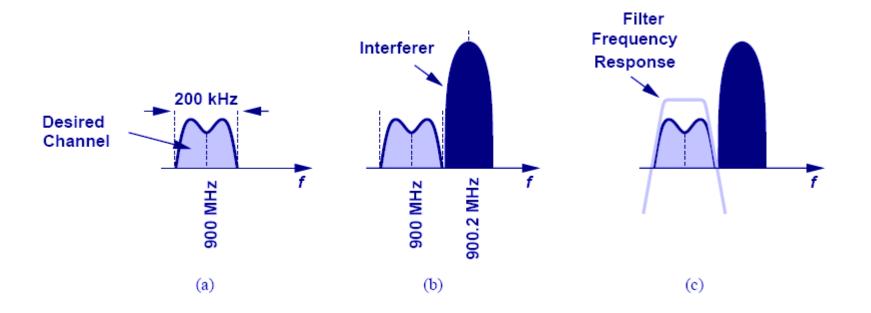
Chapter 14 Analog Filters

- 14.1 General Considerations
- 14.2 First-Order Filters
- 14.3 Second-Order Filters
- 14.4 Active Filters
- > 14.5 Approximation of Filter Response

Outline of the Chapter

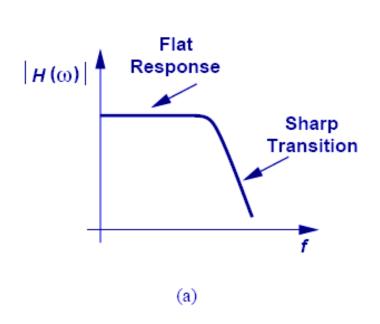
CH 14 Analog Filters

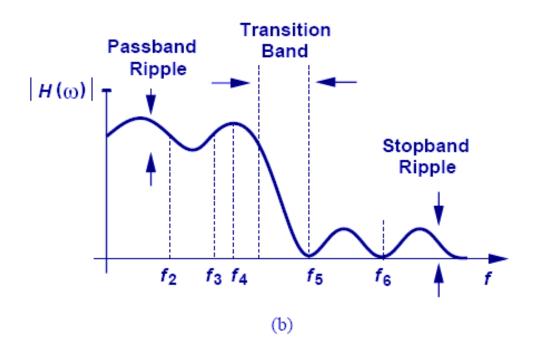
Why We Need Filters



In order to eliminate the unwanted interference that accompanies a signal, a filter is needed.

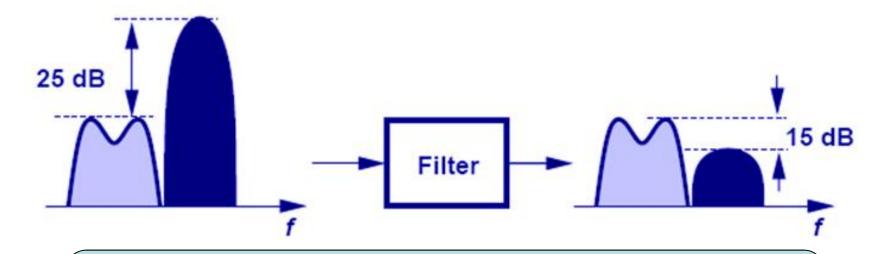
Filter Characteristics





- Ideally, a filter needs to have a flat pass band and a sharp rolloff in its transition band.
- Realistically, it has a rippling pass/stop band and a transition band.

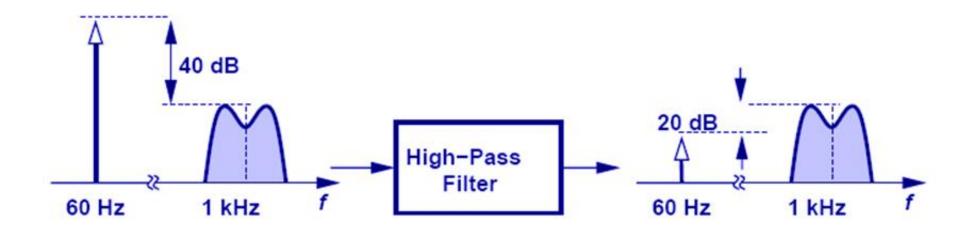
Example 14.1: Filter I



Problem: Adjacent channel interference is 25 dB above the signal. Determine the required stopband attenuation if Signal to Interference ratio must exceed 15 dB.

Solution: A filter with stopband attenuation of 40 dB

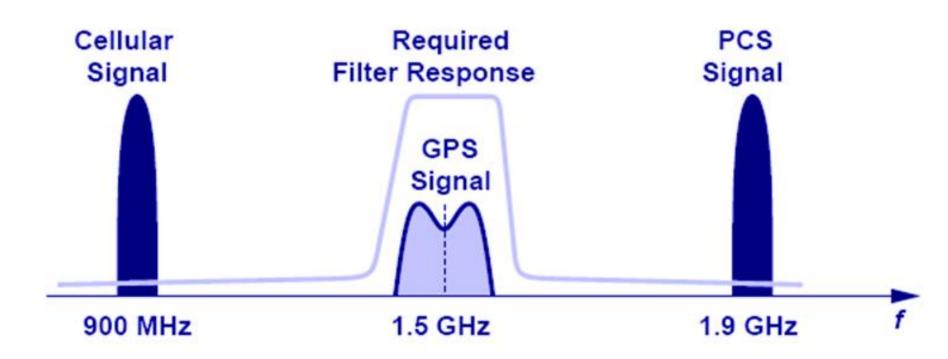
Example 14.2: Filter II



Problem: Adjacent 60-Hz channel interference is 40 dB above the signal. Determine the required stopband attenuation To ensure that the signal level remains 20dB above the interferer level.

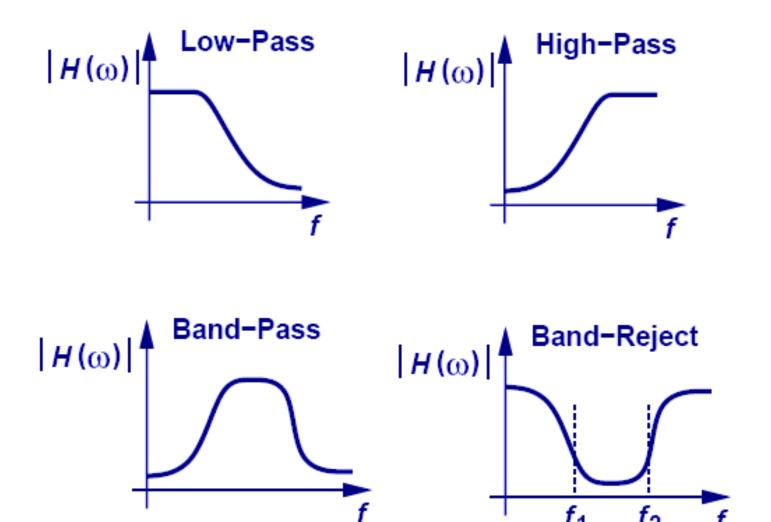
Solution: A high-pass filter with stopband attenuation of 60 dB at 60Hz.

Example 14.3: Filter III

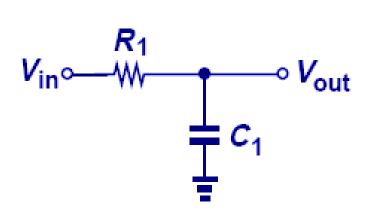


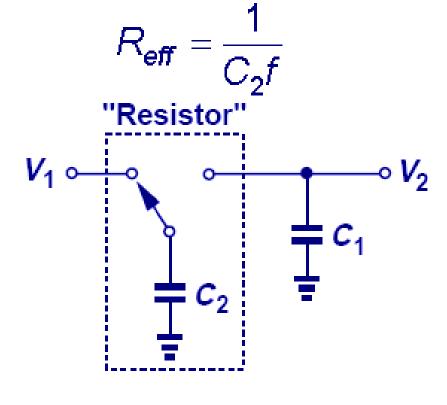
➤ A bandpass filter around 1.5 GHz is required to reject the adjacent Cellular and PCS signals.

