Aircraft Structures

CHAPER 9.

 Virtual Work PrincipleProf. SangJoon Shin

9.1 Introduction

Mechanical work : Scalar product of the force by the displacement through which it acts \rightarrow scalar quantity \rightarrow simpler to manipulate \rightarrow very attractive

Newton's equilibrium condition : The sum of all force (regardless of externally applied loads, internal forces, and reaction forces) must vanish

Analytical mechanics : powerful tools for complex problems

- Scalar quantities, simpler analysis procedure
- Reaction forces can often be eliminated if the work involved vanishes.
- Systematic development of procedure for approximate solutions (ex : finite element method)
Why still need Newton's formulation? : to determine both magnitude and direction of all forces acting within a structure, to estimate failure condition

Principle of virtual work (PVW)

9.2 Equilibrium and work fundamentals

9.2.1 Static equilibrium conditions

Newton's $1^{\text {st }}$ law : every object in a state of uniform motion tends to remain in that state of motion unless an external force is applied to it

- A particle at rest tends to remain at rest unless the sum of the externally applied force does not vanish.
- A particle is at rest if and only if the sum of the externally applied forces vanishes.
- A particle is in static equilibrium if and only if the sum of the externally applied forces vanishes.
- A particle is in static equilibrium iff $\quad \sum \underline{F}=0$
(1) The vector sum of all forces acting on a particle must be zero.
(2) The vector polygon must be closed.
(3) The component of the vector sum resolved in any coord. system must vanish.

$$
\sum \underline{F}=F_{1} \overline{i_{1}}+F_{2} \overline{i_{2}}+F_{3} \overline{i_{3}} \rightarrow F_{1}=F_{2}=F_{3}=0
$$

9.2 Equilibrium and work fundamentals

9.2.1 Static equilibrium conditions

Newton's $3^{\text {rd }}$ law : If particle A exerts a force on particle B, particle B simultaneously exerts on particle A a force of identical magnitude and opposite direction.

- Two interacting particles exert on each other forces of equal magnitude, opposite direction, and sharing a common line of action.

Euler's $1^{\text {st }}$ law

Fig. 9.1. A system of particles.
system consisting of N particles
Particle i subjected to an external force $\underline{F}_{i}, N-1$ interaction forces $\underline{f}_{i j}, j=1,2 \ldots, N, j \neq i$

Newton's $1^{\text {st }}$ law

$$
\begin{equation*}
\underline{F}_{i}+\sum_{j=1, j \neq i}^{N} f_{i j}=0 \tag{9.2}
\end{equation*}
$$

9.2 Equilibrium and work fundamentals

9.2.1 Static equilibrium conditions

Interaction forces : for rigid body, it will ensure the body shape remain unchanged elastic body, stress resulting from deformation planetary system, gravitational pull

Summation of N eqns. for N particles

$$
\sum_{i=1}^{N} \underline{F}_{i}+\sum_{i=1}^{N} \sum_{j=1, j \neq i}^{N} f_{i j}=0
$$

By Newton's 3rd law,

$$
\begin{equation*}
\sum_{i=1}^{N} \sum_{j=1, j \neq i}^{N} f_{i j}=0 \tag{9.3}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\sum_{i=1}^{N} \underline{F}_{i}=0 \tag{9.4}
\end{equation*}
$$

Euler's $1^{\text {st }}$ law for a system of particles necessary condition for a system of particles to be in static equilibrium but not a sufficient condition

9.2 Equilibrium and work fundamentals

9.2.1 Static equilibrium conditions

Euler's $2^{\text {nd }}$ law

- Taking a vector product of

$$
\begin{aligned}
& \sum_{i=1}^{N} \underline{F}_{i}+\sum_{i=1}^{N} \sum_{j=1, j \neq i}^{N} \underline{f}_{i j}=0 \\
& \text { by } \underline{r}_{i}, \text { then summing over all particles }
\end{aligned}
$$

$$
\sum_{i=1}^{N} \underline{r}_{i} \times \underline{F}_{i}+\sum_{i=1}^{N} \sum_{j=1, j \neq i}^{N} \underline{r}_{i} \times \underline{f}_{i j}=0
$$

then,

$$
\begin{equation*}
\sum_{i=1}^{N} \underline{r}_{i} \times \underline{F}_{i}=\sum_{i=1}^{N} \underline{M}_{i}=0 \tag{9.6}
\end{equation*}
$$

- Euler's $1^{\text {st }}$ and $2^{\text {nd }}$ law both necessary condition for the system of particles to be in static equilibrium, but not a sufficient condition.

9.2 Equilibrium and work fundamentals

9.2.2 Concept of mechanical work

> Definition

- The work done by a force is the scalar product of the force by the displacement of its point of application.

1. force, displacement, collinear : $\underline{F}=F \bar{u}, \underline{d}=d \bar{u}, W=F d$ + : if the same direction / - : if the opposite direction
2. not collinear : $W=F d \cos \theta, \theta$ angle between \bar{u} and \bar{v}
3. Perpendicular: $\cos \theta=\cos \frac{\pi}{2}=0, W=0$

- "incremental work" : $d W=\underline{F} \cdot d \underline{r}$, total work: $W=\int_{t_{d}}^{t_{f}} d W=\int_{t}^{t_{f}} F \cdot d \underline{r}$
- $\underline{F}=F_{1} \bar{e}_{1}+F_{2} \bar{e}_{2}+F_{3} \bar{e}_{3}, d \underline{r}=d r_{1} \bar{e}_{1}+d r_{2} \bar{e}_{2}+d r_{3} \bar{e}_{3}, d W=\underline{F} \cdot d \underline{r}=F_{1} d r_{1}+F_{2} d r_{2}+F_{3} d r_{3}$
- $d \underline{r}=d r \bar{u}, \underline{F}=F_{\|} \bar{u}+F_{\perp} \bar{v} \rightarrow d W=\left(F_{\|} \bar{u}+F_{\perp} \bar{v}\right) \cdot d r \bar{u}=F_{\|} d r$

9.2 Equilibrium and work fundamentals

9.2.2 Concept of mechanical work

- superposition : $\underline{F}=\underline{F_{1}}+\underline{F_{2}}, d W=\underline{F} \cdot d \underline{r}=\left(\underline{F_{1}}+\underline{F_{2}}\right) \cdot d \underline{r}=\underline{F_{1}} \cdot d \underline{r}+\underline{F_{2}} \cdot d \underline{r}=d W_{1}+d W_{2}$
- Why is work a quantity of interest for the static analysis?
\rightarrow Concept of "virtual work" that would be done by a force if it were to displace its point of application by a fictitious amount.

9.3 Principle of virtual work

> PVW

- "arbitrary virtual displacement", "arbitrary test virtual displacement" "arbitrary fictitious virtual displacement"
- arbitrary : Displacement can be chosen arbitrarily without any restrictions imposed on their magnitude or orientations.
- virtual, test, fictitious : Do not affect the forces acting on the particle.

9.3 Principle of virtual work

9.3.1 PVW for a single particle

Fig. 9.2. A particle with applied forces subjected to a fictitious test displacement.
particle in static equilibrium under a set of externally applied loads, fictitious displacement of \underline{S}
virtual work done

$$
\begin{equation*}
W=\left[\sum \underline{F}\right] \cdot \underline{s}=0 \tag{9.8}
\end{equation*}
$$

Assume that one of the externally applied forces, \underline{F}_{1}, is an elastic spring force. If for a real, arbitrary displacement, \underline{d}, the spring force will change to become $\underline{F}_{1}{ }^{\prime}$, the sum of eventually applied forces,

$$
\sum \underline{F}_{1}^{\prime} \rightarrow \sum \underline{F}^{\prime} \neq 0
$$

For a virtual or fictitious displacement, do not affect the loads applied to the particle, it remains in static equilibrium, $W=\left[\sum \underline{F}\right] \cdot \underline{s}=0$ holds.
If $W=\left[\sum \underline{F}\right] \cdot \underline{s}=0$ is satisfied for all arbitrary virtual displacement, then $\sum \underline{F}=0$, and the particle is in static equilibrium.

9.3 Principle of virtual work

9.3.1 PVW for a single particle

Principle 3 (PVW for a particle) : A particle is in static equilibrium if and only if the virtual work done by the externally applied forces vanishes for all arbitrary virtual displacement.

Fig. 9.3. A particle under the action of two forces.

Example 9.1 Equilibrium of a particle

$$
\underline{F}_{1}=1 \bar{i}_{1} \quad \underline{F}_{2}=-3 \bar{i}_{1} \quad \underline{s}=s_{1} \bar{i}_{1}+s_{2} \bar{i}_{2}
$$

Virtual work is

$$
W=\left(1 \bar{i}_{1}-3 \bar{i}_{2}\right) \cdot\left(s_{1} \bar{i}_{1}+s_{2} \bar{i}_{2}\right)=-2 \bar{i}_{1} \cdot\left(s_{1} \bar{i}_{1}+s_{2} \bar{i}_{2}\right)=-2 s_{1} \neq 0
$$

Because the virtual work done by the externally applied forces does not vanish for all virtual displacement, the principle of virtual work, Principle 3 , implied that the particle is not in static equilibrium.

9.3 Principle of virtual work

9.3.1 PVW for a single particle

Example 9.2 Equilibrium of a particle connected to an elastic spring

$$
\begin{gathered}
W=\left(m g \bar{i}_{1}-k u \overline{i_{1}}\right) \cdot\left(s_{1} \bar{i}_{1}+s_{2} \bar{i}_{2}\right)=[m g-k u] s_{1} \\
{[m g-k u] s_{1}=0}
\end{gathered}
$$

Fig. 9.4. A particle suspended to an elastic spring.

