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High Frequency Roll-off of Amplifier 

 As frequency of operation increases, the gain of amplifier 
decreases.  This chapter analyzes this problem.  
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Example:  Human Voice I

 Natural human voice spans a frequency range from 20Hz to 
20KHz, however conventional telephone system passes 
frequencies from 400Hz to 3.5KHz.  Therefore phone 
conversation differs from face-to-face conversation.   
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Natural Voice Telephone System
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Example:  Human Voice II
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Mouth RecorderAir

Mouth EarAir

Skull

Path traveled by the human voice to the voice recorder 

Path traveled by the human voice to the human ear 

 Since the paths are different, the results will also be 
different.
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Example:  Video Signal

 Video signals without sufficient bandwidth become fuzzy as 
they fail to abruptly change the contrast of pictures from 
complete white into complete black.
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High Bandwidth Low Bandwidth
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Gain Roll-off:  Simple Low-pass Filter

 In this simple example, as frequency increases the 
impedance of C1 decreases and the voltage divider consists 
of C1 and R1 attenuates Vin to a greater extent at the output. 
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Gain Roll-off:  Common Source

 The capacitive load, CL, is the culprit for gain roll-off since 
at high frequency, it will “steal” away some signal current 
and shunt it to ground.
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Frequency Response of the CS Stage

 At low frequency, the capacitor is effectively open and the 
gain is flat.  As frequency increases, the capacitor tends to 
a short and the gain starts to decrease.  A special 
frequency is ω=1/(RDCL), where the gain drops by 3dB.
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Example: Figure of Merit

 This metric quantifies a circuit’s gain, bandwidth, and power 
dissipation.  In the bipolar case, low temperature, supply, and 
load capacitance mark a superior figure of merit.
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Example:  Relationship between Frequency 
Response and Step Response
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 The relationship is such that as R1C1 increases, the 
bandwidth drops and the step response becomes slower.
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Bode Plot

 When we hit a zero, ωzj, the Bode magnitude rises with a 
slope of +20dB/dec.

 When we hit a pole, ωpj, the Bode magnitude falls with a 
slope of -20dB/dec
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Example: Bode Plot

 The circuit only has one pole (no zero) at 1/(RDCL), so the 
slope drops from 0 to -20dB/dec as we pass ωp1. 
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Pole Identification Example I
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Pole Identification Example II
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Circuit with Floating Capacitor

 The pole of a circuit is computed by finding the effective 
resistance and capacitance from a node to GROUND. 

 The circuit above creates a problem since neither terminal 
of CF is grounded.
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Miller’s Theorem 

 If Av is the gain from node 1 to 2, then a floating impedance 
ZF can be converted to two grounded impedances Z1 and Z2. 
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Miller Multiplication

 With Miller’s theorem, we can separate the floating 
capacitor.  However, the input capacitor is larger than the 
original floating capacitor.  We call this Miller multiplication.
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Example: Miller Theorem
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High-Pass Filter Response
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 The voltage division between a resistor and a capacitor can  
be configured such that the gain at low frequency is reduced.
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Example:  Audio Amplifier
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Capacitive Coupling vs. Direct Coupling

 Capacitive coupling, also known as AC coupling, passes 
AC signals from Y to X while blocking DC contents.  

 This technique allows independent bias conditions between 
stages.  Direct coupling does not.

Capacitive Coupling Direct Coupling
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Typical Frequency Response

Lower Corner Upper Corner 
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High-Frequency Bipolar Model

 At high frequency, capacitive effects come into play.  Cb 

represents the base charge, whereas C and Cje are the 
junction capacitances.
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High-Frequency Model of Integrated Bipolar 
Transistor

 Since an integrated bipolar circuit is fabricated on top of a 
substrate, another junction capacitance exists between the 
collector and substrate, namely CCS.
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Example: Capacitance Identification
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MOS Intrinsic Capacitances

 For a MOS, there exist oxide capacitance from gate to channel, 
junction capacitances from source/drain to substrate, and 
overlap capacitance from gate to source/drain.
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Gate Oxide Capacitance Partition and Full Model

 The gate oxide capacitance is often partitioned between source 
and drain.  In saturation, C2 ~ Cgate, and C1  ~ 0.  They are in 
parallel with the overlap capacitance to form CGS and CGD.
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Example: Capacitance Identification

DB1 DB2

GS2

C +C

     +C



CH 11 Frequency Response 30CH 11 Frequency Response 30

Transit Frequency

 Transit frequency, fT, is defined as the frequency where the 
current gain from input to output drops to 1.
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Example:  Transit Frequency Calculation
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 The minimum channel length of MOSFETs has been scaled 
from 1μm in the late 1980s to 65nm today. Also, the 
inevitable reduction of the supply voltage has reduced the 
gate-source overdrive voltage from about 400mV to 100mV. 
By what factor has the fT of MOSFETs increased?
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Analysis Summary

 The frequency response refers to the magnitude of the 
transfer function.

 Bode’s approximation simplifies the plotting of the 
frequency response if poles and zeros are known.