Classification of Filters I



Classification of Filters II

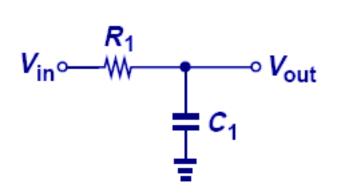




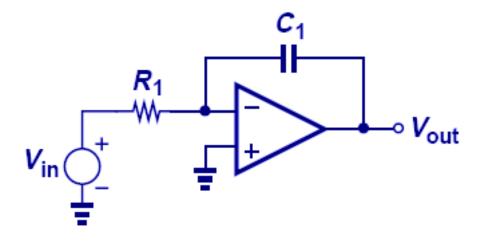
Continuous-time

Discrete-time

Classification of Filters III



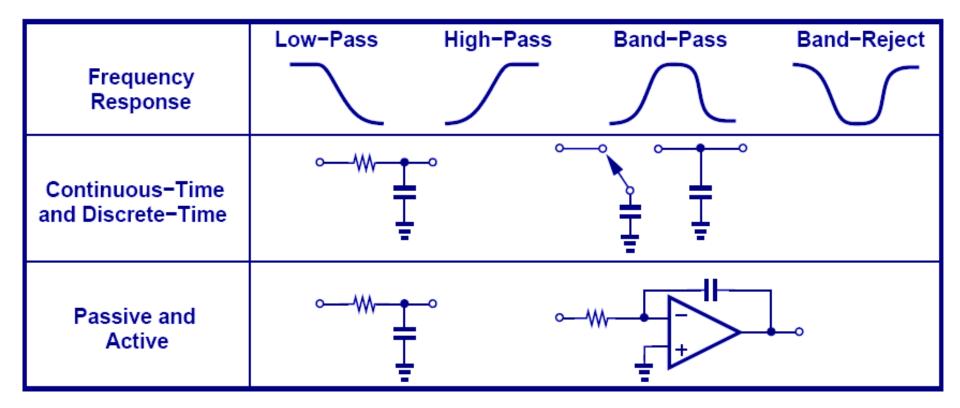
Passive



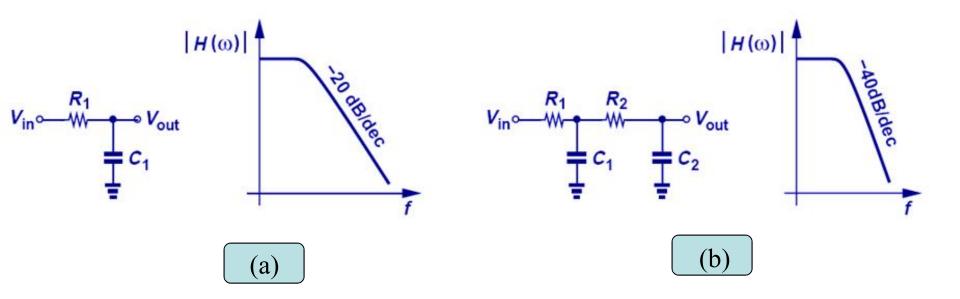
Active

CH 14 Analog Filters

Summary of Filter Classifications



Filter Transfer Function



- Filter (a) has a transfer function with -20dB/dec roll-off.
- Filter (b) has a transfer function with -40dB/dec roll-off and provides a higher selectivity.

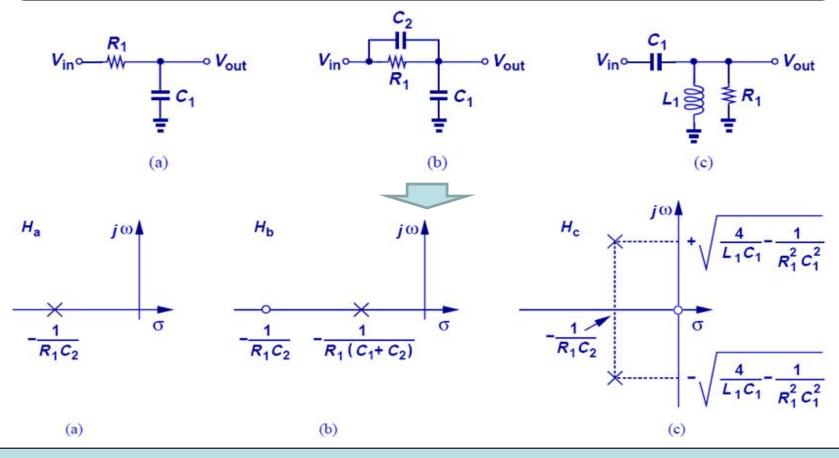
General Transfer Function

$$H(s) = \alpha \frac{(s-z_1)(s-z_2)\cdots(s-z_m)}{(s-p_1)(s-p_2)\cdots(s-p_n)}$$

 z_k = zero frequencies

 p_k = pole frequencies

Example 14.4 : Pole-Zero Diagram

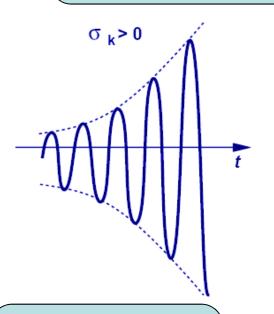


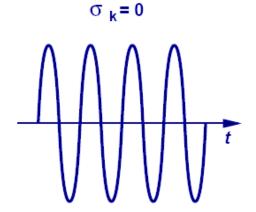
$$H_a(s) = \frac{1}{R_1 C_1 s + 1} \qquad H_b(s) = \frac{R_1 C_2 s + 1}{R_1 (C_1 + C_2) s + 1} \qquad H_c(s) = \frac{C_1 s}{R_1 L_1 C_1 s^2 + L_1 s + R_1}$$

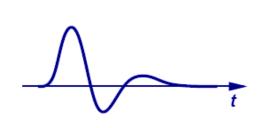
Example 14.5: Position of the poles

Impulse response contains

$$\exp(p_k t) = \exp(\sigma_k t) \exp(j\omega_k t)$$







 $\sigma_{k} < 0$

Poles on the RHP Unstable (no good)

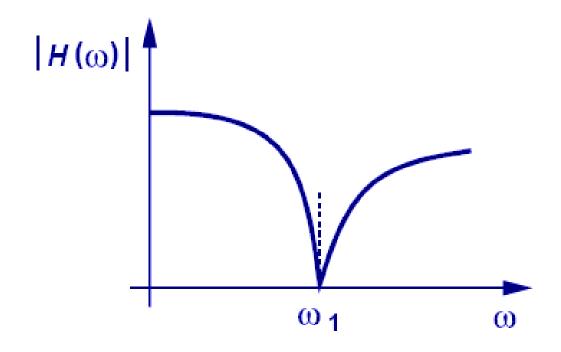
Poles on the jω axis Oscillatory (no good) Poles on the LHP
Decaying
(good)

Transfer Function

$$H(s) = \alpha \frac{(s-z_1)(s-z_2)\cdots(s-z_m)}{(s-p_1)(s-p_2)\cdots(s-p_n)}$$

- ➤ The order of the numerator $m \le$ The order of the denominator nOtherwise, $H(s) \rightarrow \infty$ as $s \rightarrow \infty$.
- For a physically-realizable transfer function, complex zeros or poles occur in conjugate pairs.
- If a zero is located on the jω axis, $z_{1,2}=\pm j\omega_1$, H(s) drops to zero at ω₁.

Imaginary Zeros



Imaginary zero is used to create a null at certain frequency.For this reason, imaginary zeros are placed only in the stop band.

Sensitivity

$$S_C^P = \frac{dP}{P} / \frac{dC}{C}$$

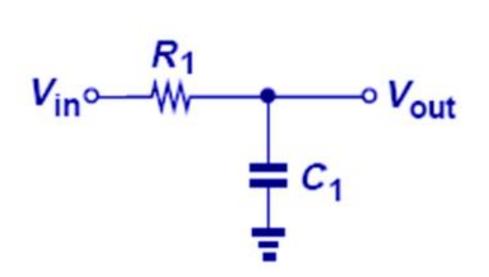
P=Filter Parameter

C=Component Value

Sensitivity indicates the variation of a filter parameter due to variation of a component value.

Example 14.6: Sensitivity

Problem: Determine the sensitivity of ω_0 with respect to R_1 .



$$\omega_0 = 1/(R_1 C_1)$$

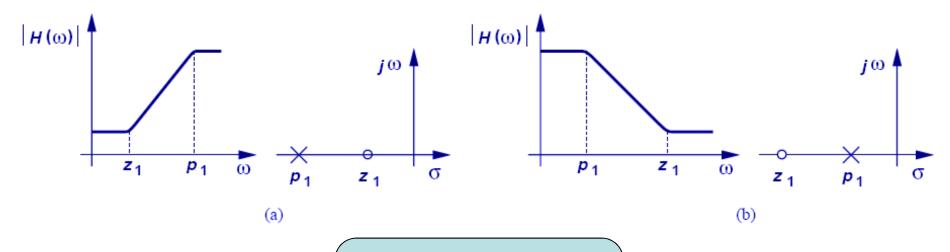
$$\frac{d\omega_0}{dR_1} = \frac{-1}{R_1^2 C_1}$$

$$\frac{d\omega_0}{\omega_0} = -\frac{dR_1}{R_1}$$

$$S_{R_1}^{\omega_0} = -1$$

For example, a +5% change in R_1 translates to a -5% error in ω_0 .

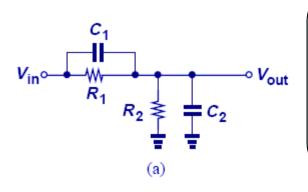
First-Order Filters



$$H(s) = \alpha \frac{s + z_1}{s + p_1}$$

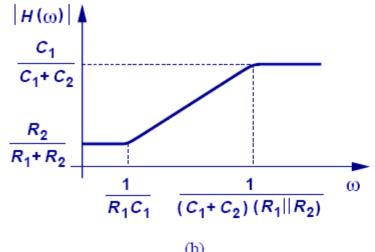
- First-order filters are represented by the transfer function shown above.
- Low/high pass filters can be realized by changing the relative positions of poles and zeros.

