int_{x_{3}} \frac{\partial \phi}{\partial x_{3}}\right] d x_{2}=0 \\
& V_{3}=0
\end{aligned}
$$

: no shear forces are applied

- Total torque acting on the section

$$
\begin{equation*}
M_{1}=\int_{A}\left(x_{2} \tau_{13}-x_{3} \tau_{12}\right) d A=\int_{A}\left(-x_{2} \frac{\partial \phi}{\partial x_{2}}-x_{3} \frac{\partial \phi}{\partial x_{3}}\right) d A \tag{7.46}
\end{equation*}
$$

Integrating by parts

$$
\begin{align*}
& M_{1}=2 \int_{A} \phi d A-\int_{x_{3}}\left[x_{2} \phi\right]_{x_{2}} d x_{3}-\int_{x_{2}}\left[x_{3} \phi\right]_{x_{3}} d x_{2} \tag{7.47}\\
& M_{1}=2 \int \phi d A \tag{7.48}
\end{align*}
$$

applied torque $=2 \times$ "volume" under the stress function, only valid for solid cross section bounded by a single curve otherwise, use Eq.(7.46)

Example 7.1

* Torsion of an ellipticall bar

> Curve $C:\left(\frac{x_{2}}{a}\right)^{2}+\left(\frac{x_{3}}{b}\right)^{2}=1$, A stress function of the following form is assumed

$$
\phi=C_{0}\left[\left(\frac{x_{2}}{a}\right)^{2}+\left(\frac{x_{3}}{b}\right)^{2}-1\right], C_{0}: \text { Unknown const. }
$$

$>$ Boundary condition, Eq.(7.45b) is clearly satisfied since $\phi=0$ along C.
> Substituting into the governing eqn., Eq.(7.45)

$$
\begin{align*}
& C_{0}\left(\frac{2}{a^{2}}+\frac{2}{b^{2}}\right)=-2 G \kappa_{1} \\
& C_{0}=\frac{-a^{2} b^{2} G k_{1}}{a^{2}+b^{2}} \\
& \phi=\frac{-a^{2} b^{2}}{a^{2}+b^{2}}\left[\left(\frac{x_{2}}{a}\right)^{2}+\left(\frac{x_{3}}{b}\right)^{2}-1\right] G \kappa_{1} \tag{7.49}
\end{align*}
$$

Example 7.1

* Torsion of an ellipticall bar

> Torque: Eq.(7.48)

$$
M_{1}=-\frac{2 a^{2} b^{2}}{a^{2}+b^{2}} G_{m_{1}} \int_{A}\left[\left(\frac{x_{2}}{a}\right)^{2}+\left(\frac{x_{3}}{b}\right)^{2}-1\right] d A=G \frac{\pi a^{3} b^{3}}{a^{2}+b^{2}} \kappa_{1}=H_{11} K_{1}
$$

> Torsional stiffness of the elliptical section

$$
\begin{equation*}
H_{::}=G \frac{\pi a^{3} b^{3}}{a^{2}-b^{2}} \tag{7.50}
\end{equation*}
$$

$>$ Stress fn . In terms of the applied torque

$$
\phi=-\frac{M_{1}}{\pi a b}\left[\left(\frac{x_{2}}{a}\right)^{2}+\left(\frac{x_{3}}{b}\right)^{2}-1\right]
$$

> Stress distribution: Eq.(7.41)

$$
\tau_{12}=-\frac{2 x_{3}}{\pi a b^{3}} M_{1}, \tau_{13}=\frac{2 x_{2}}{\pi a^{3} b} M_{1}
$$

> Shear stress vector … Fig.7.18b, tangent to curve C.

$$
\left|\boldsymbol{\tau}_{\max }\right|=\frac{2 M_{1}}{\pi a b^{2}}
$$

Fig. 7.18 (a) Shear stress distributions along the axes

Fig. 7.18 (b) Shear stress vectors and contours

Example 7.1

* Torsion of an ellipticall bar

> Shear stress vector \cdot.. Fig. 7.18b, tangent to curve C.
$>$ Warping function \cdots by integrating Eq.(7.42)