But, $s_{1}=0$ is not valid because, as implied by the principle of virtual work, s_{1} is arbitrary.
In conclusion, the vanishing of the virtual work for all arbitrary virtual displacement implies that $m g-k u=0$, and the equilibrium configuration of the system is found as $u=m g / k$.

9.3 Principle of virtual work

9.3.1 PVW for a single particle

Consider the work done by the elastic force, $-k u \bar{i}_{1} \cdot d u \bar{i}_{1}$, under a virtual displacement, s_{1},

$$
\begin{equation*}
W=\int_{u}^{u+s_{1}}-k u d u=-k u \int_{u}^{u+s_{1}} d u=-k u[u]_{u}^{u+s_{1}}=-k u s_{1} \tag{9.9}
\end{equation*}
$$

Fig. 9.4. A particle suspended to an elastic spring.

It is possible to remove the elastic force, $-k u$, from the integral because this force remains unchanged by the virtual displacement, and hence, it can be treated as a constant.
In contrast, the work done by the same elastic force under a real displacement, d, is

$$
\begin{equation*}
W=\int_{u}^{u+d}-k u d u=\left[-\frac{1}{2} k u^{2}\right]_{u}^{u+d}=-k u d-\left[-\frac{1}{2} k d^{2}\right] \tag{9.10}
\end{equation*}
$$

In this case, the real work includes an additional term that is quadratic in d and represents the work done by the change in force that develops due to the stretching of the spring.

9.3 Principle of virtual work

9.3.1 PVW for a single particle

Example 9.3 Equilibrium of a particle sliding on a track

Fig. 9.5. A particle sliding on a track.

$$
\begin{aligned}
& m g \bar{i}_{1}-R \bar{i}_{1}+P \bar{i}_{2}-F \bar{i}_{2}=0 \\
& (m g-R) \bar{i}_{1}+(P-F) \bar{i}_{2}=0
\end{aligned}
$$

Finally, $\quad R=m g \quad F=P$
Next, by PVW,

$$
\begin{equation*}
W=\left(m g \bar{i}_{1}-R \bar{i}_{1}+P \bar{i}_{2}-F \overline{i_{2}}\right) \cdot\left(s_{1} \bar{i}_{1}+s_{2} \bar{i}_{2}\right)=[m g-R] s_{1}+[P-F] s_{2}=0 \tag{9.11}
\end{equation*}
$$

9.3 Principle of virtual work

9.3.2 Kinematically admissible virtual displacement

> "arbitrary virtual displacements" : including those that violate the kinematic constraints of the problem

- "kinematically inadmissible direction", "infeasible direction" : S_{1} in the track example $\rightarrow \underline{s}=s_{2} i_{2}$ kinematically admissible
- Reaction forces acts along the kinematically inadmissible direction
> Modified version of PVW : "a particle is in static equilibrium if and only if the virtual work done by the externally applied forces vanishes for all arbitrary kinematically admissible virtual displacements"
- Constraint (reaction) forces are automatically eliminated.
- Fewer number of equations

9.3 Principle of virtual work

9.3.3 Use of infinitesimal displacements as virtual displacements

- Special notation commonly used to denote virtual displacements

$$
\underline{s}=\delta \underline{u}
$$

Virtual work done by a force undergoing virtual displacement $\rightarrow \delta W$

- Convenient to use virtual displacements of infinitesimal magnitude
\rightarrow Often simplifies algebraic developments

1. Displacement dependent force \rightarrow automatically remain unaltered

Ex 9.6 Consider a particle connected to an elastic spring. This is the same problem treated in Ex 9.2

$$
\begin{gathered}
\delta W=\left(m g \bar{i}_{1}-k u \bar{i}_{1}\right) \cdot\left(\delta u \bar{i}_{1}+\delta v \bar{i}_{2}\right)=[m g-k u] \delta u=0 \\
\delta u=d u \\
\int_{u}^{u+d u}-k u d u=\left[-\frac{1}{2} k u^{2}\right]_{u}^{u+d u}=-k u d u-\frac{1}{2} k(d u)^{2}=-k u d u
\end{gathered}
$$

Fig. 9.7. Use of a differential displacement as a virtual displacement.

9.3 Principle of virtual work

9.3.3 Use of infinitesimal displacements as virtual displacements

2. Rigid bodies

- 2 point P, Q of a rigid body \rightarrow must satisfy the rigid body dynamics

$$
\begin{gather*}
\underline{v}_{P}=\underline{v}_{Q}+\underline{\omega} \times \underline{r}_{Q P} \\
\frac{d \underline{u}_{P}}{d t}=\frac{d \underline{u}_{Q}}{d t}+\frac{d \psi}{d t} \times \underline{r}_{Q P} \\
d \underline{u}_{P}=d \underline{u}_{Q}+\underline{d \psi} \times \underline{r}_{Q P} \tag{9.14}
\end{gather*}
$$

- It is possible to write

$$
\delta \underline{u}_{P}=\delta \underline{u}_{Q}+\underline{\delta \psi} \times \underline{r}_{Q P}
$$

field of kinematically admissible virtual displacements for a rigid body

9.3 Principle of virtual work

9.3.3 Use of infinitesimal displacements as virtual displacements

$\delta:$ virtual fictitious displacement, leave the forces unchanged, allowed to violate the kinematic constraints
d : real, infinitesimal displacement, no requirement for forces, cannot violate the kinematic constraints.

- $\underline{\delta \psi}$: vector quantity, but finite rotations are scalar quantity.
- Virtual displacements of infinitesimal magnitude greatly simplifies the treatment.

9.3 Principle of virtual work

9.3.4 PVW for a system of particles

> For a particle i,

$$
\begin{equation*}
\delta W_{i}=\left(\underline{F}_{i}+\sum_{j=1, j \neq i}^{N} f_{i j}\right) \cdot \delta \underline{u}_{i} \tag{9.15}
\end{equation*}
$$

- Sum of virtual work : All particles must also vanish.

A system of particles is in static equilibrium if and only if

$$
\begin{equation*}
\delta W_{i}=\sum_{i=1}^{N}\left[\left(\underline{F}_{i}+\sum_{j=1, j \neq i}^{N} f_{i j}\right) \cdot \delta \underline{u}_{i}\right]=0 \tag{9.16}
\end{equation*}
$$

for all virtual displacements, $\delta \underline{u}_{i}, i=1,2,3, \cdots, N$

- 3N scalar eqn.s for a system of N particles $\rightarrow 3 N$ D.O.F.'s

9.3 Principle of virtual work

9.3.4 PVW for a system of particles

> Internal and external virtual work

- Internal forces : act and reacted within the system
- External forces : act on the system but reacted outside the system

$$
\begin{gather*}
\delta W_{E}=\sum_{i=1}^{N} \underline{F}_{i} \cdot \delta \underline{u}_{i j} \\
\delta W_{I}=\sum_{i=1}^{N}\left(\sum_{j=1, j \neq i}^{N} f_{i j}\right) \cdot \delta \underline{u}_{i j} \tag{9.17}
\end{gather*}
$$

Eq. (9.16) becomes

$$
\begin{equation*}
\delta W=\delta W_{E}+\delta W_{I}=0 \tag{9.18}
\end{equation*}
$$

9.3 Principle of virtual work

9.3.4 PVW for a system of particles

> Principle 4 (Principle of virtual work)
A system of particles is in static equilibrium if the sum of the virtual work done by the internal and external forces vanishes for all arbitrary virtual displacements.

Actual displacements : $W=W_{E}+W_{I}=0$

- Euler's law
virtual displacement of a particle i

$$
\begin{equation*}
\delta \underline{u}_{i}=\delta \underline{u}_{o}+\delta \underline{\delta} \times \underline{r}_{i} \tag{9.20}
\end{equation*}
$$

$\delta \underline{u}_{o}$: virtual translation of a rigid body
$\underline{\delta \psi}:$ virtual rotation $\rightarrow 6$ independent virtual quantities, far few than 3 N

9.3 Principle of virtual work

9.3.4 PVW for a system of particles

$$
\begin{aligned}
& \delta W=\sum_{i=1}^{N}\left[\left(\underline{F}_{i}+\sum_{j=1, j \neq i}^{N} \underline{f}_{i j}\right) \cdot\left(\delta \underline{u}_{o}+\underline{\delta \psi} \times \underline{r}_{i}\right)\right] \\
& =\left(\sum_{i} \underline{F}_{i}\right) \cdot \delta \underline{u}_{o}+\left(\sum_{i} \sum_{j} \underline{f}_{i j}\right) \cdot \delta \underline{u}_{o}+\sum_{i} \underline{F}_{i} \cdot\left(\underline{\delta \psi} \times \underline{r}_{i}\right)+\sum_{i} \sum_{j} \underline{f}_{i j} \cdot\left(\underline{\delta \psi} \times \underline{r}_{i}\right) \\
& =\delta \underline{u}_{o} \cdot\left(\sum_{i} \underline{F}_{i}\right)+\delta \underline{u}_{o} \cdot\left(\sum_{j} \underline{f}_{i j}\right)^{0} \underline{\delta \psi} \cdot\left(\sum_{i} \underline{r}_{i} \times \underline{F}_{i}\right)+\underline{\delta \psi} \cdot\left(\sum_{i} \sum_{j} \underline{r}_{i} \times \underline{f}_{i j}\right)^{0} \\
& =\delta \underline{u}_{o} \cdot\left(\sum_{i} \underline{\underline{F}}_{i}\right)+\underline{\delta \psi} \cdot\left(\sum_{j} \underline{r}_{i} \times \underline{F}_{i}\right)^{0}
\end{aligned}
$$

Necessary but not sufficient condition for static equilibrium.