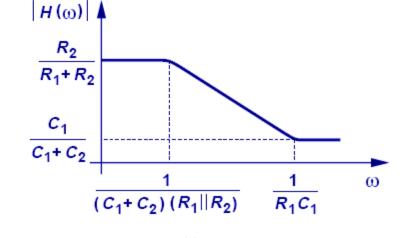
Example 14.8: First-Order Filter I



$$\frac{V_{out}}{V_{in}}(s) = \frac{R_2(R_1C_1s+1)}{R_1R_2(C_1+C_2)s+R_1+R_2}$$

$$z_1 = -1/(R_1C_1), p_1 = -[(C_1 + C_2)R_1 || R_2]^{-1}$$

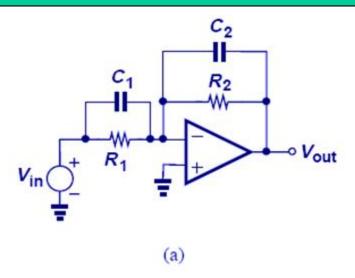


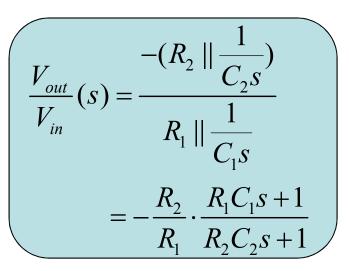


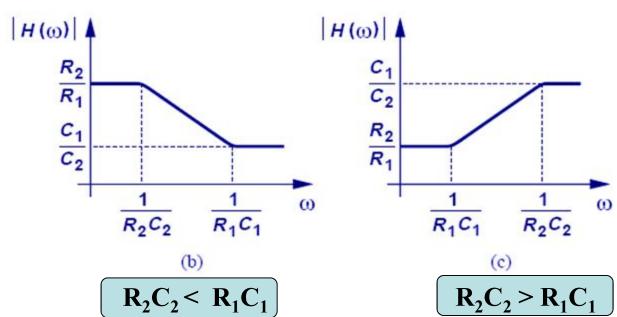
 $R_2C_2 < R_1C_1$

 $R_2C_2 > R_1C_1$

Example 14.9: First-Order Filter II



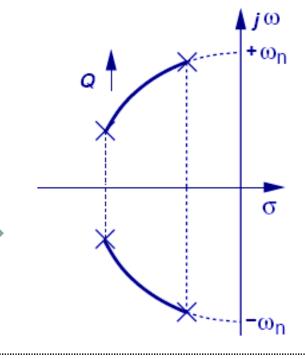




Second-Order Filters

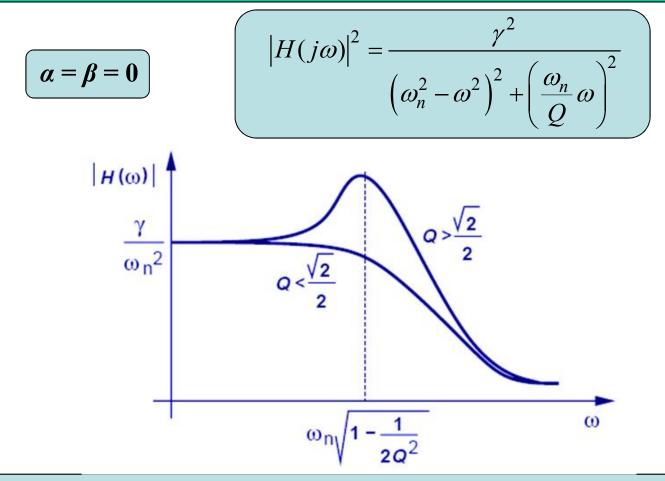
$$H(s) = \frac{\alpha s^2 + \beta s + \gamma}{s^2 + \frac{\omega_n}{Q} s + \omega_n^2}$$

$$p_{1,2} = -\frac{\omega_n}{2Q} \pm j\omega_n \sqrt{1 - \frac{1}{4Q^2}}$$



- Second-order filters are characterized by the "biquadratic" equation with two complex poles shown above.
- When Q increases, the real part decreases while the imaginary part approaches $\pm \omega_{\rm n}$.
 - => the poles look very imaginary thereby bringing the circuit closer to instability.

Second-Order Low-Pass Filter

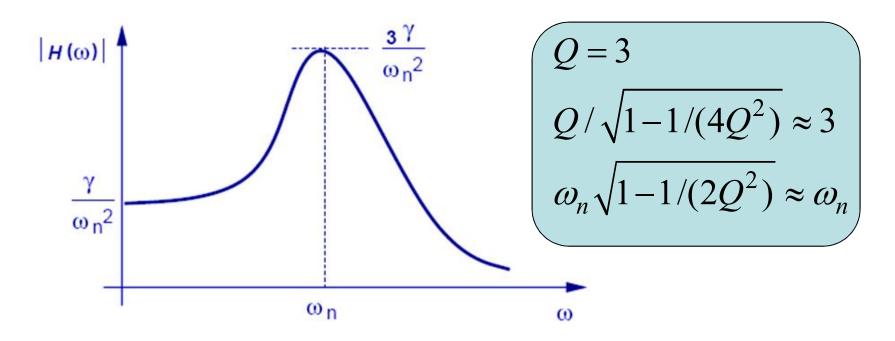


Peak magnitude normalized to the passband magnitude: $Q/\sqrt{1-(4Q^2)^{-1}}$

Example 14.10: Second-Order LPF

Problem: Q of a second-order LPF = 3.

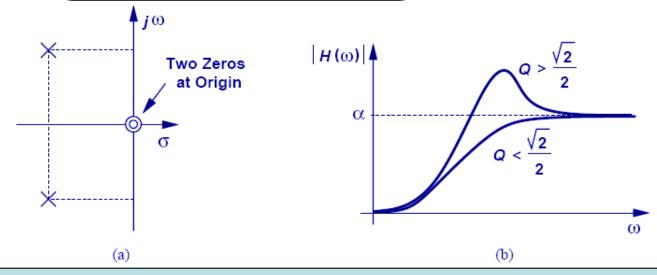
Estimate the magnitude and frequency of the peak in the frequency response.



Second-Order High-Pass Filter

$$H(s) = \frac{\alpha s^2}{s^2 + \frac{\omega_n}{Q} s + \omega_n^2}$$

$$\beta = \gamma = 0$$



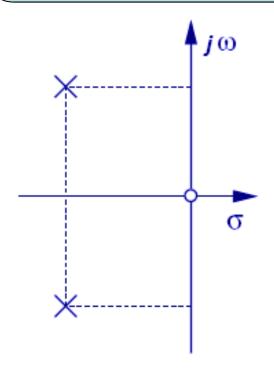
Frequency of the peak: $\omega_n/\sqrt{1-1/(2Q^2)}$

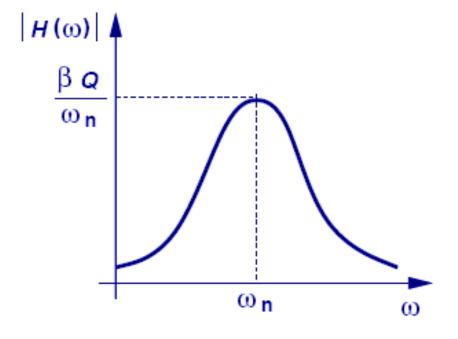
Peak magnitude normalized to the passband magnitude: $Q/\sqrt{1-(4Q^2)^{-1}}$

Second-Order Band-Pass Filter

$$H(s) = \frac{\beta s}{s^2 + \frac{\omega_n}{Q} s + \omega_n^2}$$

$$\alpha = \gamma = 0$$

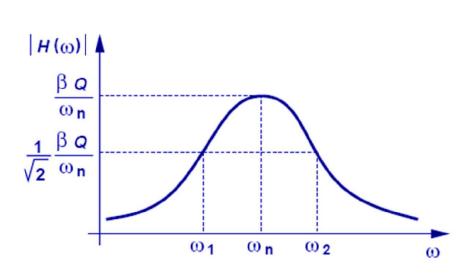




Example 14.2: -3-dB Bandwidth

Problem: Determine the -3dB bandwidth of a band-pass response.

$$H(s) = \frac{\beta s}{(s^2 + \frac{\omega_n}{Q}s + \omega_n^2)}$$

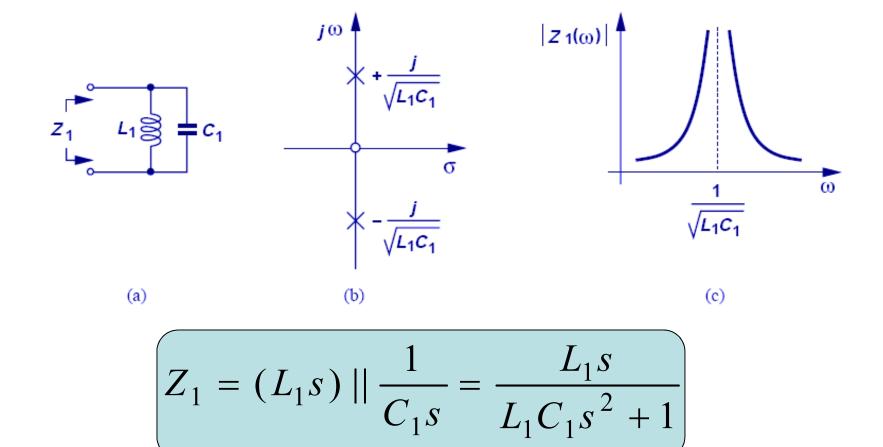


$$\frac{\beta^2 \omega^2}{(\omega_n^2 - \omega^2)^2 + (\frac{\omega_n}{Q} \omega)^2} = \frac{\beta^2 Q^2}{2\omega_n^2}$$

$$\omega_{1,2} = \omega_0 \left[\sqrt{1 + \frac{1}{4Q^2}} \pm \frac{1}{2Q} \right]$$

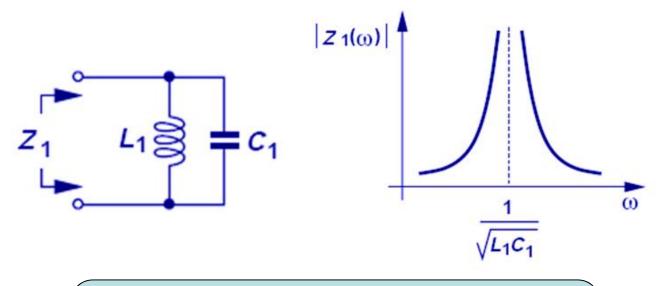
$$BW = \frac{\omega_0}{Q}$$

LC Realization of Second-Order Filters



An LC tank realizes a second-order band-pass filter with two imaginary poles at $\pm j | (L_1 C_1)^{1/2}$, which implies infinite impedance at $\omega = 1/(L_1 C_1)^{1/2}$.

