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Chapter 10  Differential Amplifiers
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Audio Amplifier Example

 An audio amplifier is constructed as above that takes a 
rectified AC voltage as its supply and amplifies an audio 
signal from a microphone.  
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“Humming” Noise in Audio Amplifier Example 

 However, VCC contains a ripple from rectification that leaks 
to the output and is perceived as a “humming” noise by the 
user.
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Supply Ripple Rejection

 Since both node X and Y contain the same ripple, their 
difference will be free of ripple.
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Ripple-Free Differential Output

 Since the signal is taken as a difference between two nodes, 
an amplifier that senses differential signals is needed.
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Common Inputs to Differential Amplifier

 Signals cannot be applied in phase to the inputs of a 
differential amplifier, since the outputs will also be in phase, 
producing zero differential output.
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Differential Inputs to Differential Amplifier

 When the inputs are applied differentially, the outputs are 
180° out of phase; enhancing each other when sensed 
differentially.
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Differential Signals

 A pair of differential signals can be generated, among other 
ways, by a transformer.

 Differential signals have the property that they share the 
same average value (DC) to ground and AC values are 
equal in magnitude but opposite in phase.
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Single-ended vs. Differential Signals
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Example 10.3

 Determine the common-mode level at the output of the circuit 
shown in Fig. 10.3(b).

In the absence of signals, 

X Y CC C CV V V R I  

where 
1 2C C CR R R 

CI 1Q 2Qdenotes the bias current of and 

Thus, CM CC C CV V R I 

Interestingly, the ripple affects CMV

but not the differential output. 

and
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Differential Pair

 With the addition of a tail current, the circuits above operate 
as an elegant, yet robust differential pair.
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Common-Mode Response
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To avoid saturation, the collector voltages must not fall below the base voltages: 
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Example 10.4

 A bipolar differential pair employs a load resistance of 1 kΩ
and a tail current of 1 mA. How close to VCC can VCM be chosen?

2
EE

CC CM C

I
V V R 

0 5V 

CMV
CCVThat is, must remain below 

by at least 0.5 V.
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Common-Mode Rejection

 Due to the fixed tail current source, the input common-
mode value can vary without changing the output common-
mode value.
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Differential Response I
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Differential Response II
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Differential Pair Characteristics

 None-zero differential input produces variations in output 
currents and voltages, whereas common-mode input 
produces no variations.
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Example 10.5

 A bipolar differential pair employs a tail current of 0.5 mA and 
a collector resistance of 1 kΩ. What is the maximum allowable 
base voltage if the differential input is large enough to 
completely steer the tail current? Assume VCC=2.5V.

Because  is completely steered,

- 2  at one collector.

To avoid saturation, 2 .
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Small-Signal Analysis

 Since the input to Q1 and Q2 rises and falls by the same 
amount, and their emitters are tied together, the rise in IC1 

has the same magnitude as the fall in IC2. 
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Virtual Ground

 For small changes at inputs, the gm’s are the same, and the 
respective increase and decrease of IC1 and IC2 are the same, 
node P must stay constant to accommodate these changes.  
Therefore, node P can be viewed as AC ground.   

VgI

VgI

V

mC
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0
1 ( )C m PI g V V    

2 ( )C m PI g V V      

( ) ( )m P m Pg V V g V V     

2 1 0C CI I   
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Small-Signal Differential Gain

 Since the output changes by -2gmVRC and input by 2V, the 
small signal gain is –gmRC, similar to that of the CE stage.  
However, to obtain same gain as the CE stage, power 
dissipation is doubled. 

Cm
Cm

v Rg
V

VRg
A 






2

2

X m CV g VR   

Y m CV g VR  

2X Y m CV V g VR    
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Example 10.6

 Design a bipolar differential pair for a gain of 10 and a 
power budget of 1mW with a supply voltage of 2V.

2 V 
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Example 10.7

 Compare the power dissipation of a bipolar differential pair 
with that of a CE stage if both circuits are designed for equal 
voltage gains, collector resistances, and supply voltages.

Differential pair CE stage

diff 1 2V m CA g R   V CE m CA g R 

1 2m C m Cg R g R 

2
CEE

T T

II

V V


2EE CI I

, 2D diff C EE C CP V I V I 
,D CE C CP V I
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Large Signal Analysis
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Example 10.8

 Determine the differential input voltage that steers 98% of 
the tail current to one transistor.

1 0 02C EEI I 

1 2exp in in
EE

T

V V
I

V




1 2 3 91in in TV V V     

We often say a differential input of 4 TV
is sufficient to turn one side of the bipolar
pair nearly off.
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Input/Output Characteristics
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Example 10.9

 Sketch the output waveforms of the bipolar differential pair in 
Fig. 10.14(a) in response to the sinusoidal inputs shown in Figs. 
10.14(b) and (c). Assume Q1 and Q2 remain in the forward active 
region.