9.4 Principle of virtual work applied to mechanical systems

$>$ Rigid body

$$
\delta \underline{u}_{i}=\delta \underline{u}_{o}+\delta \underline{\delta} \times \underline{r}_{i}
$$

- Kinematically admissible virtual displacement field (3-dimensional)
- 2 vector eqn.s

$$
\sum_{i=1}^{N} \underline{F}_{i}=0 \quad \sum_{i=1}^{N} \underline{r}_{i} \times \underline{F}_{i}=\sum_{i=1}^{N} \underline{M}_{i}=0
$$

or 6 scalar eqn.s

- 2-dimensional or planar mechanism, $\delta \underline{u}_{i}=\delta \underline{u}_{o}+\delta \psi \times \underline{r}_{i}$ becomes

$$
\begin{gathered}
\delta \underline{u}_{i}=\delta \underline{u}_{O}+\delta \phi \bar{i}_{3} \times \underline{r}_{i} \\
\underline{\delta \psi}=\delta \overline{\boldsymbol{i}_{3}}
\end{gathered}
$$

9.4 Principle of virtual work applied to mechanical systems

Example 9.7

Consider the simple lever subjected to two vertical end forces, F_{a} and F_{b} acting at distance a and b, respectively, from the fulcrum.

Fig. 9.9. Simple lever acted upon by two vertical end forces.

- Classical eqn. of statics by free body diagram

$$
\begin{gathered}
H=0 \\
V=F_{a}+F_{b} \\
a V \cos \phi=(a+b) F_{b} \cos \phi \\
a F_{a}=b F_{b}
\end{gathered}
$$

9.4 Principle of virtual work applied to mechanical systems

Example 9.7

- Principle of virtual work (kinematically admissible virtual displacement) kinematically admissible virtual displacement field at A

$$
\delta \underline{u}_{A}=\delta \phi \bar{i}_{3} \times \underline{r}_{O A}=a\left(\sin \phi \overline{i_{1}}-\cos \phi \bar{i}_{2}\right) \delta \phi
$$

kinematically admissible virtual displacement field at B
virtual work

$$
\delta W_{E}=\left(-F_{a} \bar{i}_{2}\right) \cdot \delta \underline{u}_{A}+\left(-F_{b} \bar{i}_{2}\right) \cdot \delta \underline{u}_{B}=\delta \phi\left[a F_{a} \cos \phi-b F_{b} \cos \phi\right]
$$

- Principle of virtual work (kinematically violating virtual displacement) kinematically violating virtual displacement field at A

$$
\delta \underline{u}_{A}=\delta u_{1} \overline{i_{1}}+\delta u_{2} \bar{i}_{2}=\delta \underline{u}_{O}+a\left(\sin \phi \bar{i}_{1}-\cos \phi \overline{i_{2}}\right) \delta \phi
$$

kinematically violating virtual displacement field at B

$$
\delta \underline{u}_{B}=\delta u_{1} \bar{i}_{1}+\delta u_{2} \bar{i}_{2}=\delta \underline{u}_{O}+b\left(-\sin \phi \bar{i}_{1}+\cos \phi \bar{i}_{2}\right) \delta \phi
$$

9.4 Principle of virtual work applied to mechanical systems

Example 9.7

- Principle of virtual work (kinematically violating virtual displacement)
virtual work

$$
\begin{aligned}
& \delta W_{E}=\left(-F_{a} \bar{i}_{2}\right) \cdot \delta \underline{u}_{A}+\left(-F_{b} \bar{i}_{2}\right) \cdot \delta \underline{u}_{B}+\left(H \bar{i}_{1}+V \bar{i}_{2}\right) \cdot \delta \underline{u}_{O} \\
& =\delta u_{1}[H]+\delta u_{2}\left[V-F_{a}-F_{b}\right]+\delta \phi\left[a F_{a} \cos \phi-b F_{b} \cos \phi\right]
\end{aligned}
$$

The virtual work done by the reaction forces at the fulcrum does not vanish. Thus they must be included in the formulation.
Three bracketed terms must vanish, leading to the three equilibrium eqns identical to those obtained by Newtonian approach

- Equivalence of PVW and Newton's first law
- Kinematically admissible virtual displacement field automatically eliminates the reaction forces when using PVW.

9.4 Principle of virtual work applied to mechanical systems

9.4.1 Generalized coordinates and forces

> Not convenient to work with Cartesian coord. in many cases

- Will be represented in terms of N "generalized coord."

$$
\underline{u}=\underline{u}\left(q_{1}, q_{2}, q_{3}, \cdots, q_{N}\right)
$$

- Virtual displacement

$$
\delta \underline{u}=\frac{\partial \underline{u}}{\partial q_{1}} \delta q_{1}+\frac{\partial \underline{u}}{\partial q_{2}} \delta q_{2}+\frac{\partial \underline{u}}{\partial q_{3}} \delta q_{3}+\cdots+\frac{\partial \underline{u}}{\partial q_{N}} \delta q_{N}
$$

- Virtual work done by a force \underline{F}
$\delta W=\underline{F} \cdot \delta \underline{u}=\left(\underline{F} \cdot \frac{\partial \underline{u}}{\partial q_{1}}\right) \delta q_{1}+\left(\underline{F} \cdot \frac{\partial \underline{u}}{\partial q_{2}}\right) \delta q_{2}+\left(\underline{F} \cdot \frac{\partial \underline{u}}{\partial q_{3}}\right) \delta q_{3}+\cdots+\left(\underline{F} \cdot \frac{\partial \underline{u}}{\partial q_{N}}\right) \delta q_{N}$
- Generalized force

$$
\begin{equation*}
Q_{i}=\underline{F} \cdot \frac{\partial \underline{u}}{\partial q_{i}} \tag{9.22}
\end{equation*}
$$

9.4 Principle of virtual work applied to mechanical systems

9.4.1 Generalized coordinates and forces

- Then,

$$
\begin{equation*}
\delta W=Q_{1} \delta q_{1}+Q_{2} \delta q_{2}+Q_{3} \delta q_{3}+\cdots+Q_{N} \delta q_{N}=\sum_{i=1}^{N} Q_{i} \delta q_{i} \tag{9.23}
\end{equation*}
$$

virtual work $=$ generalized forces X generalized virtual displacements

- Externally applied load or internal force

$$
\begin{equation*}
\delta W_{I}=\sum_{i=1}^{N} Q_{i}^{I} \delta q_{i} \quad \delta W_{E}=\sum_{i=1}^{N} Q_{i}^{E} \delta q_{i} \tag{9.24}
\end{equation*}
$$

- PVW eqn.

$$
\begin{align*}
& \delta W_{I}+\delta W_{E}=\sum_{i=1}^{N} Q_{i}^{I} \delta q_{i}+\sum_{i=1}^{N} Q_{i}^{E} \delta q_{i} \sum_{i=1}^{N}\left[Q_{i}^{I}+Q_{i}^{E}\right] \delta q_{i}=0 \\
& Q_{i}^{I}+Q_{i}^{E}=0 \quad i=1,2,3, \cdots, N \tag{9.25}
\end{align*}
$$

- If arbitrary virtual displacements, reaction forces must be included in Q_{i}^{E}.
- If kinematically admissible displacements, reaction forces are eliminated.

9.5 Principle of virtual work applied to truss structures

> Truss : like simple rectilinear spring of stiffness constant $k=E A / L$
bar slenderness = 100

Fig. 9.28. Planar truss and its idealization as an assembly of rectilinear springs.

9.5.1 Truss structures

> Elongation : displacement equations

Fig. 9.29. Single bar of a planar truss.
displacement $\quad \underline{\Delta}=\Delta_{1} \bar{i}_{1}+\Delta_{2} \bar{i}_{2}$
e: elongation $(L+e)^{2}=\left(L_{1}+\Delta_{1}\right)^{2}+\left(L_{2}+\Delta_{2}\right)^{2}$
Δ_{1}, and Δ_{2} small compared to the bar's length \rightarrow can be linearized.

$$
\begin{equation*}
e \approx \Delta_{1} \frac{L_{1}}{L}+\Delta_{2} \frac{L_{2}}{L}=\Delta_{1} \cos \theta+\Delta_{2} \sin \theta \tag{9.27}
\end{equation*}
$$

Elongation is the projection of the relative displacement along the bar's direction

9.5 Principle of virtual work applied to truss structures

9.5.1 Truss structures

> Internal virtual work for a bar : general planar truss member

Fig. 9.30. Bar displacements and forces.
Virtual work done by the root and tip forces

$$
\delta W=\underline{F}^{r} \cdot \delta \underline{u}^{r}+\underline{F}^{t} \cdot \delta \underline{u}^{t}=F \bar{b} \cdot\left(\delta \underline{u}^{t}-\delta \underline{u}^{r}\right)
$$

Virtual work by the internal forces

$$
\begin{equation*}
\delta W_{I}=-\underline{F}^{r} \cdot \delta \underline{u}^{r}-\underline{F}^{t} \cdot \delta \underline{u}^{t}=-F \bar{b} \cdot\left(\delta \underline{u}^{t}-\delta \underline{u}^{r}\right) \tag{9.28}
\end{equation*}
$$

Virtual elongation

$$
\begin{equation*}
\delta e=\bar{b} \cdot\left(\delta \underline{u}^{t}-\delta \underline{u}^{r}\right) \tag{9.29}
\end{equation*}
$$

Then, $\quad \delta W_{I}=-F \delta e$

$$
\begin{align*}
& \delta e=\left(\sin \theta \overline{i_{1}}+\cos \theta \overline{i_{2}}\right) \cdot\left(\delta u_{1}^{t} \overline{i_{1}}+\delta u_{2}^{t} \bar{i}_{2}-\delta u_{1}^{r} \overline{i_{1}}-\delta u_{2}^{r} \bar{i}_{2}\right) \\
& =\left(\delta u_{1}^{t}-\delta u_{1}^{r}\right) \sin \theta+\left(\delta u_{2}^{t}-\delta u_{2}^{r}\right) \cos \theta \tag{9.30}
\end{align*}
$$

9.5 Principle of virtual work applied to truss structures

9.5.2 Solution using Newton's law

> Internal virtual work for a bar : general planar truss member

Fig. 9.31. Configuration of the 5 -bar truss.

