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Fundamental
Concepts

* Bode's Rules

¢ Association of Poles
with Nodes

¢ Miller's Theorem
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* Bipolar Model
* MOS Model
* Transit Frequency

Frequency
Response of Circuits

* CE/CS Stages
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(a) (®)

» As frequency of operation increases, the gain of amplifier
~ decreases. This chapter analyzes this problem.
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[ Natural Voice J [Telephone System]
[ N [
20 Hz 20kHz f 400 Hz 3.5kHz f

(a) (b)

» Natural human voice spans a frequency range from 20Hz to
20KHz, however conventional telephone system passes
frequencies from 400Hz to 3.5KHz. Therefore phone
conversation differs from face-to-face conversation.
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Path traveled by the human voice to the voice recorder

L Mouth J ——>L Air J —_— L Recorder J
Path traveled by the human voice to the human ear
{ Mouth } ——>£ Air } —> { Ear }
\ [ Skull } /

» Since the paths are different, the results will also be
- different.
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(a) (b)

[High Bandwidth] [ Low Bandwidth]

» Video signals without sufficient bandwidth become fuzzy as
they fail to abruptly change the contrast of pictures from
complete white into complete black.
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Wy o .
vino’_’ % c, Vi;_l-ut 1.0 ‘\

~Y

» In this simple example, as frequency increases the
impedance of C, decreases and the voltage divider consists
of C, and R, attenuates V,, to a greater extent at the output.
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Rp=

vin"-’__l_ -L © Vout
» 0

T i ? 9nVin TR, =c,
VIHG_II: M, I CL - = — I

(a) (b)

1
V. =—g V.| R, | —
out gm zn[ D H CLSj

» The capacitive load, C,, is the culprit for gain roll-off since
at high frequency, it will “steal” away some signal current
and shunt it to ground.
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-3-dB Vi

V,

;‘:‘t A Bandwidth _3-dB B |
= Rolloff ==&, [RD C—LS)
: _ —g,.
: - R,C,s+1
R:, C, @ Vo _ g,k
Via \/Rlz)Cfa)2 +1

» At low frequency, the capacitor is effectively open and the
gain is flat. As frequency increases, the capacitor tends to
a short and the gain starts to decrease. A special
frequency is w=1/(R,C,), where the gain drops by 3dB.

CH 11 Frequency Response



Gain x Bandwidth

Power Consumption

1
R.C,

. Vcc FOM.=

ngC s

Rc=
? O Vout ICVCC
1. 1
- —=R
Vin"’—la-ch = C_ RN Y
— [CVCC
- 1
VTVCCCL

» This metric quantifies a circuit’s gain, bandwidth, and power
dissipation. In the bipolar case, low temperature, supply, and
load capacitance mark a superior figure of merit.
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e N O )
H(s=jw) = V() =V | 1-exp—— |u(¢)
N \/Rl L t : rRCG )

» The relationship is such that as R,C, increases, the
.~ bandwidth drops and the step response becomes slower.

CH 11 Frequency Response 11



l+— | 1+ —
H(S) _ AO a)zl< (022
I+ 5 1+ 2
\ Dp1 @) J

» When we hit a zero, w,;, the Bode magnitude rises with a
slope of +20dB/dec.

» When we hit a pole, w;, the Bode magnitude falls with a
slope of -20dB/dec

CH 11 Frequency Response
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1
R,C,

‘a)pl‘

» The circuit only has one pole (no zero) at 1/(R,C, ), so the
~ slope drops from 0 to -20dB/dec as we pass Wy4-
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\/(1+a)/ X1+a)/

3)
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2 Vout
Vb - C_
Rs |
Vino—AMW -
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VDD

Rp
Ck

© |'/out

R 1
Vi"i‘\/\/\?l | g

1

» The pole of a circuit is computed by finding the effective
resistance and capacitance from a node to GROUND.

» The circuit above creates a problem since neither terminal
of C¢ is grounded.