Example 14.13: LC Tank



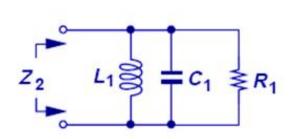
$$Z_1 = (L_1 s) || \frac{1}{C_1 s} = \frac{L_1 s}{L_1 C_1 s^2 + 1}$$

- \triangleright At ω =0, the inductor acts as a short.
- \triangleright At $\omega=\infty$, the capacitor acts as a short.

RLC Realization of Second-Order Filters

$$Z_{2} = R_{1} \| \frac{L_{1}s}{L_{1}C_{1}s^{2} + 1} = \frac{R_{1}L_{1}s}{R_{1}L_{1}C_{1}s^{2} + L_{1}s + R_{1}}$$

$$= \frac{R_{1}L_{1}s}{R_{1}L_{1}C_{1}(s^{2} + \frac{1}{R_{1}C_{1}}s + \frac{1}{L_{1}C_{1}})} = \frac{R_{1}L_{1}s}{R_{1}L_{1}C_{1}(s^{2} + \frac{\omega_{n}}{Q}s + \omega_{n}^{2})}$$



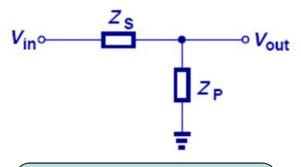
$$\omega_{n} = \frac{1}{\sqrt{L_{1}C_{1}}}, \quad Q = R_{1}\sqrt{\frac{C_{1}}{L_{1}}}$$

$$p_{1,2} = -\frac{\omega_{n}}{2Q} \pm j\omega_{n}\sqrt{1 - \frac{1}{4Q^{2}}}$$

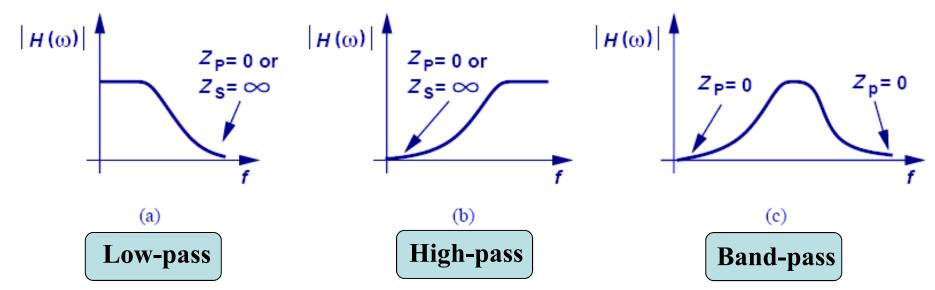
$$= -\frac{1}{2R_{1}C_{1}} \pm j\frac{1}{\sqrt{L_{1}C_{1}}}\sqrt{1 - \frac{L_{1}}{4R_{1}^{2}C_{1}}}$$

With a resistor, the poles are no longer pure imaginary which implies there will be no infinite impedance at any ω.

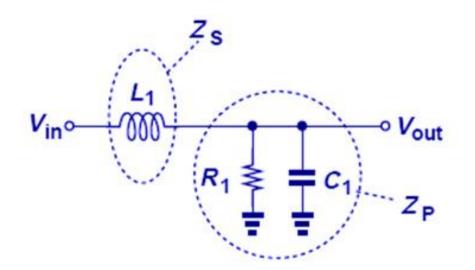
Voltage Divider Using General Impedances



$$\frac{V_{out}}{V_{in}}(s) = \frac{Z_P}{Z_S + Z_P}$$



Low-pass Filter Implementation with Voltage Divider

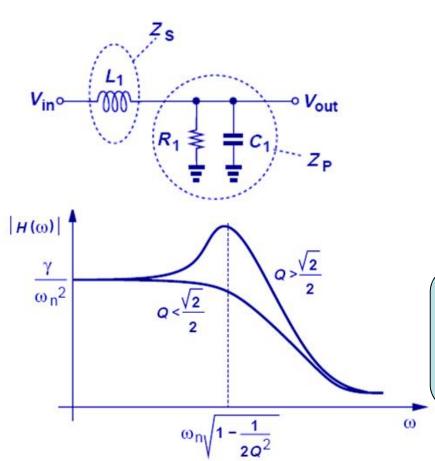


$$Z_{S} = L_{1}S \to \infty \text{ as } S \to \infty$$

$$Z_{P} = \frac{1}{C_{1}S} || R_{1} \to 0 \text{ as } S \to \infty$$

$$\left(\frac{V_{out}}{V_{in}}(s) = \frac{R_1}{R_1 C_1 L_1 s^2 + L_1 s + R_1}\right)$$

Example 14.14: Frequency Peaking



$$\frac{V_{out}}{V_{in}}(s) = \frac{R_1}{R_1 C_1 L_1 s^2 + L_1 s + R_1}$$

Voltage gain greater than unity (peaking) occurs when a solution exists for

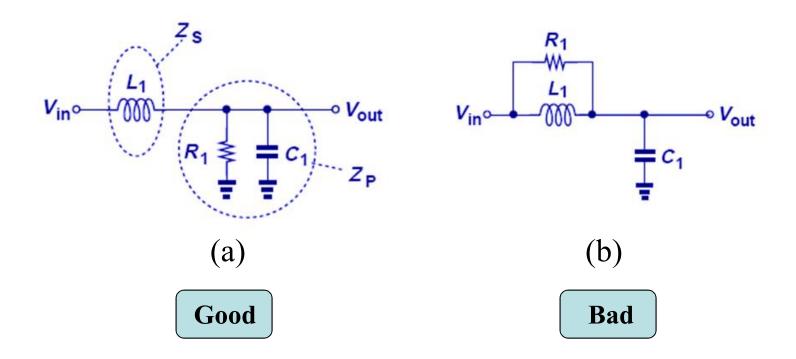
$$\frac{\left|\frac{d|D|^2}{d(\omega^2)}\right|}{d(\omega^2)} = 2(-R_1C_1L_1)(R_1 - R_1C_1L_1\omega^2) + L_1^2$$

$$= 0$$

Thus, when
$$Q = R_1 \cdot \sqrt{\frac{C_1}{L_1}} > \frac{1}{\sqrt{2}}$$
,

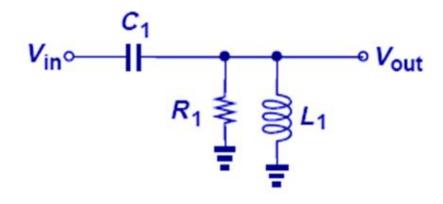
peaking occurs.

Example 14.15: Low-pass Circuit Comparison



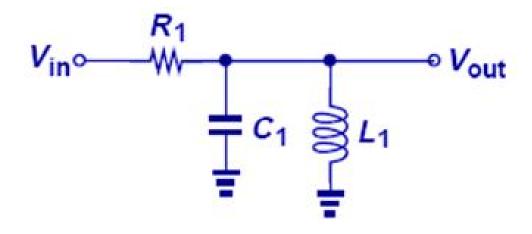
- > The circuit (a) has a -40dB/dec roll-off at high frequency.
- Phowever, the circuit (b) exhibits only a -20dB/dec roll-off since the parallel combination of L_1 and R_1 is dominated by R_1 because $L_1ω \rightarrow \infty$, thereby reduces the circuit to R_1 and C_1 .

High-pass Filter Implementation with Voltage Divider



$$\frac{V_{out}}{V_{in}}(s) = \frac{(L_1 s) || R_1}{(L_1 s) || R_1 + \frac{1}{C_1 s}} = \frac{L_1 C_1 R_1 s^2}{R_1 C_1 L_1 s^2 + L_1 s + R_1}$$

Band-pass Filter Implementation with Voltage Divider



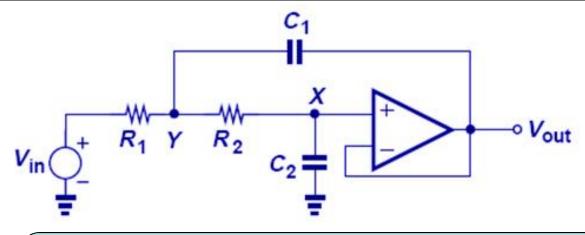
$$\frac{V_{out}}{V_{in}}(s) = \frac{(L_1 s) \| \frac{1}{C_1 s}}{(L_1 s) \| \frac{1}{C_1 s} + R_1} = \frac{L_1 s}{R_1 C_1 L_1 s^2 + L_1 s + R_1}$$

37

Why Active Filter?

- Passive filters constrain the type of transfer function.
- They may require bulky inductors.

Sallen and Key (SK) Filter: Low-Pass



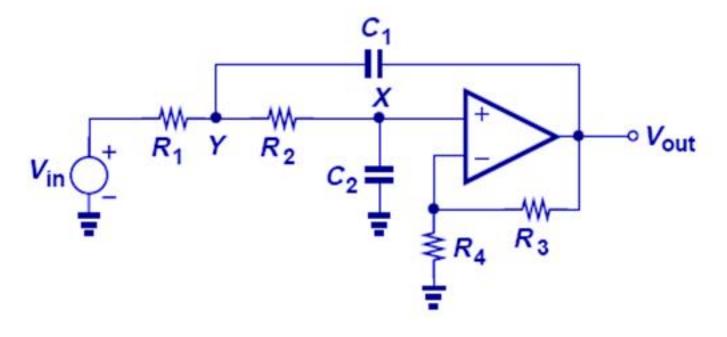
$$\frac{V_{out}}{V_{in}}(s) = \frac{1}{R_1 R_2 C_1 C_2 s^2 + (R_1 + R_2) C_2 s + 1}$$

$$Q = \frac{1}{R_1 + R_2} \sqrt{R_1 R_2 \frac{C_1}{C_2}} \qquad \omega_n = \frac{1}{\sqrt{R_1 R_2 C_1 C_2}}$$

Sallen and Key filters are examples of active filters. This particular filter implements a low-pass, second-order transfer function.