5-bars planar truss
Newton's law \rightarrow equilibrium conditions at 4 joints A, B, C, D Total 8 scalar eqn.s (method of joints)

$$
\begin{aligned}
P_{A}-F_{A D} & =0 & H_{A}+F_{A B}=0 \\
P_{B}-F_{B C}-F_{B D} \sin \theta & =0 & -F_{A B}-F_{B D} \cos \theta=0 \\
F_{B C} & =0 & P_{C}-F_{C D}=0
\end{aligned}
$$

$$
V_{D}-F_{A D}-F_{B D} \sin \theta=0 \quad H_{D}+F_{C D}+F_{B D} \cos \theta=0
$$

9.5 PVW applied to truss structures

9.5.3 Solution using kinematically admissible virtual displacement

* Eq. (9.31)
> 5 corresponding to equilibrium in an unconstrained direction, multiplied by virtual displacements (kinematically admissible)

$$
\begin{aligned}
& {\left[P_{A}-F_{A D}\right] \delta u_{1}^{A}+\left[P_{B}-F_{B C}-F_{B D} \sin \theta\right] \delta u_{1}^{B}} \\
& +\left[-F_{B C}-F_{B D} \cos \theta\right] \delta u_{2}^{B}+\left[F_{B C}\right] \delta u_{1}^{C}+\left[P_{C}-F_{C D}\right] \delta u_{2}^{C}=0
\end{aligned}
$$

\rightarrow Regrouping

$$
\begin{align*}
& \overbrace{P_{A} \delta u_{1}^{A}+P_{B} \delta u_{1}^{B}+P_{C} \delta u_{2}^{C}}^{\delta W_{E}} \\
& \underbrace{-F_{A D}^{B}-F_{A D} \delta u_{1}^{A}-F_{B C}\left(\delta u_{1}^{B}-\delta u_{1}^{C}\right)-F_{B D}\left(\delta u_{1}^{B} \sin \theta+\delta u_{2}^{B} \cos \theta\right)-F_{C D} \delta u_{2}^{C}}_{\quad \delta W_{I}=-F_{A B} \delta e_{A B}-F_{A D} \delta e_{A D}-F_{B C} \delta e_{B C}-F_{B D} \delta e_{B D}-F_{C D} \delta e_{C D}}=0 \\
& \quad \rightarrow \delta W=\delta W_{E}+\delta W_{I}=0 \quad \text { (9.36) }
\end{align*}
$$

- Principle 5 (PVW)

A structure is in static equilibrium if the sum of the internal and external virtual work vanishes for all kinematically admissible displacements.

9.5 PVW applied to truss structures

9.5.4 Solution using arbitrary virtual displacements

* Eq. (9.31)
> 8 equilibrium multiplied by a virtual displacement

$$
\begin{align*}
& {\left[P_{A}-F_{A D}\right] \delta u_{1}^{A}+\left[H_{A}+F_{A B}\right] \delta u_{2}^{A}+\left[P_{B}-F_{B C}-F_{B D} \sin \theta\right] \delta u_{1}^{B}} \\
& +\left[-F_{B C}-F_{B D} \cos \theta\right] \delta u_{2}^{B}+\left[F_{B C}\right] \delta u_{1}^{C}+\left[P_{C}-F_{C D}\right] \delta u_{2}^{C} \\
& +\left[V_{D}+F_{A D}+F_{B D} \sin \theta\right] \delta u_{1}^{D}+\left[H_{D}+F_{C D}+F_{B D} \cos \theta\right] \delta u_{2}^{D}=0 \tag{9.37}
\end{align*}
$$

> Regrouping

$$
\begin{align*}
& \overbrace{P_{A} \delta u_{1}^{A}+P_{B} \delta u_{1}^{B}+P_{C} \delta u_{2}^{C}+H_{A} \delta u_{2}^{A}+V_{D} \delta u_{1}^{D}+H_{D} \delta u_{2}^{D}}^{\delta W_{E}} \\
& -F_{A B}\left(\delta u_{2}^{B}-\delta u_{2}^{A}\right)-F_{A D}\left(\delta u_{1}^{A}-\delta u_{1}^{D}\right)-F_{B C}\left(\delta u_{1}^{B}-\delta u_{1}^{C}\right) \\
& \underbrace{-F_{B D}\left[\left(\delta u_{1}^{B}-\delta u_{1}^{D}\right) \sin \theta+\left(\delta u_{2}^{B}-\delta u_{2}^{D}\right) \cos \theta\right]-F_{C D}\left(\delta u_{2}^{C}-\delta u_{2}^{D}\right)}_{\delta W_{I}}=0 \tag{9.38}
\end{align*}
$$

- Principle 6 (PVW)

A structure is in static equilibrium if the sum of the internal and external work vanishes for all virtual displacements.

9.5 PVW applied to truss structures

Example 9.13 Three-bar truss using PVW

- Simple hyperstatic truss with a single free joint
- Subjected to a vertical load P at joint \mathbf{O}, where the three bars are pinned together
- Cross sectional area of the bars \mathbf{A}, \mathbf{B}, and $\mathbf{C}: A_{A}, A_{B}, A_{C}$
- Young's moduli: E_{A}, E_{B}, E_{C}
- Axial stiffness of the three bars: $k_{A}=(E A)_{A} / L_{A}=(E A)_{A} \cos \theta / L$,

$$
\begin{aligned}
& k_{B}=(E A)_{B} / L \\
& k_{C}=(E A)_{C} \cos \theta / L
\end{aligned}
$$

- Hyperstatic system of order 1, can be solved using either the displacement or force method (Example 4.4, 4.6)

Three-bar truss configuration with free-body diagram

9.5 PVW applied to truss structures

Example 9.13 Three-bar truss using PVW

- Virtual displacement vector for point \mathbf{O}

$$
\delta u=\delta u_{1} \overline{i_{1}}+\delta u_{2} \bar{i}_{2}
$$

- Bar virtual elongation for \mathbf{A}, \mathbf{B}, and \mathbf{C}, by Eq. (9.30)

$$
\begin{aligned}
& \delta e_{A}=\delta u_{1} \cos \theta+\delta u_{2} \sin \theta \\
& \delta e_{B}=\delta u_{1} \\
& \delta e_{C}=\delta u_{1} \cos \theta-\delta u_{2} \sin \theta
\end{aligned}
$$

- PVW: for kinematically admissible virtual displacements

$$
\begin{aligned}
& \delta W=\delta W_{E}+\delta W_{I} \\
& =P \delta u_{1}-F_{A}\left(\delta u_{1} \cos \theta+\delta u_{2} \sin \theta\right)-F_{B} \delta u_{1}-F_{C}\left(\delta u_{1} \cos \theta-\delta u_{2} \sin \theta\right) \\
& =-\left[F_{A} \cos \theta+F_{B}+F_{C} \cos \theta-P\right] \delta u_{1}-\sin \theta\left[F_{A}-F_{C}\right] \delta u_{2}=0
\end{aligned}
$$

- Two bracketed terms must vanish, leading to two equilibrium eqns.

$$
F_{A} \cos \theta+F_{B}+F_{C} \cos \theta=P, F_{A}=F_{C}
$$

9.5 PVW applied to truss structures

Example 9.13 Three-bar truss using PVW

- PVW: for arbitrary virtual displacements

$$
\begin{aligned}
& \delta W_{E}=V_{A} \delta u_{1}^{A}+H_{A} \delta u_{2}^{A}+V_{B} \delta u_{1}^{B}+H_{B} \delta u_{2}^{B}+V_{C} \delta u_{1}^{C}+H_{C} \delta u_{2}^{C}+P \delta u_{1}^{O} \\
& \delta W_{I}=-F_{A}\left(\cos \theta \overline{i_{1}}+\sin \theta \overline{i_{2}}\right) \bullet\left[\left(\delta u_{1}^{O}-\delta u_{1}^{A}\right) \overline{i_{1}}+\left(\delta u_{2}^{O}-\delta u_{2}^{A}\right) \overline{i_{2}}\right] \\
& -F_{B} \overline{i_{1}} \bullet\left[\left(\delta u_{1}^{O}-\delta u_{1}^{B}\right) \overline{i_{1}}+\left(\delta u_{2}^{O}-\delta u_{2}^{B}\right) \overline{i_{2}}\right] \\
& -F_{C}\left(\cos \theta \overline{i_{1}}-\sin \theta \overline{i_{2}}\right) \bullet\left[\left(\delta u_{1}^{O}-\delta u_{1}^{C}\right) \overline{i_{1}}+\left(\delta u_{2}^{O}-\delta u_{2}^{C}\right) \bar{i}_{2}\right]
\end{aligned}
$$

- Invoking PVW Principle 6

$$
\begin{aligned}
& {\left[V_{A}+F_{A} \cos \theta\right] \delta u_{1}^{A}+\left[H_{A}+F_{A} \sin \theta\right] \delta u_{2}^{A}+\left[V_{B}+F_{B}\right] \delta u_{1}^{B}+\left[H_{B}\right] \delta u_{2}^{B}} \\
& +\left[V_{C}+F_{C} \cos \theta\right] \delta u_{1}^{C}+\left[H_{C}-F_{C} \sin \theta\right] \delta u_{2}^{C} \\
& +\left[P-F_{A} \cos \theta-F_{B}-F_{C} \cos \theta\right] \delta u_{1}^{O}+\left[F_{A} \sin \theta-F_{C} \sin \theta\right] \delta u_{2}^{O}=0
\end{aligned}
$$

- All the bracketed terms must vanish.

