Chapter 9 Cascode Stages and Current Mirrors

9.2 Current Mirrors

1

Boosted Output Impedances

Bipolar Cascode Stage

Example 9.1

> If Q_1 and Q_2 in Fig.9.2(a) are biased at a collector current of 1mA, determine the output resistance. Assume $\beta = 100$ and $V_2 = 5V$ for both transistors.

$$g_m = I_C / V_T, r_O = V_A / I_C,$$

$$r_\pi = \beta V_T / I_C$$

$$R_{out} \approx \frac{I_{C1}}{V_T} \cdot \frac{V_{A1}}{I_{C1}} \cdot \frac{\frac{V_{A2}}{I_{C2}} \cdot \frac{\beta V_T}{I_{C1}}}{\frac{V_{A2}}{I_{C2}} + \frac{\beta V_T}{I_{C1}}}$$

$$\approx \frac{1}{I_{C1}} \cdot \frac{V_A}{V_T} \cdot \frac{\beta V_A V_T}{V_A + \beta V_T},$$

$$I_C = I_{C1} = I_{C2} \text{ and } V_A = V_{A1} = V_{A2}$$

 $R_{out} \approx 328.9 \,\mathrm{k}\Omega.$

Maximum Bipolar Cascode Output Impedance

$$\begin{array}{c} R_{out,\max} \approx g_{m1} r_{O1} r_{\pi 1} \\ R_{out,\max} \approx \beta_1 r_{O1} \end{array}$$

The maximum output impedance of a bipolar cascode is bounded by the ever-present r_π between emitter and ground of Q₁.

Example 9.2

Suppose in Example 9.1, the Early voltage of Q₂ is equal to 50V. Compare the resulting output impedence of the cascade with the upper bound given by Eq.(9.12).

Since $g_{m1} = (26 \ \Omega)^{-1}$, $r_{\pi 1} = 2.6 \ \mathrm{k}\Omega$, $r_{O1} = 5 \ \mathrm{k}\Omega$, and $r_{O2} = 50 \ \mathrm{k}\Omega$, we have $R_{out} \approx g_{m1} r_{O1} (r_{O1} || r_{\pi 1})$ $\approx 475 \ \mathrm{k}\Omega$.

The upper bound is equal to 500 k Ω , about 5% higher.

Example 9.3

We wish to increase the output resistance of the bipolar cascade of Fig. 9.2(a) by a factor of two through the use of resistive degeneration in the emitter of Q_2 . Determine the required value of the degeneration resistor if Q_1 and Q_2 are identical.

Typically r_π is smaller than r₀, so in general it is impossible to double the output impedance by degenerating Q₂ with a resistor.C

PNP Cascode Stage

$$R_{out} = [1 + g_{m1}(r_{O2} || r_{\pi 1})]r_{O1} + r_{O2} || r_{\pi 1}$$
$$R_{out} \approx g_{m1}r_{O1}(r_{O2} || r_{\pi 1})$$

Another Interpretation of Bipolar Cascode

Instead of treating cascode as Q₂ degenerating Q₁, we can also think of it as Q₁ stacking on top of Q₂ (current source) to boost Q₂'s output impedance.

False Cascodes

$$\begin{aligned} R_{out} &= \left[1 + g_{m1} \left(\frac{1}{g_{m2}} \parallel r_{O2} \parallel r_{\pi 1} \right) \right] r_{O1} + \frac{1}{g_{m2}} \parallel r_{O2} \parallel r_{\pi 1} \\ R_{out} &\approx \left(1 + \frac{g_{m1}}{g_{m2}} \right) r_{O1} + \frac{1}{g_{m2}} \approx 2r_{O1} \end{aligned}$$

When the emitter of Q₁ is connected to the emitter of Q₂, it's no longer a cascode since Q₂ becomes a diode-connected device instead of a current source.

MOS Cascode Stage

$$R_{out} = (1 + g_{m1}r_{O2})r_{O1} + r_{O2}$$
$$R_{out} \approx g_{m1}r_{O1}r_{O2}$$

Example 9.5

Design an NMOS cascade for an output impedance of 500kΩ and a current of 0.5mA. For simplicity, assume M_1 and M_2 in Fig 9.8 are identical (they need not be). Assume $\mu_n C_{ox} = 100 \mu A/V^2$ and $\lambda = 0.1V^{-1}$.