39

Example 14.16: SK Filter with Voltage Gain

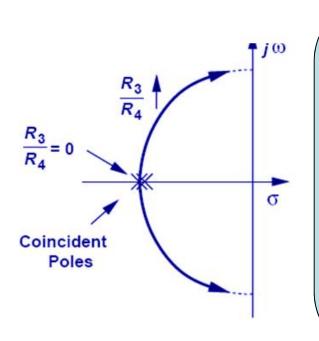


$$\frac{V_{out}}{V_{in}}(s) = \frac{1 + \frac{R_3}{R_4}}{R_1 R_2 C_1 C_2 s^2 + \left(R_1 C_2 + R_2 C_2 - R_1 \frac{R_3}{R_4} C_1\right) s + 1}$$

40

Example 14.17: SK Filter Poles

Problem: Assuming $R_1=R_2$, $C_1=C_2$, Does such a filter contain complex poles?



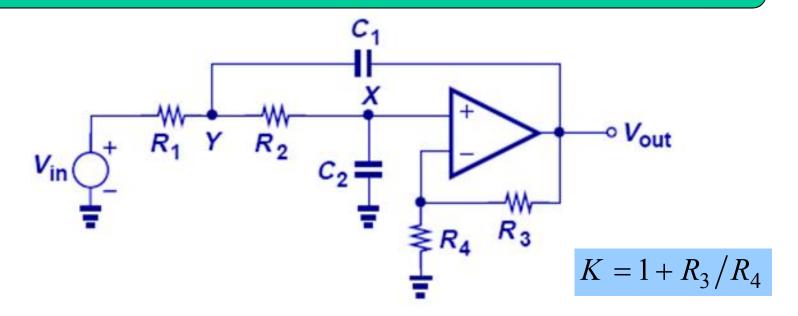
$$\frac{V_{out}}{V_{in}}(s) = \frac{1 + \frac{R_3}{R_4}}{R_1 R_2 C_1 C_2 s^2 + (R_1 C_2 + R_2 C_2 - R_1 \frac{R_3}{R_4} C_1) s + 1}$$

$$\frac{1}{Q} = \sqrt{\frac{R_1 C_2}{R_2 C_1}} + \sqrt{\frac{R_2 C_2}{R_1 C_1}} - \sqrt{\frac{R_1 C_1}{R_2 C_2}} \frac{R_3}{R_4}$$

$$Q = \frac{1}{2 - \frac{R_3}{R_3}}$$

The poles begin with real, equal values for $R_3/R_4=0$ and become complex for $R_3/R_4>0$.

Sensitivity in Low-Pass SK Filter



$$S_{R_1}^{\omega_n} = S_{R_2}^{\omega_n} = S_{C_1}^{\omega_n} = S_{C_2}^{\omega_n} = -\frac{1}{2}$$

$$S_{R_1}^{\omega_n} = S_{R_2}^{\omega_n} = S_{C_1}^{\omega_n} = S_{C_2}^{\omega_n} = -\frac{1}{2} \left[S_{C_1}^{Q} = -S_{C_2}^{Q} = -\frac{1}{2} + Q \left(\sqrt{\frac{R_2 C_2}{R_1 C_1}} + \sqrt{\frac{R_1 C_2}{R_2 C_1}} \right) \right]$$

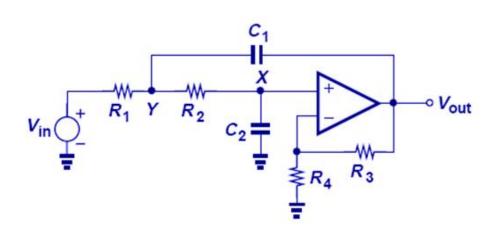
$$S_{R_1}^Q = -S_{R_2}^Q = -\frac{1}{2} + Q\sqrt{\frac{R_2C_2}{R_1C_1}} \quad \left| S_K^Q = QK\sqrt{\frac{R_1C_1}{R_2C_2}} \right|$$

$$S_K^Q = QK\sqrt{\frac{R_1C_1}{R_2C_2}}$$

42

Example 14.18: SK Filter Sensitivity I

Problem: Determine the Q sensitivities of the SK filter for the common choice $R_1=R_2=R$, $C_1=C_2=C$.



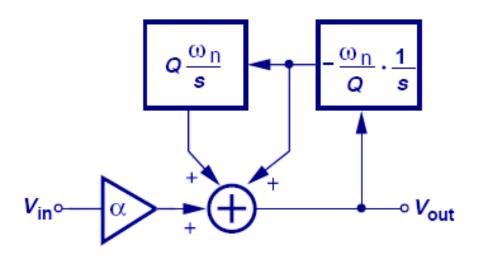
$$S_{R_1}^{Q} = -S_{R_2}^{Q} = -\frac{1}{2} + \frac{1}{3 - K}$$

$$S_{C_1}^{Q} = -S_{C_2}^{Q} = -\frac{1}{2} + \frac{2}{3 - K}$$

$$S_{K}^{Q} = \frac{K}{3 - K}$$

With
$$K=1$$
,
$$\begin{vmatrix} S_{R_1}^{\mathcal{Q}} \middle| = \middle| S_{R_2}^{\mathcal{Q}} \middle| = 0 \\
\middle| S_{C_1}^{\mathcal{Q}} \middle| = \middle| S_{C_2}^{\mathcal{Q}} \middle| = \middle| S_K^{\mathcal{Q}} \middle| = \frac{1}{2}$$

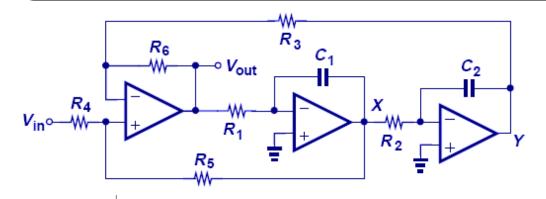
Integrator-Based Biquads

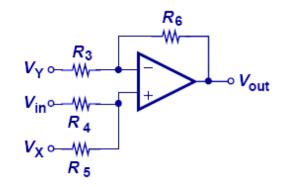


$$\frac{V_{out}(s) = \frac{\alpha s^2}{V_{in}(s) + \frac{\omega_n}{Q}s + \omega_n^2}}{v_{out}(s) + \frac{\omega_n}{Q}s + \omega_n^2}$$

It is possible to use integrators to implement biquadratic transfer functions.

KHN (Kerwin, Huelsman, and Newcomb) Biquads





$$V_{X} = -\frac{1}{R_{1}C_{1}s}V_{out}, V_{Y} = -\frac{1}{R_{2}C_{2}s}V_{X} = \frac{1}{R_{1}R_{2}C_{1}C_{2}s^{2}}V_{out}$$

$$V_{out} = \frac{V_{in}R_{5} + V_{X}R_{4}}{R_{4} + R_{5}}\left(1 + \frac{R_{6}}{R_{3}}\right) - V_{Y}\frac{R_{6}}{R_{3}}$$

$$V_{out} = \frac{V_{in}R_5 + V_X R_4}{R_4 + R_5} \left(1 + \frac{R_6}{R_3} \right) - V_Y \frac{R_6}{R_3}$$

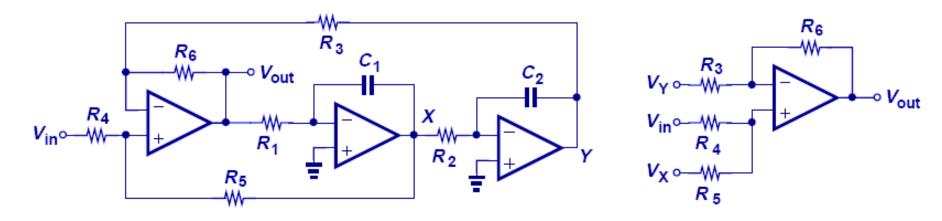
Comparing with
$$V_{out}(s) = \alpha V_{in}(s) - \frac{\omega_n}{Q} \cdot \frac{1}{s} V_{out}(s) - \frac{\omega_n^2}{s^2} V_{out}(s)$$

$$\alpha = \frac{R_5}{R_4 + R_5} \left(1 + \frac{R_6}{R_3} \right)$$

$$\alpha = \frac{R_5}{R_4 + R_5} \left(1 + \frac{R_6}{R_3} \right) \left(\frac{\omega_n}{Q} = \frac{R_4}{R_4 + R_5} \cdot \frac{1}{R_1 C_1} \cdot \left(1 + \frac{R_6}{R_3} \right) \right) \left(\omega_n^2 = \frac{R_6}{R_3} \cdot \frac{1}{R_1 R_2 C_1 C_2} \right)$$

$$\omega_n^2 = \frac{R_6}{R_3} \cdot \frac{1}{R_1 R_2 C_1 C_2}$$

Versatility of KHN Biquads

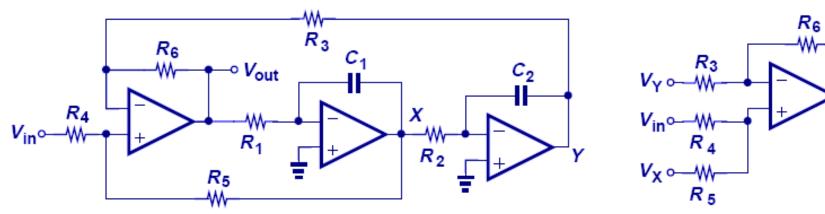


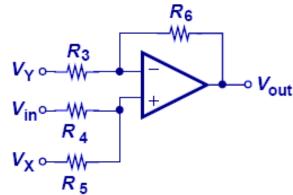
High-pass:
$$\frac{V_{out}}{V_{in}}(s) = \frac{\alpha s^2}{s^2 + \frac{\omega_n}{Q}s + \omega_n^2}$$