9.6 Principle of Complementary Virtual Work

Fig. 9.33
... Basic equations of linear elasticity (Chap.1)
>3 Groups $\left\{\begin{array}{l}\text { equilibrium equations } \\ \text { strain-displacement relations } \\ \text { constitutive laws }\end{array}\right.$
> Strain compatibility equations: do not form an independent set of equations and are not required to solve elasticity problems
> However, it is a over-determined problem

Fig. 9.33. Relationship between the equations of elasticity and virtual work principles. since 6 strain components are expressed in terms of 3 displacement components only

9.6 Principle of Complementary Virtual Work

* Solution of any elasticity problem requires 3 groups of basic eqn.s

 (Fig. 9.33)> PVW alone does not provide enough information to solve the problems
\Rightarrow PCVW will augment equilibrium equations and constitutive laws to derive complete solutions, entirely equivalent to the compatibility equations

Fig. 9.33. Relationship between the equations of elasticity and virtual work principles.

9.6 Principle of Complementary Virtual Work

9.6.1 Compatibility equations for a planar truss

* Compatibility conditions

$>$ Fig. 9.34… 2-bar truss, arbitrary elongations e_{A}, e_{C} configuration of the truss compatible with these elongations is easily found \rightarrow intersection of 2 circles (of radii $L_{A}+e_{A}, L_{C}+e_{C}$) $\rightarrow \mathrm{O}^{\prime}$

Fig. 9.34. Two-bar truss in the original and deformed configurations.

9.6 Principle of Complementary Virtual Work

> Fig. $9.35 \cdots 3$-bar truss, again arbitrary elongations e_{A}, e_{C} but configurations of bar \mathbf{B} is now uniquely defined, since it must join B and O^{\prime} $e_{B}=L_{B}^{\prime}-L_{B} \quad 3$ elongations are no longer independent

Fig. 9.35. Three-bar truss in the original and
deformed configurations.
> Some conclusion can be reached by the elongation-displacement relationship instead of the geometric reasoning
elongation ... projection of displacement vector along bar`s direction. Eq. (9.27) $e_{A}=u_{1} \cos \theta+u_{2} \sin \theta, e_{C}=u_{1} \cos \theta-u_{2} \sin \theta$
... for a 2-bar truss, final configuration is uniquely determined if the 2 displacement components, u_{1} and u_{2}, are given

9.6 Principle of Complementary Virtual Work

> 3-bar truss (Fig. 9.35)
$e_{A}=u_{1} \cos \theta+u_{2} \sin \theta, e_{B}=u_{1}, e_{C}=u_{1} \cos \theta-u_{2} \sin \theta$
It is not possible to express the 2 displacement components in terms of 3 elongations. Because 3 elongations form an over-determined set for 2 unknown to eliminate 2 displacement components
$>$ However, it is possible to express to eliminate 2 displacement components to obtain the compatibility equation
$e_{A}-2 e_{B} \cos \theta+e_{C}=0$
... 3 elongation in terms of 2 displacement components
$\rightarrow 1$ compatibility equation
$>$ 2-bar truss \cdots isostatic, order of redundancy, number of equation $=0$
3-bar truss \cdot. hyperstatic, number of compatibility equation = order of redundancy of the hyperstatic problem
> 3-bar truss ‥ 3 force components, 2 equilibrium equations \rightarrow hyperstatic of degree 1
3 elongation, 2 displacement components $\rightarrow 1$ compatibility equation

9.6 Principle of Complementary Virtual Work

9.6.2 PCVW for truss

* 3-bar truss under applied load

> Fig. $9.36 \cdots$ assumed to undergo compatible deformations so that the 3 -bar elongations satisfy the elongation-displacement relationship, Eq.(9.44)

$$
\begin{aligned}
\delta W^{\prime}= & -e_{A} \delta F_{A}-e_{B} \delta F_{B}-e_{C} \delta F_{C} \\
& +u_{1}\left(\delta F_{A} \cos \theta+\delta F_{B}+\delta F_{C} \cos \theta\right)+u_{2} \sin \theta\left(\delta F_{A}-\delta F_{C}\right)=0
\end{aligned}
$$

Fig. 9.36. Three-bar truss with applied load.

9.6 Principle of Complementary Virtual Work

> Free body diagram \rightarrow equilibrium equations
$F_{A} \cos \theta+F_{B}+F_{C} \cos \theta=P, F_{A}-F_{C}=0$
... A set of forces that satisfies these equilibrium equations is said to be "statically admissible"
> "statically admissible virtual forces"
$\left\{\begin{array}{l}\delta F_{A} \cos \theta+\delta F_{B}+\delta F_{C} \cos \theta=0 \\ \delta F_{A}-\delta F_{C}=0\end{array}\right.$
\cdots do not include the externally applied loads since $\delta P=0$, geometry of the system is given $\rightarrow \delta \theta=0$
> Eq. (9.47) becomes much simpler due to Eq.(9.48)
$\delta W^{\prime}=-e_{A} \delta F_{A}-e_{B} \delta F_{B}-e_{C} \delta F_{C}=0 \quad$ (9.49)
for all statically admissible virtual forces
> Eq. (9.49) ... "internal complementary VW"
$\delta W_{I}^{\prime}=-e_{A} \delta F_{A}-e_{B} \delta F_{B}-e_{C} \delta F_{C}=-\sum_{i=1}^{N_{b}} e_{i} \delta F_{i}$
Eq. (9.49) $\rightarrow \delta W^{\prime}=\delta W_{I}^{\prime}=0 \quad$ (9.51) for all statically admissible virtual forces

9.6 Principle of Complementary Virtual Work

* 3-bar truss under prescribed displacement
> Fig. $9.37 \cdots$ instead of a concentrated load, downward vertical displacement is prescribed of magnitude Δ

Fig. 9.37. Three-bar truss with prescribed displacement.
> "driving force" D required to obtain the specified displacement, as yet unknown Eq. (9.46) $\rightarrow \delta W^{\prime}=-\left[e_{A}-u_{1} \cos \theta-u_{2} \sin \theta\right] \delta F_{A}-\left[e_{B}-u_{1}+\Delta\right] \delta F_{B}$

$$
\begin{equation*}
-\left[e_{C}-u_{1} \cos \theta+u_{2} \sin \theta\right] \delta F_{C}=0 \tag{9.52}
\end{equation*}
$$

$$
\begin{equation*}
=-e_{A} \delta F_{A}-e_{B} \delta F_{B}-e_{C} \delta F_{C}-\Delta \delta F_{B} \tag{9.53}
\end{equation*}
$$

$$
+u_{1}\left(\cos \theta \delta F_{A}+\delta F_{B}+\cos \theta \delta F_{C}\right)+u_{2} \sin \theta\left(\delta F_{A}-\delta F_{C}\right)=0
$$

9.6 Principle of Complementary Virtual Work

> Set of statically admissible virtual forces that satisfy the following equilibrium eqns
$\underbrace{\delta F_{A} \cos \theta+\delta F_{B}+\delta F_{C} \cos \theta=0, \delta F_{A}-\delta F_{C}=0}, \underbrace{\delta F_{B}+\delta D=0 \quad \text { (9.54) }}$
equilibrium at joint O equilibrium at joint B
> If the virtual forces are required to be statically admissible,
Eq. (9.53) will be simpler

$$
\begin{align*}
& \delta W^{\prime}=\Delta \delta D \underbrace{\downarrow} \underbrace{-e_{A} \delta F_{A}-e_{B} \delta F_{B}-e_{C} \delta F_{C}}_{\text {external complementary } \mathrm{VW} \rightarrow \delta W_{E}^{\prime}}=0 \quad \text { (9.55) } \tag{9.55}\\
& \quad \Delta \delta \text { (true displacement } \times \text { virtual) } \tag{9.56}
\end{align*}
$$

Eq. (9.55) $\rightarrow \delta W^{\prime}=\delta W_{E}^{\prime}+\delta W_{I}^{\prime}=0 \quad$ (9.57)
for all statically admissible virtual forces

- Principle 7 (PCVW)

A truss undergoes compatible deformations if the sum of the internal and external complementary VW vanishes for all statically admissible virtual forces

9.6 Principle of Complementary Virtual Work

> If the CVW is required to vanish for all arbitrary virtual forces, i.e., for all independently chosen arbitrary $\delta F_{A}, \delta F_{B}, \delta F_{C}, \delta D$
\rightarrow Eq. (9.55) $e_{A}=e_{B}=e_{C}=\Delta=0 \rightarrow$ truss can not deform
\rightarrow NOT correct
> For a statically admissible virtual forces, must satisfy Eq. (9.54),
3 equations for 4 statically admissible virtual forces
\rightarrow possible to express 3 of the virtual forces in terms of the $4^{\text {th }}$:
$\delta F_{B}=-2 \delta F_{A} \cos \theta, \delta F_{C}=\delta F_{A}, \delta D=2 \delta F_{A} \cos \theta$
$\rightarrow \mathrm{PCVW}: \delta W^{\prime}=\Delta\left(2 \delta F_{A} \cos \theta\right)-e_{A} \delta F_{A}-e_{B}\left(-2 \delta F_{A} \cos \theta\right)-e_{C} \delta F_{A}$

$$
=\left[2 \Delta \cos \theta-e_{A}+2 e_{B} \cos \theta-e_{C}\right] \delta F_{A}=0
$$

$=0 \cdots$ compatibility equation

9.6 Principle of Complementary Virtual Work

9.6.3 CVW

\{CVW: work done by virtual forces acting through real displacement
VW: work done by real forces acting through virtual displacement
\hookrightarrow real quantities remain fixed

* Fig. 9.38 ... not necessarily linear elastic material

$$
\begin{aligned}
& W=\int_{0}^{u} k u d u=\frac{1}{2} k u^{2}=\frac{1}{2} F u \\
& W^{\prime}=\int_{0}^{F} \frac{F}{k} d F=\frac{1}{2 K} F^{2}=\frac{1}{2} F u=W \\
& \text { only when linearly elastic material } \\
& \underbrace{1} \uparrow
\end{aligned}
$$

* Fig. 9.38 ... shaded areas for "VW" and "CVW"

Fig. 9.38. Work and complementary work and their virtual counterparts.