We must determine W/L for both transistors such that

 $g_{m1}r_{O1}r_{O2} = 500 \text{ k}\Omega.$

Since $r_{O1} = r_{O2} = (\lambda I_D)^{-1} = 20 \text{ k}\Omega$, we require that $g_{m1} = (800 \Omega)^{-1}$ and hence

$$\sqrt{2\mu_n C_{ox} \frac{W}{L} I_D} = \frac{1}{800 \ \Omega}.$$

It follows that

$$\frac{W}{L} = 15.6.$$

We should also note that $g_{m1}r_{O1} = 25 \gg 1$.

CH 9 Cascode Stages and Current Mirrors

Another Interpretation of MOS Cascode

- Similar to its bipolar counterpart, MOS cascode can be thought of as stacking a transistor on top of a current source.
- Unlike bipolar cascode, the output impedance is not limited by β.

PMOS Cascode Stage

$$R_{out} = (1 + g_{m1}r_{O2})r_{O1} + r_{O2}$$
$$R_{out} \approx g_{m1}r_{O1}r_{O2}$$

Example 9.6

During manufacturing, a large parasitic resistor, R_P, has appeared in a cascode as shown in Fig. 9. 11. Determine the output resistance.

 R_p is in parallel with r_{O1} .

$$R_{out} = g_{m1}(r_{O1}||R_p)r_{O2}.$$

If $g_{m1}(r_{O1}||R_p)$ is not much greater than unity, we return to the original equation, (9.22),

$$R_{out} = (1 + g_{m1}r_{O2})(r_{O1} || R_P) + r_{O2}$$

R_P will lower the output impedance, since its parallel combination with r₀₁ will always be lower than r₀₁.

Short-Circuit Transconductance

The short-circuit transconductance of a circuit measures its strength in converting input voltage to output current.

Example 9.7

.....

Calculate the transconductance of the CS stage shown in Fig. 9.13(a).

Derivation of Voltage Gain

By representing a linear circuit with its Norton equivalent, the relationship between V_{out} and V_{in} can be expressed by the product of G_m and R_{out}.

Example 9.8

Determine the voltage gain of the common-emitter stage shown in Fig. 9.15(a).

$$\left(A_{v}=-g_{m1}r_{O1}\right)$$

Comparison between Bipolar Cascode and CE Stage

Since the output impedance of bipolar cascode is higher than that of the CE stage, we would expect its voltage gain to be higher as well.

Voltage Gain of Bipolar Cascode Amplifier

Since r_o is much larger than 1/g_m, most of I_{C,Q1} flows into the diode-connected Q₂. Using R_{out} as before, A_V is easily calculated.

Example 9.9

> The bipolar cascade of Fig.9.16(b) is biased at a current of 1mA. If V_A =5V and β =100 for both transistors, determine the voltage gain. Assume the load is an ideal current source.

$$g_{m1} = (26 \ \Omega)^{-1}, r_{\pi 1} \approx r_{\pi 2} \approx 2600 \ \Omega,$$

$$r_{O1} \approx r_{O2} = 5 \ \text{k}\Omega. \text{ Thus,}$$

$$g_{m1}(r_{O1} || r_{\pi 2}) = 65.8$$

$$G_m \approx g_{m1}$$

$$A_v \approx -g_{m1} r_{O2} g_{m2}(r_{O1} || r_{\pi 2})$$

$$|A_v| = 12,654.$$

Cascoding thus raises the voltage gain by a factor of 65.8.

Alternate View of Cascode Amplifier

A bipolar cascode amplifier is also a CE stage in series with a CB stage.

Practical Cascode Stage

Since no current source can be ideal, the output impedance drops.

Improved Cascode Stage

In order to preserve the high output impedance, a cascode PNP current source is used.

Example 9.10

> Suppose the circuit of Example 9.9 incorporates a cascode load using *pnp* transistors with $V_A = 4V$ and $\beta = 50$. What is the voltage gain?

 $R_{on} \approx g_{m2} r_{O2}(r_{O1} || r_{\pi 2})$

 $R_{op} \approx g_{m3} r_{O3}(r_{O4} || r_{\pi 3}).$

The load transistors carry a collector current of approximately 1 mA. Thus,

$$R_{op} = g_{m3} r_{O3}(r_{O4} || r_{\pi 3})$$

$$= 151 \text{ k}\Omega$$

$$R_{on} = 329 \text{ k}\Omega.$$

 $|A_v| = g_{m1}(R_{on}||R_{op})$ = 3,981.