CH 11 Frequency Response
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> If A, is the gain from node 1 to 2, then a floating impedance
~ Zgcan be converted to two grounded impedances Z, and Z,.
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» With Miller’s theorem, we can separate the floating
capacitor. However, the input capacitor is larger than the
original floating capacitor. We call this Miller multiplication.
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Rp
Ce o
Rs l 1 ° Vout Rs l Vout
Vino—W I M 4 Vino—MW l I M, I Cout
= Cin = =
I
4 N 4 1 N
. = 1 a)out — 1
" Ry(l+g,R,)C, R (1"‘ R ]CF
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(a) (b)

V| RCo
V.| R 0! +1

> The voltage division between a resistor and a capacitor can
~ be configured such that the gain at low frequency is reduced.
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1
Vino—| %—II:M RC, 7(20Hz)

'TO Vout — Ci > 1 =79.6nF
100k x 27 %20
/4 * I

o =Ln> 27z><(20kHz)

p,out
CL

R. =100 kO 1
= C, < = 39.8nF
=1/200 Q 200 277 x 20k

> In order to successfully pass audio band frequencies (20
Hz-20 KHz), large input and small output capacitances are
needed.

CH 11 Frequency Response 21



Rp = Ri% Rp =
Y II-:M1 P’—II—:M1

— O Vo

Vin°—||.: M, ;1? Vin°—||.: M, ;1@

ut

(a) (b)

[Capacitive Coupling} | Direct Coupling |

» Capacitive coupling, also known as AC coupling, passes
AC signals from Y to X while blocking DC contents.

» This technique allows independent bias conditions between
stages. Direct coupling does not.
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Midband
Gain

Midband
- -

-
w

[Lower Corner] [Upper Corner]
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L C,=C,+C, J

» At high frequency, capacitive effects come into play. C,
represents the base charge, whereas C and C,, are the
junction capacitances.

CH 11 Frequency Response
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C B E |
T T T+ B o l i o C
CLETT T e ol
Substrate T Ces
Cu E

» Since an integrated bipolar circuit is fabricated on top of a
substrate, another junction capacitance exists between the
collector and substrate, namely Cs.
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p-substrate

» For a MOS, there exist oxide capacitance from gate to channel,
junction capacitances from source/drain to substrate, and
overlap capacitance from gate to source/drain.
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» The gate oxide capacitance is often partitioned between source
and drain. In saturation, C, ~C_,., and C, ~0. They are in
parallel with the overlap capacitance to form Csgand Cgp,.
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jtn‘.:!t\llt ac
" GND , :_|| g 1 7.
Q
+ . g7 B
) , — out — m —
I'“? r.. lj" = I rCs+l rCs+l1
ye in 'l' ]
- " =1 = 1XClol=p-1=
’nut ac N
" GND = @, =27 f, ~
| —iL M, The transit frequency of MOSFETSs
lin r.' Vin = 1s obtained in a similar fashion.
Cin .l_.
@ TTfr =
GS

> Transit frequency, f;, is defined as the frequency where the

current gain from input to output drops to 1. :
30
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m, _ Sraowm _ 100 /( 400 o

= fT,1980s (65 x10~ )2

From Problem 11.28,

"Clll.lt ac
3u,
——I" oNDp 27/, = 7 (Vs —Viy )

~

1><10_6)2

If 1, =400 cm® / (V -s),
fT’tO day 226 GHz

» The minimum channel length of MOSFETs has been scaled
from 1pm in the late 1980s to 65nm today. Also, the
inevitable reduction of the supply voltage has reduced the
gate-source overdrive voltage from about 400mV to 100mV.
By what factor has the f; of MOSFETSs increased?
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K The frequency response refers to the magnitude of the \
transfer function.

» Bode’s approximation simplifies the plotting of the
frequency response if poles and zeros are known.

» In general, it is possible to associate a pole with each node
in the signal path.

» Miller’s theorem helps to decompose floating capacitors
into grounded elements.

» Bipolar and MOS devices exhibit various capacitances that

Klimit the speed of circuits. /
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[ High Frequency Circuit Analysis Procedure J

» Determine which capacitor impact the low-frequency region
of the response and calculate the low-frequency pole
(neglect transistor capacitance).

» Calculate the midband gain by replacing the capacitors with
short circuits (neglect transistor capacitance).

» Include transistor capacitances.

» Merge capacitors connected to AC grounds and omit those
that play no role in the circuit.