Band-pass:
$$\frac{V_X}{V_{in}}(s) = \frac{\alpha s^2}{s^2 + \frac{\omega_n}{Q}s + \omega_n^2} \cdot \frac{-1}{R_1 C_1 s}$$

Low-pass:
$$\frac{V_Y}{V_{in}}(s) = \frac{\alpha s^2}{s^2 + \frac{\omega_n}{Q}s + \omega_n^2} \cdot \frac{1}{R_1 R_2 C_1 C_2 s^2}$$

Sensitivity in KHN Biquads



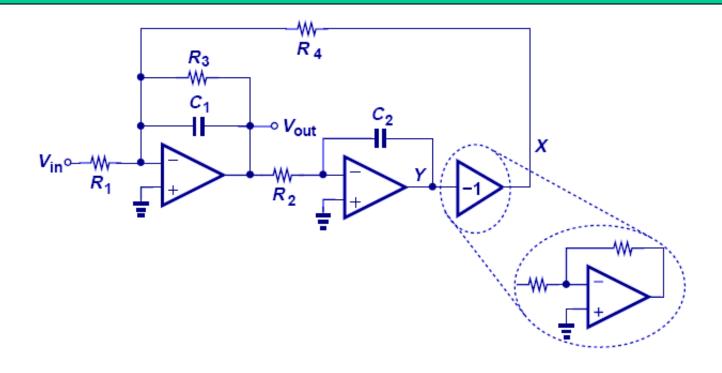


$$\left| S_{R_1, R_2, C_1, C_2, R_4, R_5, R_3, R_6}^{\omega_n} \right| = 0.5$$

$$\left| S_{R_{1},R_{2},C_{1},C_{2}}^{Q} \right| = 0.5, \left| S_{R_{4},R_{5}}^{Q} \right| = \frac{R_{5}}{R_{4} + R_{5}} < 1,$$

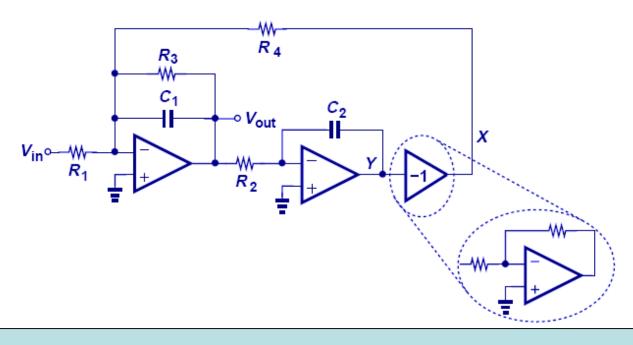
$$\left| S_{R_{3},R_{6}}^{Q} \right| = \frac{Q}{2} \frac{\left| R_{3} - R_{6} \right|}{1 + \frac{R_{5}}{R_{4}}} \sqrt{\frac{R_{2}C_{2}}{R_{3}R_{6}R_{1}C_{1}}}$$

Tow-Thomas Biquad



$$\left(\frac{V_{out}}{R_2C_2s} \cdot \frac{1}{R_4} + \frac{V_{in}}{R_1}\right) \left(R_3 \square \frac{1}{sC_1}\right) = -V_{out}$$

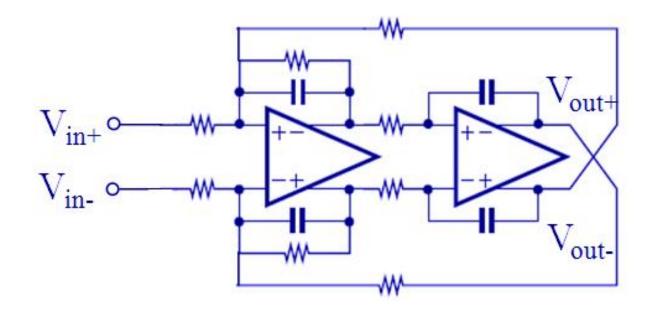
Tow-Thomas Biquad



Band-pass:
$$\frac{V_{out}}{V_{in}} = -\frac{R_2 R_3 R_4}{R_1} \cdot \frac{C_2 s}{R_2 R_3 R_4 C_1 C_2 s^2 + R_2 R_4 C_2 s + R_3}$$

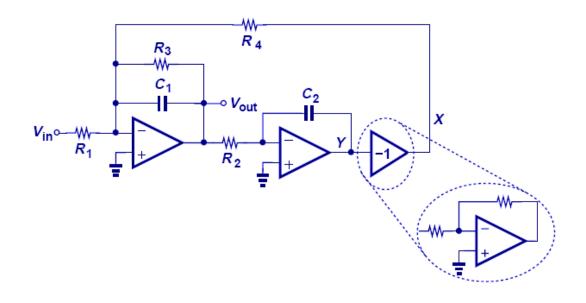
Low-pass:
$$\frac{V_Y}{V_{in}} = \frac{R_3 R_4}{R_1} \cdot \frac{1}{R_2 R_3 R_4 C_1 C_2 s^2 + R_2 R_4 C_2 s + R_3}$$

Differential Tow-Thomas Biquads



An important advantage of this topology over the KHN biquad is accrued in integrated circuit design, where differential integrators obviate the need for the inverting stage in the loop.

Example 14.20: Tow-Thomas Biquad



Note that ω_n and Q of the Tow-Thomas filter can be adjusted (tuned) independently.

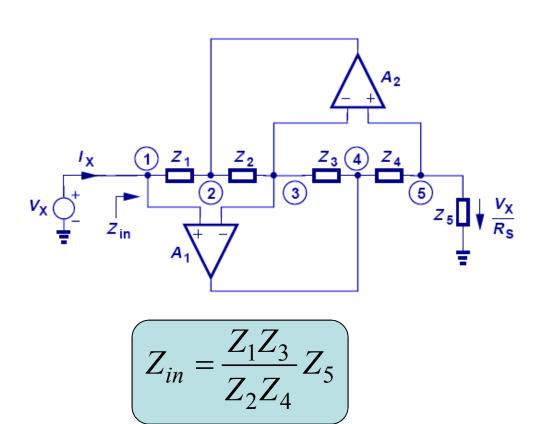
$$\omega_n = \frac{1}{\sqrt{R_2 R_4 C_1 C_2}}$$

Adjusted by R₂ or R₄

$$Q^{-1} = \frac{1}{R_3} \sqrt{\frac{R_2 R_4 C_2}{C_1}}$$

Adjusted by R₃

Antoniou General Impedance Converter



$$V_{1} = V_{3} = V_{5} = V_{X}$$

$$V_{4} = \frac{V_{X}}{Z_{5}} Z_{4} + V_{X}$$

$$I_{Z3} = \frac{V_{4} - V_{3}}{Z_{3}}$$

$$= \frac{V_{X}}{Z_{5}} \cdot \frac{Z_{4}}{Z_{3}}$$

$$V_{2} = V_{3} - Z_{2}I_{Z3}$$

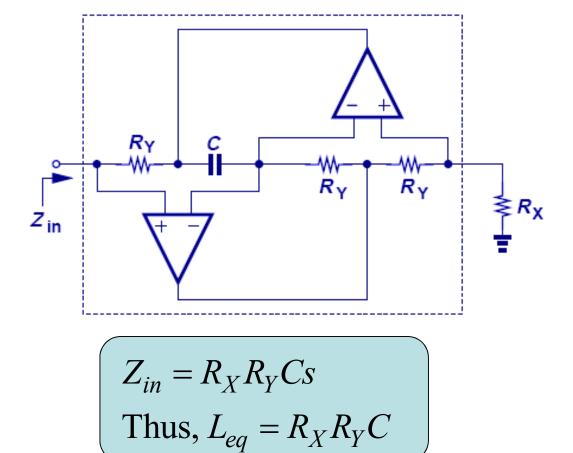
$$= V_{X} - Z_{2} \cdot \frac{V_{X}}{Z_{5}} \cdot \frac{Z_{4}}{Z_{3}}$$

$$I_{X} = \frac{V_{X} - V_{2}}{Z_{1}}$$

$$= V_{X} \frac{Z_{2}Z_{4}}{Z_{1}Z_{3}Z_{5}}$$

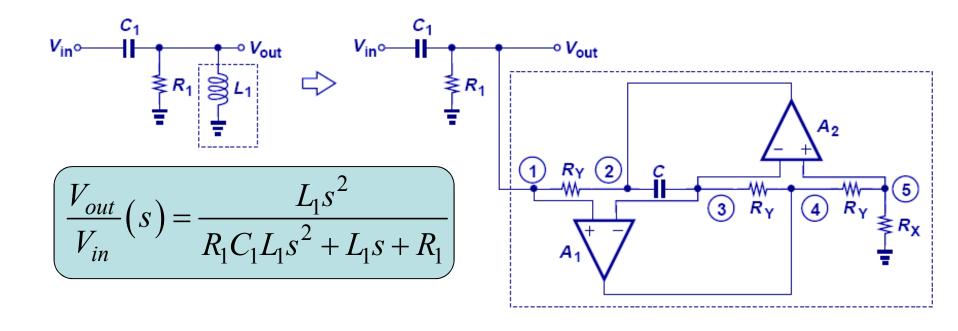
It is possible to simulate the behavior of an inductor by using active circuits in feedback with properly chosen passive elements.

