Chapter 11 Frequency Response

- 11.1 Fundamental Concepts
- 11.2 High-Frequency Models of Transistors
- 11.3 Analysis Procedure
- 11.4 Frequency Response of CE and CS Stages
- 11.5 Frequency Response of CB and CG Stages
- 11.6 Frequency Response of Followers
- 11.7 Frequency Response of Cascode Stage
- 11.8 Frequency Response of Differential Pairs
- 11.9 Additional Examples

Chapter Outline

High Frequency Roll-off of Amplifier

As frequency of operation increases, the gain of amplifier decreases. This chapter analyzes this problem.

Example: Human Voice I

Natural human voice spans a frequency range from 20Hz to 20KHz, however conventional telephone system passes frequencies from 400Hz to 3.5KHz. Therefore phone conversation differs from face-to-face conversation.

Example: Human Voice II

Path traveled by the human voice to the voice recorder

Path traveled by the human voice to the human ear

Since the paths are different, the results will also be different.

Example: Video Signal

Video signals without sufficient bandwidth become fuzzy as they fail to abruptly change the contrast of pictures from complete white into complete black.

Gain Roll-off: Simple Low-pass Filter

In this simple example, as frequency increases the impedance of C₁ decreases and the voltage divider consists of C₁ and R₁ attenuates V_{in} to a greater extent at the output.

Gain Roll-off: Common Source

The capacitive load, C_L, is the culprit for gain roll-off since at high frequency, it will "steal" away some signal current and shunt it to ground.

Frequency Response of the CS Stage

At low frequency, the capacitor is effectively open and the gain is flat. As frequency increases, the capacitor tends to a short and the gain starts to decrease. A special frequency is ω=1/(R_DC_L), where the gain drops by 3dB.

Example: Figure of Merit

This metric quantifies a circuit's gain, bandwidth, and power dissipation. In the bipolar case, low temperature, supply, and load capacitance mark a superior figure of merit.

Example: Relationship between Frequency Response and Step Response

The relationship is such that as R₁C₁ increases, the bandwidth *drops* and the step response becomes *slower*.

Bode Plot

Example: Bode Plot

The circuit only has one pole (no zero) at 1/(R_DC_L), so the slope drops from 0 to -20dB/dec as we pass ω_{p1}.

Pole Identification Example I

Pole Identification Example II

Circuit with Floating Capacitor

The pole of a circuit is computed by finding the effective resistance and capacitance from a node to GROUND.
The circuit above creates a problem since neither terminal of C_F is grounded.

Miller's Theorem

► If A_v is the gain from node 1 to 2, then a floating impedance Z_F can be converted to two grounded impedances Z_1 and Z_2 .

Miller Multiplication

With Miller's theorem, we can separate the floating capacitor. However, the input capacitor is larger than the original floating capacitor. We call this Miller multiplication.

Example: Miller Theorem

$$\omega_{in} = \frac{1}{R_S (1 + g_m R_D) C_F}$$

High-Pass Filter Response

The voltage division between a resistor and a capacitor can be configured such that the gain at low frequency is reduced.

Example: Audio Amplifier

In order to successfully pass audio band frequencies (20 Hz-20 KHz), large input and small output capacitances are needed.

Capacitive Coupling vs. Direct Coupling

- Capacitive coupling, also known as AC coupling, passes AC signals from Y to X while blocking DC contents.
- This technique allows independent bias conditions between stages. Direct coupling does not.

Typical Frequency Response

High-Frequency Bipolar Model

At high frequency, capacitive effects come into play. C_b represents the base charge, whereas C_μ and C_{je} are the junction capacitances.

High-Frequency Model of Integrated Bipolar Transistor

Since an integrated bipolar circuit is fabricated on top of a substrate, another junction capacitance exists between the collector and substrate, namely C_{cs}.

Example: Capacitance Identification

MOS Intrinsic Capacitances

For a MOS, there exist oxide capacitance from gate to channel, junction capacitances from source/drain to substrate, and overlap capacitance from gate to source/drain.

Gate Oxide Capacitance Partition and Full Model

➢ The gate oxide capacitance is often partitioned between source and drain. In saturation, C₂ ~ C_{gate}, and C₁ ~ 0. They are in parallel with the overlap capacitance to form C_{GS} and C_{GD}.