9.6 Principle of Complementary Virtual Work

9.6.4 Application to truss

* Planer truss with a number of bars connected of \mathbf{N} nodes
> PVW $\rightarrow 2 \mathrm{~N}$ equilibrium equations
PCVW $\rightarrow \mathrm{n}$ equations produced for a hyperstatic truss of order n for an isostatic truss, no compatibility equations
* PCVW ... enables the development of the force method, in general, $\mathrm{n}<\mathrm{N}$, only a few eqn generated \rightarrow simpler solution procedure But major drawback ... must be statically admissible virtual forces, self-equilibrating, requires much more extensive work for generation of the equations \rightarrow PVW is used much more widely used

9.6 Principle of Complementary Virtual Work

9.6.6 Unit load method for trusses

* PCVW \rightarrow "unit load method".. determine deflections at specific points of structure
$>$ Fig. 9.40 ... 2-bar truss
PCVW, imagine the displacement Δ prescribed at O, external complementary work $\delta W_{E}^{\prime}=\Delta \delta D$ $\delta D:$ virtual driving force
$>\mathrm{PCVW} \rightarrow \delta W_{E}^{\prime}+\delta W_{I}^{\prime}=0, \Delta \delta D=-\delta W_{I}^{\prime}$
for all statically admissible virtual forces

Fig. 9.40. The unit load method for a two-bar truss.

9.6 Principle of Complementary Virtual Work

> Internal CVW: $\delta W_{I}^{\prime}=-e_{A} \delta F_{A}-e_{C} \delta F_{C}$ then, Eq. (9.62) $\Delta \delta D=e_{A} \delta F_{A}+e_{C} \delta F_{C}$ for a more general truss consisting of N_{b} bars, $\Delta \delta D=\sum_{i=1}^{N_{b}} e_{i} \delta F_{i}$ for all statically admissible virtual forces $\delta D, \delta F_{A}, \delta F_{C} \cdots$ a set of statically admissible virtual forces, free body diagrams $\rightarrow \delta F_{A}-\delta F_{C}=0, \delta D-\left(\delta F_{A}+\delta F_{C}\right) \cos \theta=0$
... 2 equilibrium equations of the system linking 3 virtual forces
> Unit load method \cdots the virtual driving force is selected to be a unit load, $\delta D=1$

$$
\rightarrow \delta F_{A}=\delta F_{C}=\Delta \delta D /(2 \cos \theta)=1 /(2 \cos \theta)
$$

> Simplified notation \cdots when $\delta D=1 \rightarrow \delta F_{A}=\delta \hat{F}_{A}, \delta F_{C}=\delta \hat{F}_{C}$
Eq. (9.63) $\rightarrow \Delta=\sum_{i=1}^{N_{b}} \widehat{F}_{i} e_{i}$
F_{i} : actual forces that develop due to the externally applied load must satisfy all equilibrium conditions, and the associated elongations must be compatible
\hat{F}_{i} : the unit forces \cdots a set of statically admissible forces. must satisfy the equilibrium equations, but the associated elongations are NOT required to be compatible.

9.6 Principle of Complementary Virtual Work

> For a linearly elastic material, $e_{i}=\frac{F_{i} L_{i}}{E_{i} A_{i}}$
Eq. (9.64) $\rightarrow \Delta=\sum_{i} \frac{\widehat{F}_{i} F_{i} L_{i}}{E_{i} A_{i}}$ (9.65)
> To determine rotation of the structure \rightarrow : "unit moment method" $\Phi \delta M=-\delta W_{I}^{\prime} \quad(9.66)$

9.6 Principle of Complementary Virtirn Work

> Example. 9.16: Joint deflection in a simple 2-bar truss

- Step 1: determination of the bar forces and extensions due to externally applied loads

$$
\begin{gathered}
F_{A}=F_{C}=\frac{P}{(2 \cos \theta)} \quad e_{A}=\frac{F_{A} L_{A}}{(E A)_{A}}, e_{C}=\frac{F_{C} L_{C}}{(E A)_{C}} \\
e_{A}=\frac{P L}{(E A)_{A}} \frac{1}{2 \cos ^{2} \theta}, e_{C}=\frac{P L}{(E A)_{C}} \frac{1}{2 \cos ^{2} \theta}
\end{gathered}
$$

- Step 2: unit load applied at the point and in the direction of the desired direction component.

$$
\hat{F}_{A}=\hat{F}_{C}=\frac{1}{(2 \cos \theta)}
$$

Fig. 9.41. Two-bar truss with unsymmetric properties and vertical load at joint.

9.6 Principle of Complementary Virtiral Work

> Example. 9.16: Joint deflection in a simple 2-bar truss

- Step 3: find the vertical displacement of joint \mathbf{O}

$$
\begin{aligned}
& \Delta_{1}=\sum_{i} \sum_{i=1}^{N_{b}} \widehat{F}_{i} e_{i}=\frac{1}{2 \cos \theta} \frac{P L}{2 \cos ^{2} \theta(E A)_{A}}+\frac{1}{2 \cos \theta} \frac{P L}{2 \cos ^{2} \theta(E A)_{C}} \\
& =\frac{P L}{4 \cos ^{3} \theta} \frac{(E A)_{A}+(E A)_{C}}{(E A)_{A}(E A)_{C}}
\end{aligned}
$$

- Horizontal deflection component

$$
\begin{gathered}
\hat{F}_{A}=\frac{1}{(2 \sin \theta)}, \hat{F}_{C}=-\frac{1}{(2 \sin \theta)} \\
\Delta_{2}=\sum_{i} \sum_{i=1}^{N_{b}} \hat{F}_{i} e_{i}=\frac{1}{2 \sin \theta} \frac{P L}{2 \cos ^{2} \theta(E A)_{A}}-\frac{1}{2 \sin \theta} \frac{P L}{2 \cos ^{2} \theta(E A)_{C}} \\
=\frac{P L}{4 \sin \theta \cos ^{2} \theta} \frac{(E A)_{A}-(E A)_{C}}{(E A)_{A}(E A)_{C}}
\end{gathered}
$$

9.7 Internal virtual work in beams and solid

9.7.1 Beam bending

* Plane $\left(\bar{i}_{1}, \bar{i}_{2}\right) \ldots$ plane of symmetry
$M_{3}\left(x_{1}\right)$ bending moment, $\Phi_{3}\left(x_{1}\right)$ rotation,

$$
\bar{u}_{2}\left(x_{1}\right) \text { transverse displacement }
$$

> Infinitesimal slice of a beam (Fig. 9.48)
\rightarrow curvature of the differential element $\kappa_{3}=\Phi_{3}^{\prime}=\bar{u}_{2}^{\prime \prime}$

Fig. 9.48. Bending deformation of an infinitesimal segment of a beam.
$>$ Work done by the moment acting on the left-hand side: $-M_{3} \Phi_{3}$ ((-) since moment and rotation are counted (+) about opposite axes) Work done by the moment acting on the other side: $M_{3}\left(\Phi_{3}+d \Phi_{3}\right)$ net work done by the 2 moments: $d W=M_{3} d \Phi_{3}=M_{3}\left(\frac{d \Phi_{3}}{d x_{1}}\right) d x_{1}$
total internal work done by the moment distribution acting along the beam

$$
\begin{equation*}
W_{I}=-\int_{0}^{L} M_{3} \frac{d \Phi_{3}}{d x_{1}} d x_{1}=-\int_{0}^{L} M_{3} \kappa_{3} d x_{1} \tag{9.66}
\end{equation*}
$$

(-) due to internal moment, which is opposite to externally applied moment

9.7 Internal virtual work in beams and solid

* Internal VW

$$
\begin{equation*}
\delta W_{I}=-\int_{0}^{L} M_{3} \delta \kappa_{3} d x_{1} \tag{9.66}
\end{equation*}
$$

* Internal CVW

$$
\delta W_{I}^{\prime}=-\int_{0}^{L} \kappa_{3} \delta M_{3} d x_{1}
$$

9.7 Internal virtual work in beams and solid

9.7.2 Beam twisting

* Fig. 9.49
... differential rotation of 2 cross section`s
\rightarrow twist rate of the differential element, $\kappa_{1}=\Phi_{1}^{\prime}$

Fig. 9.49. Torsional deformation of an infinitesimal segment of a beam.
> Work done by the torque acting on the left-hand side: $-M_{1} \Phi_{1}$ ((-) due to the torque and rotation are (+) about opposite axes) Work done by the torque acting on the other side: $M_{1}\left(\Phi_{1}+d \Phi_{1}\right)$ net work by 2 torques: $d W=M_{1} d \Phi_{1}=M_{1}\left(\frac{d \Phi_{1}}{d x_{1}}\right) d x_{1}$ total internal work done by the torque distribution

$$
\begin{equation*}
W_{I}=-\int_{0}^{L} M_{1} \frac{d \Phi_{1}}{d x_{1}} d x_{1}=-\int_{0}^{L} M_{1} \kappa_{1} d x_{1} \tag{9.71}
\end{equation*}
$$