Compared to the ideal current source case, the gain has fallen by approximately a factor of 3 because the *pnp* devices suffer from a lower Early voltage and β .

MOS Cascode Amplifier

$$A_{v} = -G_{m}R_{out}$$

$$A_{v} \approx -g_{m1}[(1+g_{m2}r_{O2})r_{O1} + r_{O2}]$$

$$A_{v} \approx -g_{m1}r_{O1}g_{m2}r_{O2}$$

Improved MOS Cascode Amplifier

$$R_{on} \approx g_{m2} r_{O2} r_{O1}$$
$$R_{op} \approx g_{m3} r_{O3} r_{O4}$$
$$R_{out} = R_{on} \parallel R_{op}$$

Similar to its bipolar counterpart, the output impedance of a MOS cascode amplifier can be improved by using a PMOS cascode current source.

Temperature and Supply Dependence of Bias Current

Since V_T , I_S , μ_n , and V_{TH} all depend on temperature, I_1 for both bipolar and MOS depends on temperature and supply.

Concept of Current Mirror

The motivation behind a current mirror is to sense the current from a "golden current source" and duplicate this "golden current" to other locations.

Bipolar Current Mirror Circuitry

The diode-connected Q_{REF} produces an output voltage V₁ that forces I_{copy1} = I_{REF}, if Q₁ = Q_{REF}.

Bad Current Mirror Example I

Without shorting the collector and base of Q_{REF} together, there will not be a path for the base currents to flow, therefore, I_{copy} is zero.

Bad Current Mirror Example II

Although a path for base currents exists, this technique of biasing is no better than resistive divider.

Multiple Copies of I_{REF}

Multiple copies of I_{REF} can be generated at different locations by simply applying the idea of current mirror to more transistors.

Current Scaling

By scaling the emitter area of Q_j n times with respect to Q_{REF}, I_{copy,j} is also n times larger than I_{REF}. This is equivalent to placing n unit-size transistors in parallel.

Example 9.14 : Scaled Current

A multistage amplifier incorporates two current sources of values 0.75mA and 0.5mA. Using a bandgap reference current of 0.25mA, design the require current sources. Neglect the effect of the base current for now.

Fractional Scaling

> A fraction of I_{REF} can be created on Q_1 by scaling up the emitter area of Q_{REF} .

Example 9.15 : Different Mirroring Ratio

It is desired to generate two currents equal to 50uA and 500uA from a reference of 200uA. Design the current mirror circuit.

Using the idea of current scaling and fractional scaling, I_{copy2} is 0.5mA and I_{copy1} is 0.05mA respectively. All coming from a source of 0.2mA.

Mirroring Error Due to Base Currents

Improved Mirroring Accuracy

Because of Q_F, the base currents of Q_{REF} and Q₁ are mostly supplied by Q_F rather than I_{REF}. Mirroring error is reduced β times.

Example 9.16 : Different Mirroring Ratio Accuracy

Compute the I_{copy1} and I_{copy2} in this figure before and after adding a follower.

Example 9.17 : Different Mirroring Ratio Accuracy

Design this circuit for a voltage gain 100 and a power budget of 2mW. Assume V_{A,npn} = 5V, V_{A,pnp} = 4V, I_{REF} = 100uA, and V_{CC} = 2.5V.

The gain is smaller than 100 because low Early voltages and V_T, a fundamental constant of the technology, independent of the bias current.

PNP Current Mirror

PNP current mirror is used as a current source load to an NPN amplifier stage.

Generation of I_{REF} for PNP Current Mirror

Current Mirror with Discrete Devices

Let Q_{REF} and Q₁ be discrete NPN devices. I_{REF} and I_{copy1} can vary in large magnitude due to I_s mismatch.

MOS Current Mirror

The same concept of current mirror can be applied to MOS transistors as well.

Bad MOS Current Mirror Example

- This is not a current mirror since the relationship between V_X and I_{REF} is not clearly defined.
- The only way to clearly define V_X with I_{REF} is to use a diodeconnected MOS since it provides square-law I-V relationship.

Example 9.20 : Current Mirror ?

Is this current mirror? Explain what happens.

This circuit is not a current mirror because the gates of MREF and M1 are floating.

Example 9.21 : Current Scaling

> Similar to their bipolar counterpart, MOS current mirrors can also scale I_{REF} up or down ($I_1 = 0.2mA$, $I_2 = 0.5mA$).

CMOS Current Mirror

The idea of combining NMOS and PMOS to produce CMOS current mirror is shown above.