$$
\begin{aligned}
& \frac{\partial \Psi}{\partial x_{2}}=-\frac{a^{2}-b^{2}}{a^{2}+b^{2}} x_{3}, \frac{\partial \Psi}{\partial x_{3}}=-\frac{a^{2}-b^{2}}{a^{2}+b^{2}} x_{2} \\
& x_{2} \|_{\text {W.r.t. }} \quad \text { Integrating } x_{3} \\
& \Psi=-x_{2} x_{3} \frac{a^{2}-b^{2}}{a^{2}+b^{2}}+f\left(x_{3}\right) \quad \Psi=-x_{2} x_{3} \frac{a^{2}-b^{2}}{a^{2}+b^{2}}+g\left(x_{2}\right) \\
& \rightarrow \Psi=-\frac{a^{2}-b^{2}}{a^{2}+b^{2}} x_{2} x_{3} \\
& \text { Equal only if } f\left(x_{3}\right)=g\left(x_{2}\right)=0 \\
& \text { Eq.(7.32a) } \rightarrow u_{1}\left(x_{2}, x_{3}\right)=-x_{1} \frac{a^{2}-b^{2}}{a^{2}+b^{2}} x_{2} x_{3}
\end{aligned}
$$

Example 7.1

* Torsion of an elliptical bar
... 2 planes of symmetry, warping displacement antisymmetric w.r.t Z planes
(Fig. 7.19)
> Circular section $\cdots a=b=R$, warping $\mathrm{fn} .=0$

Fig. 7.19. Warping distribution for an elliptic cross-section

7.3 Torsion of Bar with Arbitrary Cross-Sections

* Summary
> Bar of arbitrary cross section subjected to uniform torsion
> Stress distribution: Warping function Eq.(7.40)
Stress function Eq.(7.45)
> Stress field: Eq.(7.34c) or Eq.(7.41)
\rightarrow exact solution although the displacement field is assumed as in Eq.(7.32)

7.3 Torsion of Bar with Arbitrary Cross-Sections

7.3.2 Saint-Venant's solution for a Rectangular X-S

> 2 Solution - approximation solution based on the co-location approach

- exact solution based on the co-location approach

1) Approximate solution

> Rectangular cross section of width a, height b (Fig. 7.21)

- Assumed stress function

$$
\begin{aligned}
& \phi(\eta, \zeta)=C_{0}\left(\eta^{2}-\frac{1}{4}\right)\left(\zeta^{2}-\frac{1}{4}\right), \eta=\frac{x_{2}}{a}, \zeta=\frac{x_{3}}{b} \\
& \phi(\eta= \pm 1 / 2, \zeta)=0, \phi(\eta, \zeta= \pm 1 / 2)=0
\end{aligned}
$$

$\rightarrow \phi=0$ along the curve C
$\rightarrow \mathrm{PDE}, \mathrm{Eq}(7.43):$
$2 C_{0}\left(\zeta^{2}-\frac{1}{4}\right) \frac{1}{a^{2}}+2 C_{0}\left(\eta^{2}-\frac{1}{4}\right) \frac{1}{b^{2}}=-2 G \kappa_{1}$

(Fig. 7.21) assumed solution does not satisfy PDE.

7.3 Torsion of Bar with Arbitrary Cross-Sections

> Approximate solution: "co-location method", satisfy PDE only at a specific part of points of the cross section

- PDE will be satisfied at the center, $(\eta, \zeta)=(0,0)$

$$
-\frac{C_{0}}{2 a^{2}}-\frac{C_{0}}{2 b^{2}}=-2 G \kappa_{1}, C_{0}=\frac{4 G \kappa_{1} a^{2} b^{2}}{a^{2}+b^{2}}
$$

- Then, $\phi=\frac{4 a^{2} b^{2} G \kappa_{1}}{a^{2}+b^{2}}\left(\eta^{2}-\frac{1}{4}\right)\left(\zeta^{2}-\frac{1}{4}\right)$
$M_{1}=2 \int_{A} \phi d A$, torsional stiffness H_{11}
shear stress field τ_{12}, τ_{13}

7.3 Torsion of Bar with Arbitrary Cross-Sections

2) Open form exact solution using a Fourier series

> Fourier series expansion of the stress function

$$
\phi(\eta, \zeta)=\sum_{i=o d d}^{\infty} \sum_{j=o d d}^{\infty} C_{i j} \cos i \pi \eta \cos j \pi \zeta
$$