Example: Capacitance Identification

Transit Frequency

$$Z_{in} = \frac{1}{C_{\pi}s} \| r_{\pi}, \quad I_{out} = g_m I_{in} Z_{in}$$
$$\Rightarrow \frac{I_{out}}{I_{in}} = \frac{g_m r_{\pi}}{r_{\pi} C_{\pi} s + 1} = \frac{\beta}{r_{\pi} C_{\pi} s + 1}$$
$$\frac{I_{out}}{I_{in}} = 1 \quad \Rightarrow \quad r_{\pi}^2 C_{\pi}^2 \omega_T^2 = \beta^2 - 1 \approx \beta^2$$

$$\Rightarrow \omega_T = 2\pi f_T \approx \frac{g_m}{C_\pi}$$

The transit frequency of MOSFETs is obtained in a similar fashion.

$$\omega_T = 2\pi f_T \approx \frac{g_m}{C_{GS}}$$

Transit frequency, f_T, is defined as the frequency where the current gain from input to output drops to 1.

Example: Transit Frequency Calculation

The minimum channel length of MOSFETs has been scaled from 1µm in the late 1980s to 65nm today. Also, the inevitable reduction of the supply voltage has reduced the gate-source overdrive voltage from about 400mV to 100mV. By what factor has the f_T of MOSFETs increased?

Analysis Summary

- The frequency response refers to the magnitude of the transfer function.
- Bode's approximation simplifies the plotting of the frequency response if poles and zeros are known.
- In general, it is possible to associate a pole with each node in the signal path.
- Miller's theorem helps to decompose floating capacitors into grounded elements.
- Bipolar and MOS devices exhibit various capacitances that limit the speed of circuits.

High Frequency Circuit Analysis Procedure

- Determine which capacitor impact the low-frequency region of the response and calculate the low-frequency pole (neglect transistor capacitance).
- Calculate the midband gain by replacing the capacitors with short circuits (neglect transistor capacitance).
- Include transistor capacitances.
- Merge capacitors connected to AC grounds and omit those that play no role in the circuit.
- Determine the high-frequency poles and zeros.
- Plot the frequency response using Bode's rules or exact analysis.

Frequency Response of CS Stage

Ci acts as a high pass filter.

Lower cut-off frequency must be lower than the lowest signal frequency f_{sig,min} (20 Hz in audio applications).

Frequency Response of CS Stage with Bypassed Degeneration

- In order to increase the midband gain, a capacitor C_b is placed in parallel with R_s.
- The pole frequency must be well below the lowest signal frequency to avoid the effect of degeneration.

Unified Model for CE and CS Stages

Unified Model Using Miller's Theorem

Example: CE Stage

 \succ (a) Calculate the input and output poles if R₁ = 2 k Ω . Which node appears as the speed bottleneck?

 $C_{\mu} = 20 \text{ fF}, C_{CS} = 30 \text{ fF}$

(b) Is it possible to choose R_L such that the output pole limits the bandwidth?

$$\begin{split} \left| \omega_{p,in} \right| &> \left| \omega_{p,out} \right| \\ \Rightarrow \frac{1}{\left(R_S \left\| r_\pi \right) \left[C_\pi + \left(1 + g_m R_L \right) C_\mu \right]} \right|} > \frac{1}{R_L \left[C_{CS} + \left(1 + \frac{1}{g_m R_L} \right) C_\mu \right]} \\ &\text{If } g_m R_L \square 1, \\ \Rightarrow \left[C_{CS} + C_\mu - g_m \left(R_S \left\| r_\pi \right) C_\mu \right] R_L > \left(R_S \left\| r_\pi \right) C_\pi \right] \end{split}$$

With the values assumed in this example, the left-hand side is negative, implying that no solution exists. Thus, the input pole remains the speed bottleneck.

Example: Half Width CS Stage

Direct Analysis of CE and CS Stages

$$\sum_{V_{Thev}} \sum_{i=1}^{r} \sum_{j=1}^{r} \sum_{i=1}^{r} \sum_{j=1}^{r} \sum_{i=1}^{r} \sum_{j=1}^{r} \sum_{i=1}^{r} \sum_{j=1}^{r} \sum_{i=1}^{r} \sum_{$$

Direct Analysis of CE and CS Stages – cont'd

$$|\omega_{z}| = \frac{g_{m}}{C_{XY}}$$

$$as^{2} + bs + 1 = \left(\frac{s}{\omega_{p1}} + 1\right) \left(\frac{s}{\omega_{p2}} + 1\right) = \frac{s^{2}}{\omega_{p1}\omega_{p2}} + \left(\frac{1}{\omega_{p1}} + \frac{1}{\omega_{p2}}\right)s + 1$$

$$if \quad \omega_{p2} \square \quad \omega_{p1} \implies \quad \omega_{p1}^{-1} + \omega_{p2}^{-1} \approx \omega_{p1}^{-1} \quad \text{Dominant-pole approximation}$$

$$\Rightarrow b = \frac{1}{\omega_{p1}}$$

$$\left|\omega_{p1}\right| = \frac{1}{(1 + g_{m}R_{L})C_{XY}R_{Thev}} + R_{Thev}C_{in} + R_{L}(C_{XY} + C_{out})}{R_{Thev}R_{L}(C_{in}C_{XY} + C_{out}C_{in} + R_{L}(C_{XY} + C_{out})}\right)$$

Direct analysis yields different pole locations and an extra zero.