» Determine the high-frequency poles and zeros.
> Plot the frequency response using Bode’s rules or exact

\\analysis. /
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Vo RIE_ (RlR)C
Vi R1||R2+é (R[[R,)Cis +1

1

1
27 [(Rl ||R2)C,.]

Thus,

< f:vig,min

» Ci acts as a high pass filter.

» Lower cut-off frequency must be lower than the lowest
signal frequency f, ,;, (20 Hz in audio applications).
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w

1 1+gnRg
RsCh  RgCy

Vouz( )_ -k, V.. —R, -g. R, (RSCbS+1)

o ! (5)= I 1 RC R +1

X R, +— Vy R.I 4 sCpS T 8 ltg t
g > Cs g,

> In order to increase the midband gain, a capacitor C is
placed in parallel with R..

» The pole frequency must be well below the lowest signal
frequency to avoid the effect of degeneration.
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Cxy
RThev X l_ | Y
Wy R * ° Vout
+
VThev C)_ Cin == Vi( ImY x =Cout RD
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Y

RThev

1

W . ;
VThev é_ % cin% VX

‘a)p,in

CE Stage
I

+Rs
RThev=RsD r
Cx = Cl.l (1 +ImRy)

1
Cv=C; {1+

l'/Th«a'«r V

CH 11 Frequency Response

w
Ry, [Cm + (1 +g,R, ) Cyy

l l ° Vout
I Cout I CY &

B 1

R, Com+(1+ 1 jCXY
ngL

CS Stage

p,out

VThev = Vin
Rthev=Rs
Cx=Cgp (1+gnR,)

1
Cy=Cgp (1+
¥ GD ngL)
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» (a) Calculate the input and output poles if R, =2 kQ. Which
node appears as the speed bottleneck?

R, = pin (RS ||r”)[Cﬂ+(1+ngL)CJ
V Rs Vout ‘a) _ 1
. m Q p,out .
in ) 1 R, |:CcS +(1+ngL]Cﬂ}
Ry =200Q, I.=1mA @, | = 27x(516 MHz)
£ =100, C, =100 fF |
C,u — 20 fF) CCS — 30 fF pout 272’)((1 59 GHZ)
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> (b) Is it possible to choose R, such that the output pole
~ limits the bandwidth?

‘a)p,in >‘a)p,out
N 1 S 1
(R|lr,)| €, +(1+g,R,)C, | R{CCS{HIJC}
g.R :
Ifg R, 1,

=[Cs+C,—g,(Rs])C, [R, > (R|r,) C.

With the values assumed in this example, the left-hand side is negative,
implying that no solution exists. Thus, the input pole remains the speed
bottleneck.
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R =
Rs T Vout
Vine W'f II_: M1

o

o

L

wp,in

p,out

R{C’”+(1+
2

- [c
R | —2 4
{ 2

(H

2

ngL

|

CH 11 Frequency Response

W 2X
bias current + 2X

=]

4

a W I
g = \/2,unCOX —1I, $2X
L
capacitances ¥ 2X
4
[ , N
bandwidth T 2X
gain ¥ 2X

\galn[bandwmth — constant >
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Y

l © Vout
ImVXx Icout RD

, Cyps+—+C s
At Node Y: (V Vom)CXyS=ngX +V| =+ Cus |2V =V, -
RL CXYS_gm
VX VTh
AtNode X: (V,,, —V,)Cyys =V, C, s+ -
Thev
CXYS+L+C0L”S
| RL _VThev
=V C.,s—| C,ys+C, s+ Voo =—
Thev CXYS o gm RThev
C,, s— R
:Q(‘g):( XY2S gm) L Where a:RThevR (C C +CoutC +Can0ut)
2% as” +bs+1
b (1+gm ) XYRThev +RTheva +R (C +C0ut

)

CH 11 Frequency Response
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£|wz|=§m }
XY

2
as® +bs+1=| ——+1|| =—+41]=—> ¢ 1 + 1 s+1
o, ®,, 0,0, |0, 0,

. -1 -1 -1 . . 5
if 0,0 0, = o,+0,~o0, [ Dominant-pole approximation ]