Figure10.14 (a)
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Example 10.9 (cont’d)

 The left column operates in linear region (small-signal), whereas 
the right column operates in nonlinear region (large-signal).  
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Small-Signal Model

1 1 2 2in P inv v v v v    
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Half Circuits

 Since VP is grounded, we can treat the differential pair as 
two CE “half circuits”, with its gain equal to one half 
circuit’s single-ended gain. 
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Example 10.10

 Compute the differential gain of the circuit shown in Fig. 
10.16(a), where ideal current sources are used as loads to 
maximize the gain.

Figure10.16 (a) Om
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Example 10.11

 Figure 10.17(a) illustrates an implementation of the 
topology shown in Fig. 10.16(a). Calculate the differential 
voltage gain.

Figure10.17 (a)

 1 2

1 2
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Extension of Virtual Ground

 It can be shown that if R1 = R2, and points A and B go up 
and down by the same amount respectively, VX does not 
move. This property holds for any other node that appears 
on the axis of symmetry.

0XV
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Half Circuit Example I

 1311 |||| RrrgA OOmv 
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Half Circuit Example II

 1311 |||| RrrgA OOmv 
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Half Circuit Example III
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Half Circuit Example IV
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I/O Impedances
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MOS Differential Pair’s Common-Mode Response

 Similar to its bipolar counterpart, MOS differential pair 
produces zero differential output as VCM changes.
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Equilibrium Overdrive Voltage

 The equilibrium overdrive voltage is defined as the 
overdrive voltage seen by M1 and M2 when both of them 
carry a current of ISS/2.
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Minimum Common-mode Output Voltage

 In order to maintain M1 and M2 in saturation, the common-
mode output voltage cannot fall below the value above.  

 This value usually limits voltage gain.

THCM
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DDD VV
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RV 
2
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Example 10.15

 A MOS differential pair is driven with an input CM level of 
1.6V. If ISS=0.5mA, VTH=0.5 V, and VDD=1.8 V, what is the 
maximum allowable load resistance?
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Differential Response
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Small-Signal Response

 Similar to its bipolar counterpart, the MOS differential pair 
exhibits the same virtual ground node and small signal gain.
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Power and Gain Tradeoff 

 In order to obtain the same gain as a CS stage, a MOS 
differential pair must dissipate twice the amount of current.  
This power and gain tradeoff is also echoed in its bipolar 
counterpart.
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Example 10.16

 Design an NMOS differential pair for a voltage gain of 5 and a 
power budget of 2 mW subject to the condition that the stage 
following the differential pair requires an output CM level of at 
least 1.6V. Assume μnCox=100 μA/V2, λ=0, and VDD= 1.8 V.

,
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1 11 mA

1.8 V

1.6 V
2
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Example 10.17

 What is the maximum allowable input CM level in the previous 
example if VTH=0.4 V?

1 2

,

,

,

To guarantee that M  and M  

operate in saturation,

2

        .

,
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Example 10.18

 The common-source stage and the differential pair shown in Fig. 
10.28 incorporate equal load resistors. If the two circuits are 
designed for the same voltage gain and the same supply voltage, 
discuss the choice of (a) transistor dimensions for a given power 
budget, (b) power dissipation for given transistor dimensions.

Figure10.28
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MOS Differential Pair’s Large-Signal Response
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MOS Differential Pair’s Large-Signal Response (cont’d)
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MOS Differential Pair’s Large-Signal Response (cont’d)
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Maximum Differential  Input Voltage

 There exists a finite differential input voltage that completely 
steers the tail current from one transistor to the other.  This 
value is known as the maximum differential input voltage.
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Contrast Between MOS and Bipolar Differential Pairs

 In a MOS differential pair, there exists a finite differential 
input voltage to completely switch the current from one 
transistor to the other, whereas, in a bipolar pair that 
voltage is infinite. 

MOS Bipolar
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The effects of Doubling the Tail Current

 Since ISS is doubled and W/L is unchanged, the equilibrium 
overdrive voltage for each transistor must increase by       
to accommodate this change, thus Vin,max increases by    
as well.  Moreover, since ISS is doubled, the differential 
output swing will double. 

2
2
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The effects of Doubling W/L

 Since W/L is doubled and the tail current remains unchanged, 
the equilibrium overdrive voltage will be lowered by      to 
accommodate this change, thus Vin,max will be lowered by    
as well.  Moreover, the differential output swing will remain 
unchanged since neither ISS nor RD has changed 

2
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Example 10.20

 Design an NMOS differential pair for a power budget of 3 mW 
and ∆Vin,max=500 mV. Assume μnCox=100 μA/V2 and VDD=1.8 V.
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Small-Signal Analysis of  MOS Differential Pair

 When the input differential signal is small compared to 
[4ISS/nCox(W/L)]1/2, the output differential current is linearly 
proportional to it, and small-signal model can be applied.
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Virtual Ground and Half Circuit