> Satisfaction of B.C. Eq.(7.45b): when $i, j=o d d, \phi=0$ thus only odd values of i, j are included
> Governing PDE, Eq.(7.43)

$$
\sum_{i=\text { odd }}^{\infty} \sum_{j=o d d}^{\infty} C_{i, j}\left[\left(\frac{i \pi}{a}\right)^{2}+\left(\frac{j \pi}{b}\right)^{2}\right] \cos i \pi \eta \cos j \pi \eta=2 G \kappa_{1}
$$

> By using the orthogonality properties of cosine function

$$
\begin{aligned}
& \sum_{i=o d d}^{\infty} \sum_{j=o d d}^{\infty} C_{i, j}\left[\left(\frac{i \pi}{a}\right)^{2}+\left(\frac{j \pi}{b}\right)^{2}\right]\left[\int_{-1 / 2}^{1 / 2} \cos m \pi \eta \cos i \pi \eta d \eta\right]\left[\int_{-1 / 2}^{1 / 2} \cos n \pi \zeta \cos j \pi \zeta d \zeta\right] \\
& =-2 G \kappa_{1}\left[\int_{-1 / 2}^{1 / 2} \cos m \pi \eta d \eta\right]\left[\int_{-1 / 2}^{1 / 2} \cos n \pi \zeta d \zeta\right]
\end{aligned}
$$

7.3 Torsion of Bar with Arbitrary Cross-Sections

> The bracket integrals vanish when $m \neq i$ on $n \neq j$. The remaining terms
$C_{m n}\left[\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}\right] \frac{1}{4}=\frac{8}{m n \pi^{2}}(-1)^{\frac{m-1}{2}}(-1)^{\frac{n-1}{2}} G \kappa_{1}$
$>$ Then, $\phi(\eta, \zeta)=\frac{32 G \kappa_{1}}{\pi^{2}} \sum_{i=o d d}^{\infty} \sum_{j=o d d}^{\infty} \frac{(-1)^{(i+j-2) / 2}}{i j\left[(i \pi / a)^{2}+(j \pi / b)^{2}\right]} \cos i \pi \eta \cos j \pi \zeta$
> Externally applied torque
> Torsional stiffness
> Shear stress field: Although it is a doubly infinite series, it converges rapidly (1, 2 term $) \rightarrow$ Fig 7.22, 7.23

Fig. 7.23. Distribution of shear stress over cross-section. The arrows represent the shear stresses; the contours represent constant values of the stress function ϕ.

7.3 Torsion of Bar with Arbitrary Cross-Sections

3) Comparison of solution

$>\bar{H}_{11}$: Fig. 7.24
> Non-dimensional shear stress: Fig. 7.25, 7.26
> Large discrepancies, approximate solution is not good enough

Fig. 7.24. Non-dimensional torsional stiffness, \bar{H}_{11}, versus aspect ratio, a / b. Exact solution: solid line; approximate solution: dashed line.

Fig. 7.25. Non-dimensional shear stress at point \mathbf{B} versus aspect ratio a / b. Exact solution: solid line; approximate solution: dashed line.

Fig. 7.26. Non-dimensional shear stress at point A versus aspect ratio a / b. Exact solution: solid line; approximate solution: dashed line.

7.4 Torsion of a thin rectangular Cross Section

> Fig. 7.28: $\mathrm{t} \ll \mathrm{b}$, assume that both stress function and associated shear stress distributions will be nearly constant along $\overline{i_{3}}$

$$
\rightarrow \frac{\partial \phi}{\partial x_{3}} \approx 0
$$

$>$ Governing Equation is from Eq.(7.43)

$$
\begin{aligned}
& \frac{d^{2} \phi}{d x_{2}^{2}}=-2 G \kappa_{1} \\
& \phi\left(x_{2}\right)=-G \kappa_{1} x_{2}^{2}+C_{1} x_{2}+C_{2}
\end{aligned}
$$

> Boundary Condition Eq.(7.45b)

Fig. 7.28. Thin rectangular strip under torsion.

$$
\begin{aligned}
& \phi\left(x_{2}= \pm t / 2\right)=0 \rightarrow C_{1}=0, C_{2}=G \kappa_{1} t^{2} / 4 \\
\rightarrow \quad & \phi\left(x_{2}\right)=-G \kappa_{1}\left(x_{2}^{2}-\frac{t^{2}}{4}\right)
\end{aligned}
$$