Example: Dominant-pole approximation

$$\begin{split} \omega_{p1} &\approx \frac{1}{\left[1 + g_{m1}(r_{O1} \parallel r_{O2})\right]C_{XY}R_{S} + R_{S}C_{in} + (r_{O1} \parallel r_{O2})(C_{XY} + C_{out})} \\ \omega_{p2} &\approx \frac{\left[1 + g_{m1}(r_{O1} \parallel r_{O2})\right]C_{XY}R_{S} + R_{S}C_{in} + (r_{O1} \parallel r_{O2})(C_{XY} + C_{out})}{R_{S}(r_{O1} \parallel r_{O2})(C_{in}C_{XY} + C_{out}C_{XY} + C_{in}C_{out})} \end{split}$$

Example: Comparison Between Different Methods

Exact

 $\left| \omega_{p,in} \right| = 2\pi \times (264 \text{ MHz})$ $\left| \omega_{p,out} \right| = 2\pi \times (4.53 \text{ GHz})$

$$\frac{\text{Miller's}}{\left|\omega_{p,in}\right| = 2\pi \times (571 \text{ MHz})}$$

$$\left|\omega_{p,out}\right| = 2\pi \times (428 \text{ MHz})$$

CH 11 Frequency Response

Dominant Pole

 $\left| \omega_{p,in} \right| = 2\pi \times (249 \text{ MHz})$ $\left| \omega_{p,out} \right| = 2\pi \times (4.79 \text{ GHz})$

Input Impedance of CE and CS Stages

Low Frequency Response of CB and CG Stages

As with CE and CS stages, the use of capacitive coupling leads to low-frequency roll-off in CB and CG stages (although a CB stage is shown above, a CG stage is similar).

Frequency Response of CB Stage

 $\omega_{p,X}$ $\left[R_{s} \parallel \frac{1}{g_{m}} \right]$ C_X $C_{X} = C_{\pi}$ $\omega_{p,Y} = \frac{1}{R_C C_Y}$ $C_Y = C_\mu + C_{CS}$

Frequency Response of CG Stage

Similar to a CB stage, the input pole is on the order of f_T, so rarely a speed bottleneck.

Example: CG Stage Pole Identification

$$\omega_{p,X} = \frac{1}{\left(R_{S} \| \frac{1}{g_{m1}}\right) \left(C_{SB1} + C_{GS1}\right)} \quad \omega_{p,Y} = \frac{1}{\frac{1}{g_{m2}} \left(C_{DB1} + C_{GD1} + C_{GS2} + C_{DB2}\right)}$$

Example: Frequency Response of CG Stage

Emitter and Source Followers

 The following will discuss the frequency response of emitter and source followers using direct analysis.
 Emitter follower is treated first and source follower is

Emitter follower is treated first and source follower is derived easily by allowing r_{π} to go to infinity.

Direct Analysis of Emitter Follower

Direct Analysis of Source Follower Stage

$$\frac{V_{out}}{V_{in}} = \frac{1 + \frac{C_{GS}}{g_m}s}{as^2 + bs + 1} \qquad a = \frac{R_s}{g_m} \left(C_{GD}C_{GS} + C_{GD}\left(C_{SB} + C_L\right) + C_{GS}\left(C_{SB} + C_L\right)\right)$$

Example: Frequency Response of Source Follower

Example: Source Follower

$$\frac{V_{out}}{V_{in}} = \frac{1 + \frac{C_{GS}}{g_m}s}{as^2 + bs + 1}$$

$$a = \frac{R_{S}}{g_{m1}} \left[C_{GD1} C_{GS1} + (C_{GD1} + C_{GS1}) (C_{SB1} + C_{GD2} + C_{DB2}) \right]$$

$$b = R_{S} C_{GD1} + \frac{C_{GD1} + C_{SB1} + C_{GD2} + C_{DB2}}{g_{m1}}$$

CH 11 Frequency Response

55

Input Capacitance of Emitter/Source Follower

Example: Source Follower Input Capacitance

Output Impedance of Emitter Follower

Output Impedance of Source Follower

Active Inductor

The plot above shows the output impedance of emitter and source followers. Since a follower's primary duty is to lower the driving impedance (R_s>1/g_m), the "active inductor" characteristic on the right is usually observed.