:>sz

o, = : )
= (1 + ngL)CXYRThev +RThevCin +RL (CXY + COW)
b (1 + ngL)CXYRThev + RThevCin + RL (CXY + Cout)

| a)p2 |= a RThevRL (CmCXY + CoutCXY T Cincout)
9 /

» Direct analysis yields different pole locations and an extra
. zero.
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Csaz
"
ol I —I_l ]- Cpe2
VDD C
ep2 |
Vb'—l Mz CGE” 0

Cin = CGSI
CXY = CGDI
Cout - CDBI + CGDZ + Cosz

ut
Rs Vout out
CDB1 Cout =rotllroz

= CGS1

1

~

“SS A

N[l_l_gml(rOl oG R R
[1+gm1(”01 ||”02)]C Ry +R,C,

(’”01 | 76, )(CXY +C,y)
(”01 | 762 )(CXY +C,,,)

0

\pz RS (7"01 || 7"02 )(Cm CXY+C0ut CXY + Cin Cout ) /
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VDD 30 — — -
R : : I :J'='= Dominant-Pole Appr.

I ] == =Miller's Approx.
e Exact Eq.

1] S T T T

Vout R I S
10.........5 ..... E_EEEEE ..... EEEE E ..... E....:..._..:.._..:..E.

Rs
R,=200Q O\ =
C.. =250 fF
C,, =100fF

-30 i
& 9 10

g = (150 Q)—l 10 10 10 10

Frequency (Hz)
=0 This error arises because we have multiplied C,, by the midband

A
R, =2kQ / gain(1+g R,)rather than the gain at high frequencies.

Magnitude of Transfer Function (dB)
o
]
|

Miller’s Exact Dominant Pole
=27x(571 MHz) =27 x(264 MHz) =27 x(249 MHz)

‘ pln ‘ pm

=27 x(428 MHz =27 x(4.79 GHz)

=27x(453GHz)  ||@pu
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Zin =

/ C 1 O
Z 7' Zinz

e+ ek 5 T G g R
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Vino—W—] .
f1 : o
Im 0]

= (1 +ng$}Ci

out RC ngCCiS
V (S) = R -1 =
. <+(Cs) ' +1/g, (1+g,Rs)Cs+g,

» As with CE and CS stages, the use of capacitive coupling
leads to low-frequency roll-off in CB and CG stages
(although a CB stage is shown above, a CG stage is similar).
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= \CY =Csp +Cpp /

» Similar to a CB stage, the input pole is on the order of f;, so
 rarely a speed bottleneck.
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° Vout

Cpe1*Cep1*Cqs2 *Cpe2

L
“ 31

Rs
M'I :_II_. Vh vil'li ¥YY I
vi“o__ﬁf__ I Csg1*Casi
(a) (b)
1 1 )
C()p,X = : C()p’Y = 1
R ||[— (Csm + CGSI) 2 (Cos1 +Coi +Cosr + Cpgs)
ml m?2 -

CH 11 Frequency Response
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(R, =200Q or " L AR R
CGS =250 fF -2295 "1IJT "‘;Uﬂ o ""'I-Gg
_ Frequency (Hz)
C,, =80 fF - 1 ~
Chs :(100 fF)_1 (()p,X‘Zl/(RS ||_]CX =27Z'><(5.31 GHZ)
g, =(150 Q m
A=0 o =R, /C, =2rx(442 MHz
KRD =2kQ / k p,Y‘ L Y ( ) /
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-T VCC -T VDD
Cu Cep Cog
Rs 4"_"'
X
c y CGS

T |
Q

&

ICSB

(a) (b)

%CL out G) l out

» The following will discuss the frequency response of
emitter and source followers using direct analysis.

» Emitter follower is treated first and source follower is
derived easily by allowing r; to go to infinity.