7.4 Torsion of a thin rectangular Cross Section

> Resulting torque

$$
M_{1}=2 \int_{A} \phi d A=-2 G \kappa_{1} \int_{-t / 2}^{t / 2}\left(x_{2}^{2}-\frac{t^{2}}{4}\right) b d x_{2}=\frac{1}{3} G \kappa_{1} b t^{3}
$$

> Torsional stiffness

$$
\begin{equation*}
H_{11}=\frac{M_{1}}{\kappa_{1}}=\frac{1}{3} G b t^{3} \tag{7.58}
\end{equation*}
$$

> Shear stress distribution

$$
\tau_{12}=\frac{\partial \phi}{\partial x_{3}}=0, \tau_{13}=-\frac{\partial \phi}{\partial x_{2}}=2 G \kappa_{1} x_{2}=\frac{6 M_{1}}{b t^{3}} x_{2} \quad \text { (7.59) }
$$

7.4 Torsion of a thin rectangular Cross Section

$>$ Warping function: Eq.(7.57) \rightarrow (7.42)

$$
\begin{array}{r}
\frac{\partial \Psi}{\partial x_{2}}=\frac{1}{G \kappa_{1}} \frac{\partial \phi}{\partial x_{3}}+x_{3}=x_{3}, \frac{\partial \Psi}{\partial x_{3}}=-\frac{1}{G \kappa_{1}} \frac{\partial \phi}{\partial x_{2}}-x_{2}=x_{2} \\
\downarrow \\
\downarrow=x_{2} x_{3} \underbrace{\downarrow f\left(x_{3}\right) \quad \Psi=x_{2} x_{3}}_{\Psi=x_{2} x_{3}}+g\left(x_{2}\right)
\end{array}
$$

> Axial displacement

Fig. 7.29. Warping function for a thin rectangular strip.
$u_{1}\left(x_{2}, x_{3}\right)=\Psi\left(x_{2}, x_{3}\right) \kappa_{1}=\kappa_{1} x_{2} x_{3} \quad$ (7.60) anti-symmetric with regard to $\overline{i_{2}}$ and $\overline{i_{3}}$

7.5 Torsion of thin-walled open section

> Gradient of the stress function will vanish along the local tangent to the section's thin wall: corresponding shear stress will be linear through the wall thickness

Fig. 7.30. Semi-circular thin-walled open
section.
> Torsional stiffness: from Eq.(7.58) $\rightarrow H_{11}=G \frac{l t^{3}}{3}$
> Shear stress: tangential shear stress, $\tau_{s^{\prime}}$, only non-vanishing component, vary linearly from 0 at the middle to max.(+) and (-) at edges $\tau_{s}^{\max }=G t \kappa_{1} \quad$ (7.62)

7.5 Torsion of thin-walled open section

> More general thin-walled open section
: multiple curved and straight sections (Fig. 7.31)

Fig. 7.31. Thin-walled open section composed of several curved.
> Torsional stiffness: sum of those corresponding to the individual segment

$$
\begin{equation*}
H_{11}=\sum_{i} H_{11}^{(i)}=\frac{1}{3} \sum_{i} G_{i} l_{i} t_{i}^{3} \tag{7.64}
\end{equation*}
$$

> Max. shear stress
$\tau_{s}^{\max }=G t_{\max } \frac{M_{1}}{H_{11}}$
> Warping: more complex, described in chap. 8

Example 7.3

* Torsion of thin-walled section

> C-channel: torsional stiffness, by Eq. (7.64)

$$
\begin{equation*}
H_{11}=\frac{G}{3}\left(b t_{f}^{3}+h t_{w}^{3}+b t_{f}^{3}\right)=\frac{G}{3}\left(h t_{w}^{3}+2 b t_{f}^{3}\right) \tag{7.66}
\end{equation*}
$$

> Tangential stress at the outer edge: by Eq. (7.62)

$$
\tau_{w}=G t_{w} \kappa_{1}=G t_{w} \frac{M_{1}}{H_{11}}, \tau_{f}=G t_{f} \kappa_{1}=G t_{f} \frac{M_{1}}{H_{11}}
$$

Fig. 7.32. A thin-walled C-channel section
> Max. shear stress exists in the segment featuring the max. thickness

Q \& A