Example: Output Impedance

$$\underbrace{\frac{V_X}{I_X} = \frac{(r_{O1} \parallel r_{O2})C_{GS3}s + 1}{C_{GS3}s + g_{m3}}}_{R_{SS3}s + g_{m3}}$$

Frequency Response of Cascode Stage

Assuming $r_o = \infty$ for all transistors,

$$A_{v,XY} = \frac{-g_{m1}}{g_{m2}} \approx -1$$

$$C_x = (1 - A_{v,XY})C_{XY}$$

$$\approx 2 \cdot C_{XY}$$

For cascode stages, there are three poles and Miller multiplication is smaller than in the CE/CS stage.

V_{DD}

• Vout

Poles of Bipolar Cascode

Poles of MOS Cascode

Example: Frequency Response of Cascode

MOS Cascode Example

I/O Impedance of Bipolar Cascode

I/O Impedance of MOS Cascode

$$Z_{out} = R_L \| \frac{1}{(C_{GD2} + C_{DB2})s}$$

Bipolar Differential Pair Frequency Response

Since bipolar differential pair can be analyzed using halfcircuit, its transfer function, I/O impedances, locations of poles/zeros are the same as that of the half circuit's.

MOS Differential Pair Frequency Response

Since MOS differential pair can be analyzed using halfcircuit, its transfer function, I/O impedances, locations of poles/zeros are the same as that of the half circuit's.

Example: MOS Differential Pair

Common Mode Frequency Response

C_{ss} will lower the total impedance between point P to ground at high frequency, leading to higher CM gain which degrades the CM rejection ratio.
Tail Node Capacitance Contribution

- Source-Body Capacitance of M₁, M₂
- Drain-Body Capacitance of M₃
- Gate-Drain Capacitance of M₃

Example: Capacitive Coupling

For Q_1 , assuming $V_{BE1} = 800 \text{ mV}$, $I_{C1} = \beta \frac{V_{CC} - V_{BE1}}{R_{B1}} = 1.7 \text{ mA}$ $\Rightarrow V_{BE1} = V_T \ln (I_{C1} / I_{S1}) = 748 \text{ mV}$ $\Rightarrow I_{C1} = 1.75 \text{ mA} \Rightarrow g_{m1} = (14.9 \Omega)^{-1}$ $\Rightarrow r_{\pi 1} = 14.9 \text{ k}\Omega$

For Q₂, assuming $V_{BE2} = 800 \text{mV}$, $V_{CC} = I_{B2}R_{B2} + V_{BE2} + R_E I_{C2}$ $\Rightarrow I_{C2} = \frac{V_{CC} - V_{BE2}}{R_{B2} / \beta + R_E} = 1.13 \text{ mA}$ Iteration yields $I_{C2} = 1.17 \text{ mA}, g_{m2} = (22.2 \Omega)^{-1}$ $\Rightarrow r_{\pi 2} = 2.22 \text{ k}\Omega$

Example: Capacitive Coupling – cont'd

$$R_{in2} = R_{B2} || [r_{\pi 2} + (\beta + 1)R_{E}]$$

$$\omega_{L2} = \frac{1}{\left(R_C + R_{in2}\right)C_2}$$
$$= \pi \times (22.9 \text{ Hz})$$

Example: IC Amplifier – Low Frequency Behavior

$$\omega_{L1} = \frac{1}{\left(R_{S1} \Box \frac{1}{g_{m1}}\right)C_1}$$
$$= \frac{g_{m1}R_{S1} + 1}{R_{S1}C_1}$$
$$= 2\pi \times (42.4 \text{ MHz})$$

$$R_{in2} = \frac{R_F}{1 - A_{v2}}$$
$$A_{v2} \approx -g_{m2}R_{D2} = -6.67$$
$$\Rightarrow R_{in2} = 1.30 \text{ k}\Omega$$

$$\omega_{L2} = \frac{1}{\left(R_{D1} + R_{in2}\right)C_2}$$
$$= 2\pi \times (6.92 \text{ MHz})$$

Example: IC Amplifier – Midband Behavior

Example: IC Amplifier – High Frequency Behavior

CH 11 Frequency Response