CH 11 Frequency Response

51



{;\’vs
§oled b goo
Vin
- I
) ) }O out
I
v .+V =V ) V.
Atnode X; — (Vom+V)CﬂS+—+V7,C”S:O
R r
V V. C,
Atoutputnode: —=Z+V.Cs+gV =V Cs = V = out 15
' l+C s+g
/ \ T m
1+C—S f R r?Z'
out __ gm . -1 _
V,, as’+bs+l withr 1 g, Wherea—g—:(CﬂCH+CﬂCL+CECL)
N 7 C. R, | C
@, :g_msz b=R,C +—+(1+—j—L
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/

-

C

1+ -6 g

Vout g m

V.  as®+bs+1

in

R

~

a= g_(CGDCGS + CGD (CSB + CL)+ CGS (CSB ki CL ))

m

b=R,C,, +

Cop+Cy +C,

Em

/
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CH 11 Frequency Response

Magnitude of Frequency Response (dB)

10" 10° 10° 10"
Frequency (Hz)

a=2.58x10""s

h=5.8x10"s

w, =g,/ Cs =2mx(4.24 GHz)

®, =2x|-1.79 GHz+ j(2.57 GHz) |
®,, =2r|-1.79 GHz— j(2.57 GHz) |
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"-"inb—ﬁ'f—ix—lli M, T Coen e C ™
T GS

Cast
T v C 1+ S
-‘|- out Vout _ gm
“eoz | T Coez* Cset V. as’+bs+1
E . " J/
Vi + Csp2
Cas2 T Ma Hn
R ) o
a = —[CGDICGSI +(Cgpy + Cs N Cispy + Cpy + CDBZ)]
ml

b — R C 4+ CGDl + C1SB] +CGD2+CDBZ
- ESMGD1

\ gml /
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Tou |17
—_ Vpp A = o1 ]|'o02

|
Vino—": M, Tol Hr +g—1
Vh‘—“: = C, :EGDI (1 A, )1CG51 §

- CGDI T CGS 1

1+g,, (’bl | ’”02)

/

CH 11 Frequency Response 57



1 'm
I, +gV — ==V
(X gm ﬂ)(rﬂ' CﬂSJ T ([X_I_ngﬂ')RS_V;z-:VX
Y =] 7, :ﬁ/X _ R Cos+r + Ry
" Y rC s+ B+l LIX rC s+ f+1
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in>—W——1k, M,
c

GS
L 5

V_X R C s+r, + Ry >
I, rC s+ p+1

withg -7 =f—>
Vi RyCges+1
I, Cgstg,
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|Zout| A Ve R,C.s+r, +Rg |Zout| A
Rs L] I, r C s+ f[+1 Re
B+1 9m

» The plot above shows the output impedance of emitter and
source followers. Since a follower’s primary duty is to
lower the driving impedance (Rs>1/g,,), the “active inductor”
characteristic on the right is usually observed.
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V. ._I M — — VDD
: - L m {rm OO] ro1llroz
: W M,
Vino_“: M1 —>° Vout - Y
T O il
- zout
4 N\
Vy _ (’”01 | rOz)CGS3S+1
[y Cos3S + &3

/
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Assuming r, = o for all transistors,

4, = 8w 4 C,=(1-4,,,)Cy
Em2 ~2-C,,

» For cascode stages, there are three poles and Miller
.~ multiplication is smaller than in the CE/CS stage.
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a = : /wp Y = 1 :
P (RS || Vo )(Cﬂ'l + 2C,ul ) g (CCSI + C;zz + 2C,u1)
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1 0 4 I
— 1

a) ou —
RS|:CGS1 T (1 4 Sl jcc;m} 7 Ry (Cops + Cans)
~/ N /

I:T l ° Vout
Voo T Cep2* Cpg2

Im2
‘ I': lCGSZ+CGD1 (1"' )+CDB1+CSBZ
gm1

Ces1tCgpq (17 )
Im2 I

4 1 2
Cl)p’Y = . g

|:CDB1 + CGSZ + (1 + mszGDli|
\_ gm2 gml ny
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_ l 1
- g a)p,out =
Ry|Cpg, +| 1+ 22 |Cp, R (Couzt Cons)
4

vout
Vo1 [, M,
Rs Y
Vi °—'W\'—X| M,
e T B
@,y = : .
|:CDBI + CGS2 + (1 + = jCGDl + CSB2 + CGD3 + CDB3
\ gm2 gml /
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Ces1*Cgpq (1+

-

e
Zin —

Em
Cas1 +| 142 |Cop,

m?2
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Cgs2t Cgpq (17

l out
1

Cep2* Cpe2

Im2

)+ Cpgq*+ Csp2
m1

4 i N
Zow =R ||

t ’ (CGD2 T CDBZ)
- /
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| Half Circuit]

» Since bipolar differential pair can be analyzed using half-
circuit, its transfer function, I/O impedances, locations of
poles/zeros are the same as that of the half circuit’s.