Simulated Inductor



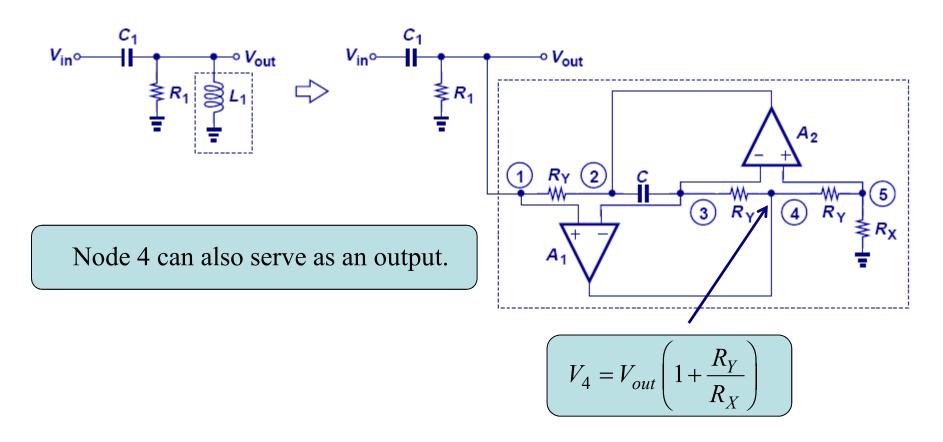
▶ By proper choices of Z₁-Z₄, Zᵢn has become an impedance that increases with frequency, simulating inductive effect.

High-Pass Filter with SI



With the inductor simulated at the output, the transfer function resembles a second-order high-pass filter.

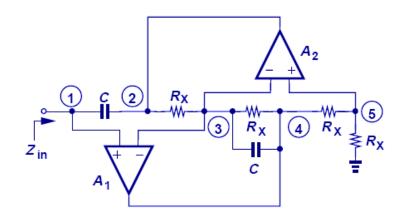
Example 14.22: High-Pass Filter with SI



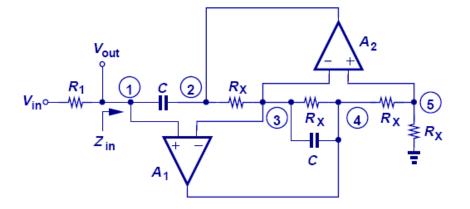
 \triangleright V_4 is better than V_{out} since the output impedance is lower.

Low-Pass Filter with Super Capacitor

How to build a floating inductor to derive a low-pass filter?
Not possible. So use a super capacitor.



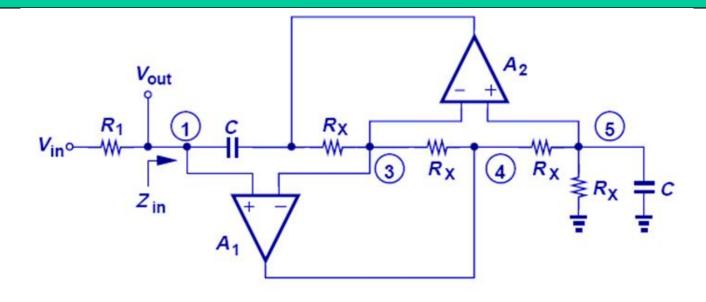
$$Z_{in} = \frac{1}{Cs\left(R_X Cs + 1\right)}$$



$$\frac{V_{out}}{V_{in}} = \frac{Z_{in}}{Z_{in} + R_1}$$

$$= \frac{1}{R_1 R_X C^2 s^2 + R_1 C s + 1}$$

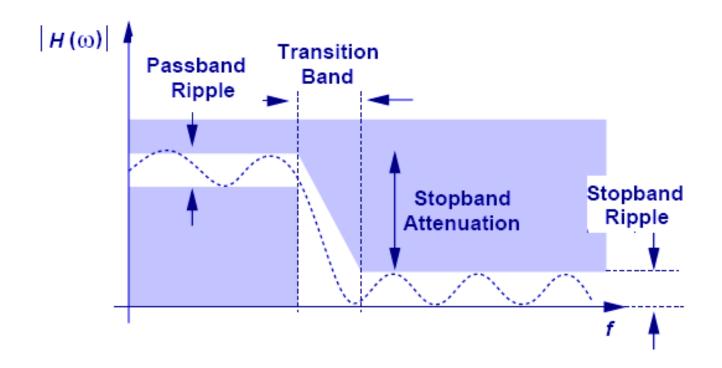
Example 14.24: Poor Low-Pass Filter



$$V_{4} = \left[V_{out}\left(\frac{1}{R_{X}} + Cs\right)\right]R_{X} + V_{out} = V_{out}\left(2 + R_{X}Cs\right)$$

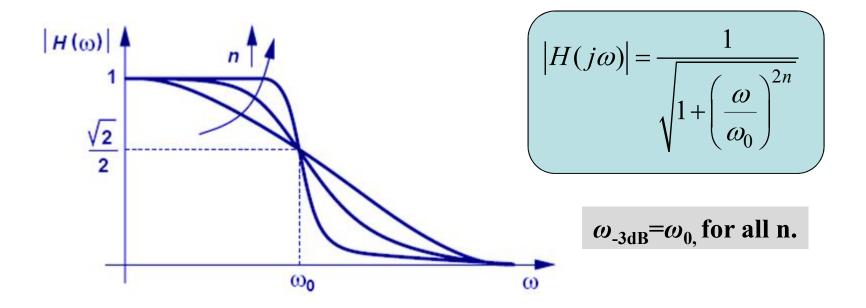
Node 4 is no longer a scaled version of the V_{out}. Therefore the output can only be sensed at node 1, suffering from a high impedance.

Frequency Response Template



With all the specifications on pass/stop band ripples and transition band slope, one can create a filter template that will lend itself to transfer function approximation.

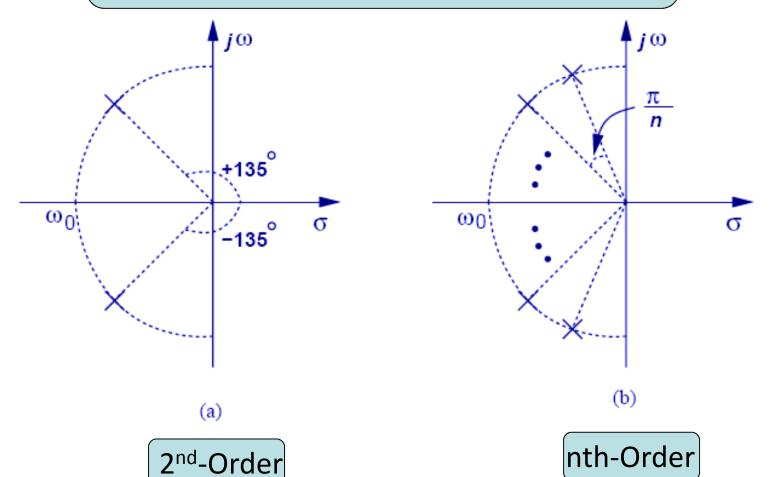
Butterworth Response



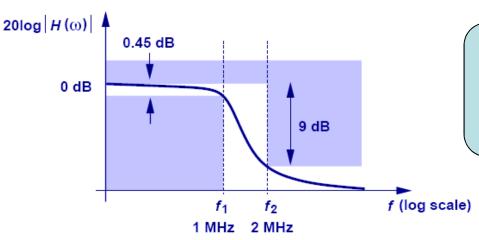
> The Butterworth response completely avoids ripples in the pass/stop bands at the expense of the transition band slope.

Poles of the Butterworth Response

$$p_k = \omega_0 \exp \frac{j\pi}{2} \exp \left(j\frac{2k-1}{2n}\pi\right), k = 1, 2, \dots, n$$



Example 14.24: Order of Butterworth Filter



Specification: passband flatness of 0.45 dB for $f < f_1=1$ MHz, stopband attenuation of 9 dB at $f_2=2$ MHz.

$$|H(f_1 = 1\text{MHz})| = 0.95$$

$$\frac{1}{1 + \left(\frac{2\pi f_1}{\omega_0}\right)^{2n}} = 0.95^2$$

$$|H(f_2 = 2\text{MHz})| = 0.355$$

$$\frac{1}{1 + \left(\frac{2\pi f_2}{\omega_0}\right)^{2n}} = 0.355^2$$

$$\left(\frac{f_2}{f_1}\right)^{2n} = 64.2$$

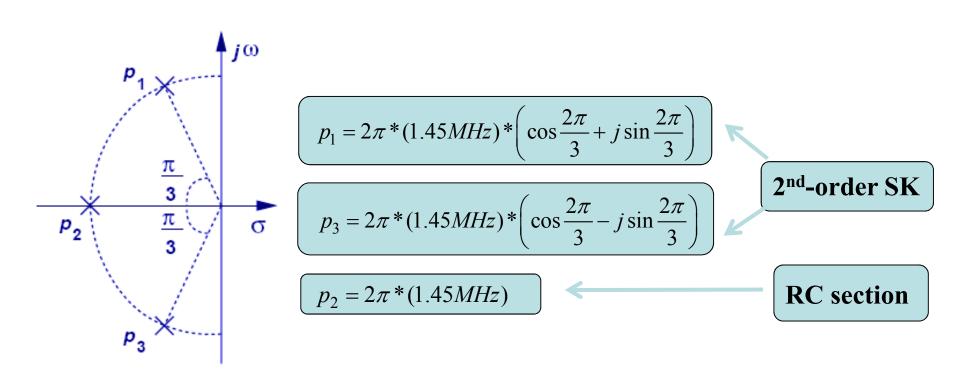
$$f_2 = 2f_1$$

$$n = 3, \quad \omega_0 = 2\pi \times (1.45\text{MHz})$$

The minimum order of the Butterworth filter is three.

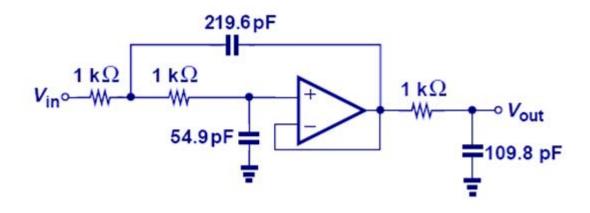
Example 14.25: Butterworth Response

Using a Sallen and Key topology, design a Butterworth filter for the response derived in Example 14.24.