$(-)$ due to internal torque

9.7 Internal virtual work in beams and solid

* Internal VW

$$
\begin{equation*}
\delta W_{I}=-\int_{0}^{L} M_{1} \delta \kappa_{1} d x_{1} \tag{9.72}
\end{equation*}
$$

* Internal CVW

$$
\delta W_{I}^{\prime}=-\int_{0}^{L} \kappa_{1} \delta M_{1} d x_{1}
$$

based on the kinematics of Saint-Venant's theory of uniform torsion

9.7 Internal virtual work in beams and solid

9.7.3 Three-dimensional solid

> Work done by each 6 stress components are computed separately and then are summed up

* Axial Stresses

$>$ Fig. $9.50 \ldots$ infinitesimal differential element of a solid work done by the force, $\sigma_{1} d x_{2} d x_{3}$, acting on the left side: $-\left(\sigma_{1} d x_{2} d x_{3}\right) u_{1}$ ($(-)$ due to that force and displacement are counted (+) in opposite directions) work done by the force acting on the other side: $\left(\sigma_{1} d x_{2} d x_{3}\right)\left(u_{1}+d u_{1}\right)$ net work by the 2 forces: $d W=\left(\sigma_{1} d x_{2} d x_{3}\right) d u_{1}=\left(\sigma_{1} d x_{2} d x_{3}\right)\left(\frac{\partial u_{1}}{\partial x_{1}}\right) d x_{1}$ total internal work done by the axial stress distribution

$$
\begin{equation*}
W_{I}=-\int_{V} \sigma_{1} \frac{\partial u_{1}}{\partial x_{1}} d x_{1} d x_{2} d x_{3}=-\int_{V} \sigma_{1} \varepsilon_{1} d V \tag{9.73}
\end{equation*}
$$

$(-)$ due to the internal axial stresses

9.7 Internal virtual work in beams and solid

* Shear stresses
> Due to the principle of reciprocity, shear stress components will act on right, left edges, also on the top, bottom edges

> Work done by the force, $\tau_{12} d x_{1} d x_{3}$, acting on the bottom edges: $-\left(\tau_{12} d x_{1} d x_{3}\right) u_{1}$ ((-) due to that force and displacement are opposite)
Work done by the force, $\tau_{12} d x_{1} d x_{3}$, acting on the top edges: $\left(\tau_{12} d x_{1} d x_{3}\right)\left(u_{1}+d u_{1}\right)$
$>$ Net work done by these 2 forces: $d W=\left(\tau_{12} d x_{1} d x_{3}\right) d u_{1}=\left(\tau_{12} d x_{1} d x_{3}\right) \frac{\partial u_{2}}{\partial x_{2}} d x_{2}$
$>$ Work done by $\tau_{12} d x_{2} d x_{3}$, acting on the left edge: $-\left(\tau_{12} d x_{2} d x_{3}\right) u_{2}$ ((-) due to that force and displacement are counted (+) in opposite direction) Work done by $\tau_{12} d x_{2} d x_{3}$, acting on the right edge: $\left(\tau_{12} d x_{2} d x_{3}\right)\left(u_{2}+d u_{2}\right)$
$>$ Net work done by these 2 forces: $d W=\left(\tau_{12} d x_{2} d x_{3}\right) d u_{2}=\left(\tau_{12} d x_{2} d x_{3}\right) \frac{\partial u_{2}}{\partial x_{1}} d x_{1}$

9.7 Internal virtual work in beams and solid

> Total internal work by the shear stress distribution

$$
\begin{equation*}
W_{I}=-\int_{V} \tau_{12}\left(\frac{\partial u_{1}}{\partial x_{2}}+\frac{\partial u_{2}}{\partial x_{1}}\right) d x_{1} d x_{2} d x_{3}=-\int_{V} \tau_{12} \gamma_{12} d V \tag{9.72}
\end{equation*}
$$

((-) due to the internal shear stresses)

9.7 Internal virtual work in beams and solid

> Total work done by all 6 stress components

$$
\begin{align*}
W_{I} & =-\int_{V}\left(\sigma_{1} \varepsilon_{1}+\sigma_{2} \varepsilon_{2}+\sigma_{3} \varepsilon_{3}+\tau_{23} \gamma_{23}+\tau_{13} \gamma_{13}+\tau_{12} \gamma_{12}\right) d V \\
& =-\int_{V} \underline{\sigma}^{T} \underline{\varepsilon} d V \tag{9.76}
\end{align*}
$$

> Internal virtual work $\delta W_{I}=-\int_{V} \underline{\sigma}^{T} \delta \underline{\varepsilon} d V$
> Internal CVW work $\delta W_{I}=-\int_{V} \underline{\varepsilon}^{T} \delta \underline{\sigma} d V$

9.7 Internal virtual work in beams and solid

9.7.4 Euler-Bernoulli beam

* Viewed as a 3-dim. Solid
... in Euler-Bernoulli beam, all strain components vanish, except for the axial strain

$$
\begin{align*}
& \text { Eq. (9.75) } \rightarrow W_{I}= \\
& \qquad \begin{aligned}
& -\int_{V} \sigma_{1} \varepsilon_{1} d V=-\int_{0}^{L} \int_{A} \sigma_{1}\left(\bar{\varepsilon}_{1}+x_{3} \kappa_{2}-x_{2} \kappa_{3}\right) d A d x_{1} \\
= & -\int_{0}^{L}\left\{\left[\int_{A} \sigma_{1} d A\right] \bar{\varepsilon}_{1}+\left[\int_{A} \sigma_{1} x_{3} d A\right] \kappa_{2}+\left[-\int_{A} \sigma_{1} x_{2} d A\right] \kappa_{3}\right\} d x_{1} \\
\downarrow & \downarrow \\
N_{1} \text { by Eq. (5.8) } M_{2} & M_{3} \text { by Eq. (5.10) }
\end{aligned} \\
& \qquad \begin{aligned}
W_{I} & =-\int_{0}^{L}\left(N_{1} \bar{\varepsilon}_{1}+M_{2} x_{2}+M_{3} x_{3}\right) d x_{1}
\end{aligned}
\end{align*}
$$

> Internal VW $\delta W_{I}=-\int_{0}^{L}\left(N_{1} \delta \bar{\varepsilon}_{1}+M_{2} \delta \kappa_{2}+M_{3} \delta \kappa_{3}\right) d x_{1}$
$>$ Internal CVW $\delta W_{I}^{\prime}=-\int_{0}^{L}\left(\bar{\varepsilon}_{1} \delta N_{1}+\kappa_{2} \delta M_{2}+\kappa_{3} \delta M_{3}\right) d x_{1}$

9.7 Internal virtual work in beams and solid

9.7.6 Unit load method for beams

* If Δ is prescribed of a point of the beam
$>$ PCVW, Eq. (9.57) $\rightarrow \Delta \delta D+\delta W_{I}^{\prime}=0$
for statically admissible virtual forces, (δD : virtual driving force)
> By Eq. (9.79b),

$$
\begin{equation*}
\Delta \delta D=\int_{0}^{L}\left(\bar{\varepsilon}_{1} \delta N_{1}+\kappa_{2} \delta M_{2}+\kappa_{3} \delta M_{3}\right) d x_{1} \tag{9.80}
\end{equation*}
$$

$>\delta D=1$ and $\delta N_{1}=\hat{N}_{1}, \delta M_{2}=\hat{M}_{1}, \delta M_{3}=\widehat{M}_{3}$: resulting statically admissible axial forces and bending moments

$$
\begin{equation*}
\Delta=\int_{0}^{L}\left(\widehat{N}_{1} \bar{\varepsilon}_{1}+\widehat{M}_{2} \kappa_{2}+\hat{M}_{3} \kappa_{3}\right) d x_{1} \tag{9.81}
\end{equation*}
$$

9.7 Internal virtual work in beams and solid

> If \{linearly elastic material
the origin of the axis system is at the centroid of the cross section \rightarrow sectional constitutive law, Eq. (6.13) can be applicable

$$
\begin{gathered}
\Delta=\int_{0}^{L}\left[\frac{\widehat{N}_{1} N_{1}}{S}+\frac{\hat{M}_{2}\left(H_{33}^{C} M_{2}+H_{23}^{C} M_{3}\right)}{\Delta_{H}}+\frac{\hat{M}_{3}\left(H_{23}^{C} M_{2}+H_{22}^{C} M_{3}\right)}{\Delta_{H}}\right] d x_{1} \\
\Delta_{H}=H_{22}^{C} H_{33}^{C}-H_{23}^{C} H_{23}^{C}
\end{gathered}
$$

> If the principle axes of bending

$$
\begin{equation*}
\Delta=\int_{0}^{L}\left[\frac{\hat{N}_{1} N_{1}}{S}+\frac{\hat{M}_{2} M_{2}}{H_{22}^{C}}+\frac{\hat{M}_{3} M_{3}}{H_{33}^{C}}\right] d x_{1} \tag{9.83}
\end{equation*}
$$

9.7 Internal virtual work in heame_and_solid

> Example. 9.19: Deflection of a tip-loaded cantilevered beam

- Cantilevered beam of length L subjected to a concentrated load P at beams tip, $\quad \alpha=1$
- evaluation of the bending moment distribution under the externally applied loads

$$
M_{3}\left(x_{1}\right)=P\left(x_{1}-L\right)
$$

- vertical unit load applied at the tip

$$
\hat{M}_{3}\left(x_{1}\right)=-1\left(x_{1}-L\right)
$$

- tip deflection by Eq. (9.83)

$$
\Delta=\int_{0}^{L} \frac{\hat{M}_{3} M_{3}}{H_{33}^{c}} d x_{1}=\int_{0}^{L} \frac{\left[P\left(x_{1}-L\right)\right]\left[-\left(x_{1}-L\right)\right]}{H_{33}^{c}} d x_{1}=-\frac{P L^{3}}{3 H_{33}^{c}}
$$

Fig. 9.51. Cantilevered beam under tip load.