 In general, it is possible to associate a pole with each node 
in the signal path.

 Miller’s theorem helps to decompose floating capacitors 
into grounded elements.

 Bipolar and MOS devices exhibit various capacitances that 
limit the speed of circuits.
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High Frequency Circuit Analysis Procedure

 Determine which capacitor impact the low-frequency region 
of the response and calculate the low-frequency pole 
(neglect transistor capacitance).

 Calculate the midband gain by replacing the capacitors with 
short circuits (neglect transistor capacitance).

 Include transistor capacitances.

 Merge capacitors connected to AC grounds and omit those 
that play no role in the circuit.

 Determine the high-frequency poles and zeros.

 Plot the frequency response using Bode’s rules or exact 
analysis.
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Frequency Response of CS Stage

 Ci acts as a high pass filter.  

 Lower cut-off frequency must be lower than the lowest 
signal frequency fsig,min (20 Hz in audio applications).
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Frequency Response of CS Stage
with Bypassed Degeneration
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 In order to increase the midband gain, a capacitor Cb is 
placed in parallel with Rs.  

 The pole frequency  must be well below the lowest signal 
frequency to avoid the effect of degeneration.
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Unified Model for CE and CS Stages



CH 11 Frequency Response 37CH 11 Frequency Response 37

Unified Model Using Miller’s Theorem 
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Example:  CE Stage
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 (a) Calculate the input and output poles if RL=2 kΩ. Which 
node appears as the speed bottleneck?
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Example:  CE Stage – cont’d

 (b) Is it possible to choose RL such that the output pole 
limits the bandwidth?
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With the values assumed in this example, the left-hand side is negative,

implying that no solution exists. Thus, the input pole remains the speed

bottleneck.
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Example:  Half Width CS Stage
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Direct Analysis of CE and CS Stages
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Direct Analysis of CE and CS Stages – cont’d

 Direct analysis yields different pole locations and an extra 
zero.
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Example: Dominant-pole approximation
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Example:  Comparison Between Different Methods
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Input Impedance of CE and CS Stages

   


r
sCRgC

Z
Cm

in ||
1

1




  sCRgC
Z

GDDmGS

in



1

1



CH 11 Frequency Response 46

Low Frequency Response of CB and CG Stages
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 As with CE and CS stages, the use of capacitive coupling 
leads to low-frequency roll-off in CB and CG stages 
(although a CB stage is shown above, a CG stage is similar).
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Frequency Response of CB Stage
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Frequency Response of CG Stage
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Example:  CG Stage Pole Identification 
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Example:  Frequency Response of CG Stage 
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Emitter and Source Followers

 The following will discuss the frequency response of 
emitter and source followers using direct analysis.

 Emitter follower is treated first and source follower is 
derived easily by allowing r to go to infinity.
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Direct Analysis of Emitter Follower 
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Direct Analysis of Source Follower Stage
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Example:  Frequency Response of Source Follower
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Example:  Source Follower 
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Input Capacitance of Emitter/Source Follower
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Example:  Source Follower Input Capacitance 
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Output Impedance of Emitter Follower
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Output Impedance of Source Follower
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Active Inductor

 The plot above shows the output impedance of emitter and 
source followers.  Since a follower’s primary duty is to 
lower the driving impedance (RS>1/gm), the “active inductor” 
characteristic on the right is usually observed.   
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Example:  Output Impedance 
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Frequency Response of Cascode Stage

 For cascode stages, there are three poles and Miller 
multiplication is smaller than in the CE/CS stage.
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Poles of Bipolar Cascode
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Poles of MOS Cascode
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Example:  Frequency Response of Cascode
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MOS Cascode Example
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I/O Impedance of Bipolar Cascode
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I/O Impedance of MOS Cascode

sC
g

g
C

Z

GD

m

m
GS

in





















1

2

1
1 1

1

 sCC
RZ

DBGD

Lout

22

1
||






CH 11 Frequency Response 69CH 11 Frequency Response 69

Bipolar Differential Pair Frequency Response

 Since bipolar differential pair can be analyzed using half-
circuit, its transfer function, I/O impedances, locations of 
poles/zeros are the same as that of the half circuit’s.

Half Circuit
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MOS Differential Pair Frequency Response

 Since MOS differential pair can be analyzed using half-
circuit, its transfer function, I/O impedances, locations of 
poles/zeros are the same as that of the half circuit’s.

Half Circuit



CH 11 Frequency Response 71CH 11 Frequency Response 71

Example:  MOS Differential Pair 
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Common Mode Frequency Response
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 Css will lower the total impedance between point P to 
ground at high frequency, leading to higher CM gain which 
degrades the CM rejection ratio.
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Tail Node Capacitance Contribution

 Source-Body Capacitance of M1, M2

 Drain-Body Capacitance of M3

 Gate-Drain Capacitance of M3
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Example:  Capacitive Coupling
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Example:  Capacitive Coupling – cont’d
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Example:  IC Amplifier – Low Frequency Behavior
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Example:  IC Amplifier – Midband Behavior
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Example:  IC Amplifier – High Frequency Behavior
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