62

Example 14.25: Butterworth Response (cont'd)



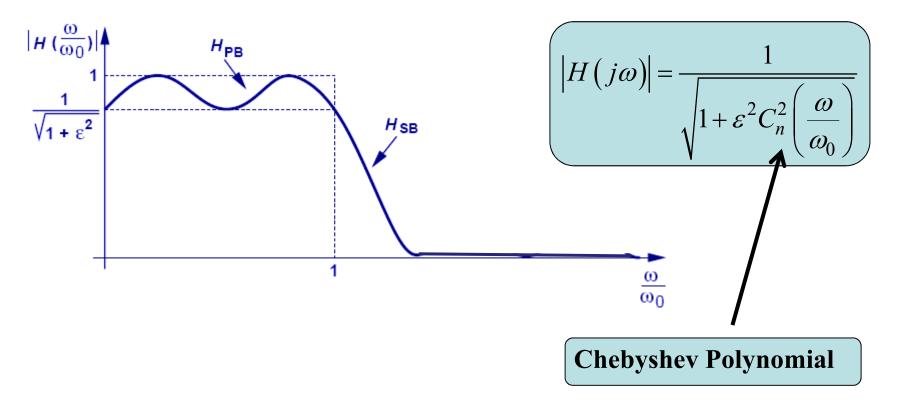
$$H_{SK}(s) = \frac{(-p_1)(-p_3)}{(s-p_1)(s-p_3)} = \frac{[2\pi \times (1.45\text{MHz})]^2}{s^2 - [4\pi \times (1.45\text{MHz})\cos(2\pi/3)]s + [2\pi \times (1.45\text{MHz})]^2}$$

$$\omega_n = 2\pi \times (1.45\text{MHz}) \text{ and } Q = 1/2\cos\frac{2\pi}{3} = 1 \rightarrow$$

$$R_1 = R_2 = 1 \text{k}\Omega$$
, $C_2 = 54.9 \text{pF}$, and $C_1 = 4C_2$

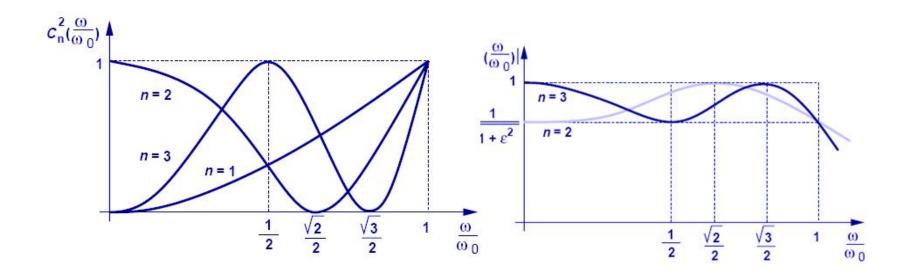
$$\frac{1}{R_3 C_3} = 2\pi \times (1.45 \text{MHz}) \to R_3 = 1 \text{k}\Omega \text{ and } C_3 = 109.8 \text{pF}$$

Chebyshev Response



➤ The Chebyshev response provides an "equiripple" pass/stop band response.

Chebyshev Polynomial



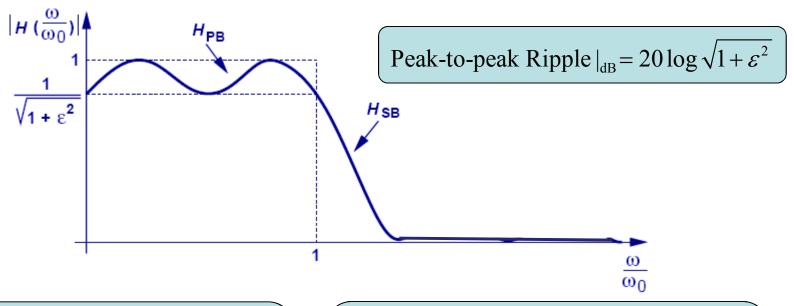
Chebyshev polynomial for n=1,2,3

Resulting transfer function for n=2,3

$$\left(C_n \left(\frac{\omega}{\omega_0} \right) = \cos \left(n \cos^{-1} \frac{\omega}{\omega_0} \right), \ \omega < \omega_0$$

$$= \cosh \left(n \cosh^{-1} \frac{\omega}{\omega_0} \right), \ \omega > \omega_0$$

Chebyshev Response

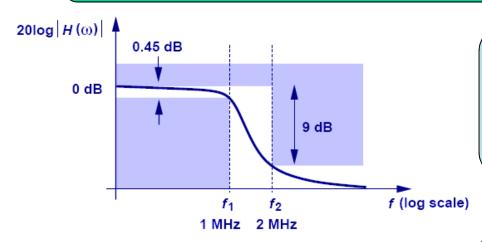


$$|H_{PB}(j\omega)| = \frac{1}{\sqrt{1 + \varepsilon^2 \cos^2\left(n \cos^{-1} \frac{\omega}{\omega_0}\right)}}$$

$$|H_{SB}(j\omega)| = \frac{1}{\sqrt{1 + \varepsilon^2 \cosh^2 \left(n \cosh^{-1} \frac{\omega}{\omega_0}\right)}}$$

66

Example 14.26: Chebyshev Response



Suppose the filter required in Example 14.24 is realized with third-order Chebyshev response.

Determine the attenuation at 2MHz.

$$\boxed{\frac{1}{\sqrt{1+\varepsilon^2}} = 0.95 \to \varepsilon = 0.329}$$

$$\omega_0 = 2\pi \, (1\text{MHz})$$

$$|H(j\omega)| = \frac{1}{\sqrt{1 + \varepsilon^2 \left[4\left(\frac{\omega}{\omega_0}\right)^3 - 3\frac{\omega}{\omega_0}\right]^2}}$$

$$|H(j2\pi(2MHz))| = 0.116 = -18.7dB$$

➤ A third-order Chebyshev response provides an attenuation of -18.7 dB a 2MHz.

Example 14.27: Order of Chebyshev Filter

Specification:

Passband ripple: 1 dB

Bandwidth: 5 MHz

Attenuation at 10 MHz: 30 dB

What's the order?

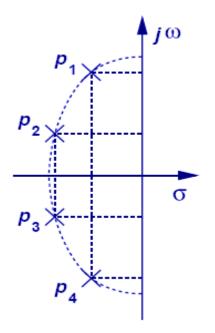
$$1 dB = 20 \log \sqrt{1 + \varepsilon^2} \rightarrow \varepsilon = 0.509$$

Attenuation at $\omega = 2\omega_0 = 10$ MHz: 30 dB

$$\frac{1}{\sqrt{1+0.509^2 \cosh^2(n\cosh^{-1}2)}} = 0.0316$$

$$\cosh^2(1.317n) = 3862 \rightarrow n > 3.66 \rightarrow n = 4$$

Example 14.28: Chebyshev Filter Design



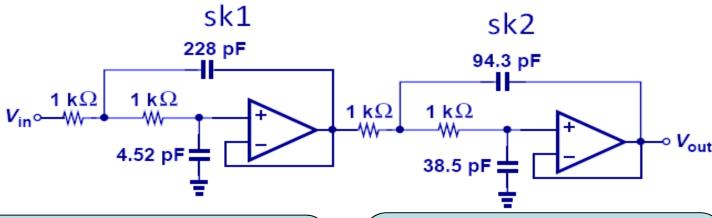
Using two SK stages, design a filter that satisfies the requirements in Example 14.27.

$$p_k = -\omega_0 \sin \frac{(2k-1)\pi}{2n} \sinh \left(\frac{1}{n} \sinh^{-1} \frac{1}{\varepsilon}\right) + j\omega_0 \cos \frac{(2k-1)\pi}{2n} \cosh \left(\frac{1}{n} \sinh^{-1} \frac{1}{\varepsilon}\right)$$

$$p_{1,4} = -0.140\omega_0 \pm 0.983 j\omega_0$$
SK1

$$p_{2,3} = -0.337\omega_0 \pm 0.407 j\omega_0$$
SK2

Example 14.28: Chebyshev Filter Design (cont'd)



$$H_{SK1}(s) = \frac{(-p_1)(-p_4)}{(s-p_1)(s-p_4)}$$
$$= \frac{0.986\omega_0^2}{s^2 + 0.28\omega_0 s + 0.986\omega_0^2}$$

$$H_{SK2}(s) = \frac{(-p_2)(-p_3)}{(s-p_2)(s-p_3)}$$
$$= \frac{0.279\omega_0^2}{s^2 + 0.674\omega_0 s + 0.279\omega_0^2}$$

$$\omega_{n1} = 0.993\omega_0 = 2\pi \times (4.965\text{MHz})$$
 $Q_1 = 3.55$

$$\omega_{n2} = 0.528\omega_0 = 2\pi \times (2.64\text{MHz})$$
 $Q_2 = 0.783.$

$$R_1 = R_2 = 1 \text{ k}\Omega, C_1 = 50.4C_2$$

 $\frac{1}{\sqrt{50.4}R_1C_2} = 2\pi \times (4.965\text{MHz})$
 $\rightarrow C_2 = 4.52 \text{ pF}, C_1 = 227.8 \text{ pF}$

$$R_1 = R_2 = 1 \text{ k}\Omega, \ C_1 = 2.45C_2$$

$$\frac{1}{\sqrt{2.45}R_1C_2} = 2\pi \times (2.64 \text{ MHz})$$

$$\to C_2 = 38.5 \text{ pF}, \ C_1 = 94.3 \text{ pF}$$