CH 11 Frequency Response
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I: :II *w © Vin2 Vin I; I Cpe1

CGS1-|' My | = Cspy

L IH®

| Half Circuit]

» Since MOS differential pair can be analyzed using half-
circuit, its transfer function, I/O impedances, locations of
poles/zeros are the same as that of the half circuit’s.

CH 11 Frequency Response
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gm3

ml

CGD 1

Rs X

VinMWVTI
Im1 -

Ces1* Cgpq (1* )
Im3 I

CH 11 Frequency Response

1
. Ri[Cosi +(1+ &, / 8,3)Cop1 ]
1
a)p’Y = ’
—| Cpp + CGS3 T CSB3 +| 1+
gm3
3 1
\Imut R, (CDB3 + CGD3)
° vout
Cep3z* Cpgs

Im3

) +Cppgq *Cgp3
m1
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Rp +ARp Gain
Vout1 9mARD
. ARp
VGM /. ZRSS + ;_m I I
- R J_ c 1 2 Igm ::J.-
= TS RssCss  Css
~
AV, _ AR, _ g.,AR), (RSSCSSS T 1)
Mol 1, Z(RSS 1 ] R Cis+2g Ry +1
\_ g ss% Y,

» C, will lower the total impedance between point P to
ground at high frequency, leading to higher CM gain which
degrades the CM rejection ratio.
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; Csp2

Csg1 -=|-
= M3 ;

4 » Source-Body Capacitance of M,, M,, A
» Drain-Body Capacitance of M,
» Gate-Drain Capacitance of M,

- /
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100kQ =Ry Rc= 1kQ

C4
Vil'lc I

Q4
200 nF o

For Q,, assuming V., =800 mV,

I, =/ VCCR_ Voel _1 7 mA
Bl

=V =V In(I, /1) =748 mV

=>1,=175mA=g, =(149Q)"
=7, =149 kQ

CH 11 Frequency Response

For Q,, assuming V., =800mV,
Vee = 1pyRpy + Ve, + Rl )
7ot R:ZC/ —ﬂZR
[teration yields
I,=1.17mA, g,, =(222 Q)"
=r.,=2.22kQ

=1.13 mA
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|
a) —
- (’?:1 | RBI)CI
= 27z><(542 Hz) Y.

100 kﬁj Rg1 Re= 1kQ R Rga=50 k(2
Cq lf—|
X
Vine | 1 Ca |_b

200 nF }j,a g Vout
= in2  1kQ=Rg

................. 2
?11 %Rc I Rin:‘f
ol % Rio = Ry, Il +(B+1)R,
i 4 1 D
?HP—%—“W .. =
Yehev t Rin2 - (RC +Rin2)c2
- g = 7r><(22.9 HZ)

o
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o)
gml

_ ZmBg +1
Ry C,

-

in2 —

RF
1- 4,

~

A, ~~8,,Rp, =—6.67

(=R, =130 kO

/

/

k = 27z><(42.4 MHZ)/

CH 11 Frequency Response

o

W, =

1

(RDI +R,, ) G,

=27 X (6.92 MHZ)

/
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ac GND .
jin out . _
kL0 ~—-g R, =—6.67
RD"I 1 kQ b2 VX
x Re
Rs °Vout Vv

W
Vino—'w,,—l M |_’ 10 k Q2

: = 2 ~25.1
= Rin2 M, \ Vi, /
dac

GND =
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Magnitude of Frequency Response (dB)

Frequency (Hz)
CH 11 Frequency Response

=27 x(308 MHz)

=27 x(2.15GHz)

With Miller effect,
(I_A;;)CGD2 ~1.15-Cgp,

-

\

1

)
‘ P3‘ R, (1.15.
=27 x(1.21 GHz)

CGD2 + CDBZ)
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