 Applying the same analysis as the bipolar case, we will 
arrive at the same conclusion that node P will not move for 
small input signals and the concept of half circuit can be 
used to calculate the gain.  
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MOS Differential Pair Half Circuit Example I
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MOS Differential Pair Half Circuit Example II
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MOS Differential Pair Half Circuit Example III
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Bipolar Cascode Differential Pair
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Output Impedance of CE Stage with Degeneration 

 

   

 

 

    || ||

1 ( || ) ||

        ( 1)( || )

        1 ( || )

X X m O

X m X E O X E

out m E O E

O m O E

O m E

v i g v r v

i g i R r r i R r

R g R r r R r

r g r R r

r g R r

 

 

 





  

    

   

  

 



CH 10 Differential Amplifiers 64

Output Impedance of CS Stage with Degeneration
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Bipolar Telescopic Cascode
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Example: Bipolar Telescopic Parasitic Resistance
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MOS Cascode Differential Pair
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MOS Telescopic Cascode
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Example: MOS Telescopic Parasitic Resistance
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Effect of Finite Tail Impedance

 If the tail current source is not ideal, then when a input CM 
voltage is applied, the currents in Q1 and Q2 and hence 
output CM voltage will change.
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Input CM Noise with Ideal Tail Current
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Input CM Noise with Non-ideal Tail Current 
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Comparison 

 As it can be seen, the differential output voltages for both 
cases are the same.  So for small input CM noise, the 
differential pair is not affected.
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CM to DM Conversion, ACM-DM

 If finite tail impedance and asymmetry are both present, 
then the differential output signal will contain a portion of 
input common-mode signal.

 
1 2

2

1
        2 ,  

1
2

          

          

          
1/ 2

1/ 2 2

CM GS D SS

D
D SS GS

m m

CM
D

SS

m

out out out

D D D D D

D D

CM
D

m SS

out D D

CM m SS SS

V V I R

I
I R V

g g

V
I

R
g

V V V

I R I R R

I R

V
R

g R

V R R

V g R R

    

  
     

 


  



   

     

  


 



  
  

 



�
 

 

2

1 1

2

2 2

1 2 1 2 1 2

1

2

1

2

 &  ,  

D n ox GS TH

D n ox GS TH

D D D D GS GS

W
I C V V

L

W
I C V V

L

I I I I V V





 

 

    

Textbook 
Error!



CH 10 Differential Amplifiers 75

Example: ACM-DM
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CMRR 

 CMRR defines the ratio of wanted amplified differential 
input signal to unwanted converted input common-mode 
noise that appears at the output.

DMCM

DM

A

A
CMRR







Example 10.28

 Calculate the CMRR of the circuit in Fig. 10.46.
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Figure10.46
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Differential to Single-ended Conversion

 Many circuits require a differential to single-ended 
conversion, however, the above topology is not very good.
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Supply Noise Corruption

 The most critical drawback of this topology is supply noise 
corruption, since no common-mode cancellation 
mechanism exists. Also, we lose half of the signal.
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Better Alternative

 This circuit topology performs differential to single-ended 
conversion with no loss of gain.
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Active Load

 With current mirror used as the load, the signal current 
produced by the Q1 can be replicated onto Q4.

 This type of load is different from the conventional “static 
load” and is known as an “active load”. 
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Differential Pair with Active Load

 The input differential pair decreases the current drawn from 
RL by I and the active load pushes an extra I into RL by 
current mirror action; these effects enhance each other.
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Active Load vs. Static Load

 The load on the left responds to the input signal and 
enhances the single-ended output, whereas the load on the 
right does not.
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MOS Differential Pair with Active Load

 Similar to its bipolar counterpart, MOS differential pair can 
also use active load to enhance its single-ended output.
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Asymmetric Differential Pair

 Because of the vastly different resistance magnitude at the 
drains of M1 and M2, the voltage swings at these two nodes 
are different and therefore node P cannot be viewed as a 
virtual ground when Vin2=-Vin1.  



Quantitative Analysis - Approach 1
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Quantitative Analysis - Approach 1 – cont’d

CH 10 Differential Amplifiers 87

   

 

 
 

 

1 2

1 2

1 2 1 2

1

1 1

0

2 0

                    &    

Substituting for  and ,

2
1 1

A X mN ON Y mN ON out

A X ON mN ON in in out

in in X Y

A X

out out
mP OP ON

OP mP mP OP OP mP mP OP

v i g v r i g v r v

v i r g r v v v

v v v v i i

v i

v v
g r r

r g g r r g g r



 

      

      

    


     



 

 

 

1 2

1

1 2

                                                   

1

2 2

                   

out mN ON in in

OP mP mP OPout
mN ON

in in ON OP

mN ON OP

v g r v v

r g g rv
g r

v v r r

g r r






  

   
 





CH 10 Differential Amplifiers 88

Quantitative Analysis - Approach 2
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Quantitative Analysis - Approach 2 – cont’d
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Example 10.29
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 Prove that the voltage swing at node A is much less than 
that at the output. 
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