9.8 Application of the unit method to hyperstatic problem

* Unit load method
... determination of 2 sets of statically admissible forces corresponding to 2 distinct loading cases
\{(1) associated with the externally applied loads
(2) associated with the unit load
\rightarrow applied equally to iso- and hyperstatic systems
* Hyperstatic systems
\{displacement or stiffness method
force or flexibility method
... focuses on the determination of internal forces / moments and reactions key step: development of the compatibility equations PCVW ... equivalent to the compatibility equations
\rightarrow logical to combine the force method with PCVW

* Force method

... intuitively described as "method of cuts" for each cut, the order of the hyperstatic system is decreased by 1. statically admissible forces are then solely obtained from the equilibrium equations

9.8 Application of the unit method to hyperstatic problem

* 2 crucial step
(1) determine the relative displacements at the cuts under the externally applied load alone
(2) evaluate the internal forces applied at the cuts that are required to eliminate the relative displacements at the cuts
\rightarrow PCVW is a powerful total to solve both problems
Fig. 9.65 ... single bar of truss
$>$ R: set of self-equilibrating forces applied at the cut
$>\mathrm{C}$ external VW $\delta W_{E}^{\prime}=d_{1} \delta R-d_{2} \delta R=\left(d_{1}-d_{2}\right) \delta R$ relative displacement at the cut: $\Delta=d_{1}-d_{2}$
$>$ PCVW, Eq. (9.57) $\cdots \delta W_{E}^{\prime}+\delta W_{I}^{\prime}=0$

$$
\begin{equation*}
\rightarrow \quad \Delta \delta R=-\delta W_{I}^{\prime} \tag{9.84}
\end{equation*}
$$

... very similar to Eq. (9.62), but Δ : relative displacement at the cut, δR : set of self-equilibrating virtual forces applied at the cut

9.8 Application of the unit method to hyperstatic problem

* Right of Fig. 9.65 ... a cantilevered beam
> C external VW: $\delta W_{E}^{\prime}=\theta_{1} \delta M-\theta_{2} \delta M=\left(\theta_{1}-\theta_{2}\right) \delta M$
$>\mathrm{PCVW} \rightarrow \Phi \delta M=-\delta W_{I}^{\prime} \quad$ (9.85)

Fig. 9.65. Relative displacements and rotations.

9.8 Application of the unit method to hyperstatic problem

9.8.1 Force method for trusses

* Fig. 9.66
... 3-bar hyperstatic truss, hyperstatic system of order 1, a single cut is applied at the middle bar Then, the actual system is viewed as a superposition of 2 problem

Fig. 9.66. Force method for the three-bar truss.

9.8 Application of the unit method to hyperstatic problem

(1) Isostatic system subjected to the externally applied loads
> Unit load method is directly applicable

$$
\begin{equation*}
\Delta_{C}=\sum_{i=1}^{N_{b}} \frac{\widehat{F}_{i} F_{i} L_{i}}{(E A)_{i}} \tag{9.86}
\end{equation*}
$$

where F_{i} : bar forces subjected to the externally applied loads \widehat{F}_{i} : statically admissible virtual forces corresponding to the self-equilibrating unit load system applied at the cut $F_{A}=F_{C}=P /(2 \cos \theta), F_{B}=0$ $\widehat{F}_{A}=\widehat{F}_{C}=-1 /(2 \cos \theta), \hat{F}_{B}=1$
$\rightarrow \Delta_{C}=-\left(\frac{1}{(E A)_{A}}+\frac{1}{(E A)_{C}}\right) \frac{P L}{4 \cos ^{3} \theta}$
(2) Internal force system
... Relative displacement at the cut, Δ_{1}, due to a unit internal force in bar B
\Rightarrow Eq. (9.84) $\rightarrow \Delta_{1}=\sum_{i=1}^{N_{b}} \frac{\widehat{F}_{i}^{2} L_{i}}{(E A)_{i}}$

$$
\begin{equation*}
\Delta_{1}=\frac{L}{(E A)_{B} 4 \cos ^{3} \theta} \frac{\bar{k}_{A}+\bar{k}_{C}+4 \bar{k}_{A} \bar{k}_{C} \cos ^{3} \theta}{\bar{k}_{A} \bar{k}_{C}} \tag{9.87}
\end{equation*}
$$

9.8 Application of the unit method to hyperstatic problem

(3) Superposition of 2 loading cases
> Compatibility condition at the cut

$$
\begin{align*}
& \Delta_{C}+R \Delta_{1}=0 \\
\rightarrow & R=-\frac{\Delta_{C}}{\Delta_{1}}=\frac{\bar{k}_{A}+\bar{k}_{C}}{\bar{k}_{A}+\bar{k}_{C}+4 \bar{k}_{A} \bar{k}_{C} \cos ^{3} \theta}
\end{align*}
$$

\Rightarrow Bar forces $F_{i}+R \widehat{F}_{i}, i=1,2, \cdots, N_{b} \quad$ (9.90)

9.8 Application of the unit method to hyperstatic problem

9.8.2 Force method for beams

> Beam structures becomes hyperstatic due to the presence of multiple supports

* Fig. 9.70
... cantilevered beam with additional mid-span support
\rightarrow additional reaction R
> Eliminating or cutting the appropriate number of supports to render the beam isostatic

Fig. 9.70. Cantilever with a mid-span support. The isostatic system is obtained by eliminating the mid-span support.

9.8 Application of the unit method to hyperstatic problem

i) Δ_{C} is computed by unit load method, Eq. (9.83)

$$
\begin{equation*}
\Delta_{C}=\int_{0}^{L} \frac{M_{3} \hat{M}_{3}}{H_{33}^{C}} d x_{1} \tag{9.91}
\end{equation*}
$$

$M_{3}\left(x_{1}\right)$: bending moment distribution in the isostatic beam subjected to the externally applied loads
$\hat{M}_{3}\left(x_{1}\right)$: statically admissible bending moment distribution in the isostatic beam subjected to a set of self-equilibrating unit forces applied at the support
ii) Δ_{1} relative deflection at the support due to a set of self-equilibrating, unit load. Eq. (9.84)

$$
\begin{equation*}
\Delta_{1}=\int_{0}^{L} \frac{\dot{\bar{M}}_{3}^{2}}{H_{33}^{C}} d x_{1} \tag{9.92}
\end{equation*}
$$

iii) Displacement compatibility equation at the support

$$
\Delta_{C}+R \Delta_{1}=0 \quad \text { (9.93) } \quad R=-\Delta_{C} / \Delta_{1}
$$

reaction forces : $F_{A}+R \widehat{F}_{A}$ bending moments: $M_{A}+R \hat{M}_{A}^{A}$ at the root bending moments distribution $M_{3}\left(x_{1}\right)+R \hat{M}_{3}\left(x_{1}\right)$

9.8 Application of the unit method to hyperstatic problem

> Alternative way to eliminate the support (or "releasing one constraint")
... Replacement of the root clamp by a simple support (Fig. 9.71)

Fig. 9.71. Cantilever with a mid-span support. The isostatic system is obtained by eliminating the mid-span support.
i) Φ_{C} : relative root rotation in the isostatic structure, Eq (9.85)
ii) Φ_{1} : associated root rotation
iii) root rotation compatibility eqn. : $\Phi_{C}+M_{A} \Phi_{1}=0, \quad M_{A}=-\Phi_{C} / \Phi_{1}$

9.8 Application of the unit method to hyperstatic problem

> Example. 9.29: Cantilevered beam with a tip support

- Cantilevered beam of length L subjected to a uniform loading distribution p_{o}
- Isostatic system: the tip support is eliminated (tip constraint is released)
- Tip deflection of the beam by unit load method bending moment distribution in the isostatic beam

$$
M_{3}(\eta)=-p_{o} L^{2}(1-\eta) 2 / 2, \eta=x_{1} / L
$$

- statically admissible bending moment distribution associated with a unit load appied at the tip

$$
\hat{M}_{3}(\eta)=L(1-\eta)
$$

- tip deflection of the isostatic beam

$$
\Delta_{c}=\int_{0}^{L} \frac{\hat{M}_{3} M_{3}}{H_{33}^{c}} d x_{1}=-\frac{p_{o} L}{2 H_{33}^{c}} \int_{0}^{L}(1-\eta)^{3} d \eta=-\frac{p_{o} L^{3}}{8 H_{33}^{c}}
$$

9.8 Application of the unit method to hyperstatic problem

- tip deflection of the isostatic beam subjected to a set of self-equilibrating tip unit loads by unit load method

$$
\Delta_{1}=\int_{0}^{L} \frac{\hat{M}_{3}^{2}\left(x_{1}\right)}{H_{33}^{c}} d x_{1}=-\frac{L^{3}}{H_{33}^{c}} \int_{0}^{L}(1-\eta)^{2} d \eta=\frac{L^{3}}{3 H_{33}^{c}}
$$

- Compatibility condition, Eq. (9.93), allows determination of the reaction force at the tip support

$$
R=-\frac{\Delta_{c}}{\Delta_{1}}=\frac{p_{o} L^{4}}{8 H_{33}^{c}} \frac{3 H_{33}^{c}}{L^{3}}=\frac{3 p_{o} L}{8}
$$

- Solution of the original hyperstatic problem: by superposition Bending moment distribution

$$
M_{3}+R \hat{M}_{3}=-\frac{p_{o} L^{2}}{2}(1-\eta)+\frac{3 p_{o} L^{2}}{8}(1-\eta)=\frac{p_{o} L^{2}}{8}\left[3(1-\eta)-4(1-\eta)^{2}\right]
$$

Q \& A

